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Abstract

When a principal hires an agent to create a result, she would like to motivate the
agent to pay effort to increase the probability of a good fit with her own characteris-
tics. However, an outcome that does not fit this principal may fit another, so her agent
might have an incentive to divert a result to another principal through that principal’s
contracted agent. This is commonly achieved in practice through a fee-sharing arrange-
ment among the agents. This paper studies how such result-diverting and fee-sharing
arrangements affect the agents’ incentive to exert efforts and the principals’ incen-
tive when offering contracts. We show that, under fee-sharing arrangement, a contract
signed between a principal and her agent is able to influence the future transfers among
the agents when they bargain, so each principal has incentive to lower her commission
(the reward for a good fit) to reduce the outflows of surplus to other principals. Also,
the ability of the commission to motivate effort in an agent decreases when fee-sharing
is allowed. These effects lower the symmetric equilibrium effort level compared to the
benchmarks where fee-sharing is not possible. As a result, efficiency is improved as
the agents’ efforts would have been wastefully high in the absence of fee-sharing. How-
ever, the symmetric equilibrium commission level can be higher depending on the cost
function.

∗I am grateful for invaluable suggestions from Jin Li and Rongzhu Ke. I thank participants of seminars at
HKUST, CUHK, HKU and Sinica, and Yuk-fai Fong, Johannes Hörner, and Wing Suen. All errors remain
my own. This project began when I was affiliated with Cornerstone Research.
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1 Introduction

Principals are typically different, so they need their agents to exert effort to get them a result
that fits their individual characteristics. A result that is bad for one principal may be good
for another, so opportunities exist for an agent to divert a result to other principals if that
can give the agent a higher payment, and at the same time for an agent who cannot create
a good fit to turn to other agents for results that can be delivered to his own principal.

An example of such interaction exists among third party recruiters, also called head-
hunters. They routinely write fee-sharing agreements with other headhunters to finish a
job. Other agents, such as talent agents, can make use of the same arrangement to match
performance opportunities to artists. Real estate agents also adopt commission-sharing and
exchange information on their search results through Multiple Listing Services (MLS).

In these situations, the suitability of a result to a principal is subject to some uncertainty.
For example, after exerting search effort for a potential job candidate, an agent might find one
that is more suitable for a different position. At the same time, agents typically have good
access to information such as other agents’ identity and their search results and thus have
the freedom to get together with other agents to reach a mutually beneficial arrangement.
This freedom obviously brings some efficiency gain in terms of matching results to principals.
However, its impact on the equilibrium effort levels and equilibrium contract offers is not
immediately clear without careful analysis.

From a more theoretic point of view, it is also interesting to study a multi-principal
multi-agent model where agents can interact with each other and principals are restricted to
contract only with one agent. We will elaborate on the latter assumption more in terms of
how it differs from the existing literature.

More specifically, this paper studies a two-principal and two-agent model, which is easily
extendable to n-principal-and-n-agent, where each principal can contract with only one agent
by offering him a contract, written to be contingent on the result received. Agents first exert
effort, which affects the probability of whether the result is a good fit or not. Then, observing
the outcomes, the agents consider whether to deliver the result to his own principal, or to
deliver it to the other agent. The fee-sharing arrangement is determined through Nash
Bargaining with equal bargaining power between the agent that diverts and the agent that
receives.1

Contracts, offered by the principals and accepted by the agents, indirectly control the

1The equilibrium outcome will look like as if there is an industry convention of splitting the commission
half-half and they are just adhering to the convention.
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flows of transfers in-between the agents by controlling the agents’ total surplus to be shared
through bargaining. Principals actually directly care about these inflows and outflows of
transfers, because she internalizes her agent’s payoff through a contract that makes the
participation constraint binding for her agent, but she does not internalizes the other agents’
payoff as there is no contract with them. Therefore, the principal would want to use her
contract to increase the inflow of surplus and decrease the outflow of surplus. There is a limit
to how much a principal can increase the inflow and the incentive for reducing the outflow
is more interesting because there the principal also faces tradeoffs, explained below. First,
the desire to reduce outflow of surplus makes a principal want to pay less for a good fit. We
will call the effect of the contract on her payoff the “leakage effect”. This effect was absent
in the no fee-sharing benchmarks, as there the principal does not care how much she pays
for a good fit as long as it motivates the right effort level because she extracts the payment
back. When fee-sharing is allowed, in the event of receiving a result from agent 2, principal
1’s payment for a good fit (beyond what principal 2 pays for a bad fit) gets shared between
two agents. Since principal 1 does not contract with agent 2, so she cannot extract back the
surplus from agent 2, so the part of the commission that goes to agent 2 ultimately goes to
the other principal.

Second, the principal has an incentive to increase the payment for a good fit to motivate
her own agent to pay effort (as long as the payment is less than the incremental value of a
good fit). We will see that since the principal internalizes the cost of the effort of her own
agent, this effect alone would call for a sell-out contract. We will call this the “self-motivating
effect”.

Third, the principal has an incentive to increase the payment for a good fit to de-motivate
the other agent to pay effort. If the agent pays less effort, there is a higher chance that the
other agent’s result is useful to this principal. Since the principal does not internalize the
other agent’s cost of effort, this effect alone calls for a higher payment as long as the leaked
out surplus is still less than the incremental value of a good fit. We will call this the “cross-
motivating effect”.

The second and third effect of a contract is through its effect on agents’ effort. They
form a trade-off with the first effect. How the equilibrium contracts and efforts of a model
with result-diverting and fee-sharing would compare to the case of no fee-sharing depends
on how the above three effects play out. Except for when the cost of effort is too low or
too high (where the equilibrium effort level hits the boundary constraints), the equilibrium
effort level is lower than the benchmarks with no fee-sharing allowed. The reason is that
the ability of a given level of reward for a good fit to motivate effort is weaker when there
can be fee-sharing. To motivate the same level of effort as in the no fee-sharing benchmarks,
the reward for a good fit has to higher. However, the principal will never want to offer
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such a high level of reward because at that high level of reward, both the leakage and the
self-motivating effects are negative, while the cross-motivating effect is zero.

At the same time, because the ability of a given level of reward for a good fit to motivate
effort is weaker when there can be fee-sharing, the equilibrium reward for a good fit might
have to be higher, just to motivate that lower level of effort.

We also show that the welfare is improved when fee-sharing is allowed. The improvement
not only comes from better matching of project results to principals, but also from lower
level of socially-wasteful efforts.

This model also highlights the role of the restriction that a principal cannot contract
with all agents whose action affects this principal’s payoff. This is the reason why sell-out
contracts are not efficient. If each principal can offer two contracts, one to each agent. We
show that there is always a symmetric equilibrium that is first-best, with properly structured
“sell-out” contracts that sell out to all agents.2

Literatures The paper is related to the common agency models in the sense that one
agent’s effort affect multiple principals’ payoff. Common Agency models however assumes
that each principal can offer contracts to every agent.3 In this paper, since a principal only
contract with one agent and thus does not internalize the other agent/principal’s utility, the
first-best outcome cannot be achieved even though the collusive outcome would be first-best.
The fact that efficiency can be restored in this model if each principal can offer two contracts,
one to each agent, echoes the result in Segal (1999), which showed that, when a principal can
offer multiple bilateral public offers, if there is no externality on agents’ reservation utilities,
the equilibrium is efficient.

There is also a literature that focuses on agents that are hired to do search. Lewis and
Ottaviani (2008) studied a general single-principal and single-agent model where the agent
can gain private benefits over the cause of searching, and their focus was on the interaction
of the agent’s incentives to exert search effort with agent’s incentives to report the private
information the agent acquires during the search process. In comparison, this paper looks
at the agents’ incentives to exert targeted search effort when their payoff is linked to other
agents and thus other principals.

There is also a literature on referral, another form of interaction among agents. It has
been studied in a non-principal-agent setting in Garicano and Santos (2004), which focused
on matching opportunities with agents’ talent, rather than on matching known results with
principals’ characteristics.

2In other words, there exists an optimal mechanism to implement the efficient outcome.
3Bernheim and Whinston (1986), Bernheim and Whinston (1985).
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The rest of the paper is organized as follows. Section 2 presents the model. Next,
section 3 presents the analysis of the three benchmarks. Section 4 shows the main model
and contrasts its results with the three benchmarks. Section 5 discusses the assumptions,
and extends the model in different direction, including a n-principal-n-agent model. Section
7 concludes.

2 Model

There are two principals, 1 and 2. They only differ in just one dimension, so we can say
without loss of generality that an outcome that is a good fit for one principal is a bad fit for
the other.

Principal 1 can contract with agent 1; and principal 2 can contract with agent 2. The
principal-agent relationship is assumed to be fixed. We will refer to an agent as him and a
principal as her.4

We assume the value of a bad fit to a principal to be 0, and that of a good fit normalized
to be d ≥ 0. Agents can exert effort to increase the probability of a good fit to his own
principal. Specifically, if agent exerts effort e1, then the probability of getting a good fit for
principal 1 is 1

2
+ e1. We will refer to such effort as “targeted effort”. A principal can enjoy

more than one piece of results, while the agents can only create one piece of result each.

We assume the effort choice set is [0, 1
2
]. The two agents have the same cost function of

effort, equaling to C(e). Suppose C ′(0) = 0. Assume C ′(e) > 0, C ′′(e) > 0 and C ′′′(e) ≥ 0
for any e ∈ [0, 1

2
].

After exerting effort and after observing the realization of result, an agent can choose
from one of the three actions:

1. Divert the result to the other agent, who will in turn deliver it to the other principal.

2. Deliver it to his own principal.

3. Hide it and not give it to anyone.

4This fixed pairing is without loss of generality under the assumption that each principal can only hire one
agent (or hiring more than one agent is prohibitively costly). Research is under way for endogenizing such
a choice by a principal to limit the number of contracting agents without relying on exogenous contracting
cost.
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We will denote the action set by A = {Divert, Deliver, Hide}.

Tie breaking assumptions Assume that when indifferent, an agent will choose not to
hide a result. When indifferent, an agent will choose to divert a result.

Note that potentially each principal can receive and derive benefit from more than one
result.

2.1 Information and Contracts

The agents’ effort choices and the action in the set A are not observable to the principals.
The two agents have complete information between themselves when Nash bargaining.

Both principals can offer a contract to her own agent and the payment can be contingent
on the verifiable value of the result the principal receives. We restrict the contract to be
non-discriminatory over all good fits, i.e., two good fits will be rewarded just twice as much
as one good fit.5

This implies that the contract can be written to be contingent on three different realiza-
tions: a good fit, a bad fit or no result. Therefore, we will characterize a contract by three
elements. First, a fixed fee F ∈ (−∞,+∞), to be paid regardless of what happens. Second,
an additional payment t, with t ∈ (−∞,+∞), to be paid when a bad fit is delivered to
the principal. Third, an additional payment s + t for a good fit with s ∈ (−∞,+∞). So,
principal 1 offers (F1, t1, s1) and principal 2 offers (F2, t2, s2). The fixed part of the contract
is always set to make the agents’ rationality constraints to be binding, so we can characterize
all contracts with only ti and si for i = 1, 2. A useful notation is ki ≡ si/d, which can be
thought of as the piece-rate for the extra benefit of a good fit.

2.2 Timing

The timing of the game is as follows.

1. Principals 1 and 2 simultaneously make take-it-or-leave-it contract offers to their re-
spective agents.

5The assumption of allowing multiple units per principal and that the contract have to non-discriminatory
greatly simplifies the analysis, and rules out the strange effect that a higher reward for a good fit from
principal 1 can motivate agent 2 to pay higher effort through a indirect effect from agent 1’s effort level. We
will explain this in more detail in the appendix.
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2. Agents 1 and 2 simultaneously decide whether to accept the offers or not.

3. Agents 1 and 2 simultaneously exert efforts.

4. Project values are realized.

5. Agents decide whether or not to divert their results.

6. A diverter and a receiver Nash Bargain to determine the transfer between them (with
full information).

7. Agents 1 and 2 deliver results to their respective principals and receive the promised
payments from their principals.

2.3 Equilibrium concept

All players are risk-neutral and they maximize their expected payoff. We assume there is no
discounting and normalize the outside options of the agents to be zero. Principals’ strategies
are simply the contracts they offer. The agents’ behavioral strategies are, 1) the acceptance
decision given the two contracts offered, 2) effort choices given what contracts are accepted,
and 3) diverting or not given the realized results.

Despite that there is incomplete information in this model, since the principals only act
once at the beginning of the game by offering contracts, their beliefs will not play a role.
Here, like in any pure screening model, the set of Subgame perfect Nash equilibrium is
identical to the sets of strategy profiles in weak perfect Bayesian equilibrium or sequential
equilibria, so we will use the concept of Subgame Perfect Nash Equilibrium.

2.4 Benchmarks

We will consider the following benchmarks for isolating the effects of fee-sharing arrangement
and for drawing welfare implications:

• No diverting (and no fee-sharing) benchmark. This is where we exogenously
shut-down all interactions among the agents.

• Allowing diverting but no fee-sharing benchmark. This is where we allow the
agent to divert the result to the other agent, but does not allow them to make any
transfers to each other.
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• First-best benchmark. This is where we solve for socially optimal pair of efforts,
i.e., the first-best efforts, and show the pair of contracts that would implement the first-
best efforts (allowing the agents to be strategic and allowing diverting and fee-sharing),
which we will call the first-best contracts.

We will adopt the following notations for the symmetric equilibrium outcomes for the
three benchmarks and the main model:

Effort Contract Welfare

No diverting benchmark ê k̂ Ŵ

Allowing diverting but no fee sharing benchmark ě ǩ W̌
First-best benchmark e∗ k∗ W ∗

Main model (allowing diverting and fee sharing) ė k̇ Ẇ

3 Benchmarks

3.1 No diverting benchmark

There is no connection between two principal-agent pairs, so we can just study one pair in
isolation. The analysis is very standard: a sell-out contract is optimal for the principal. Any
ti ≥ 0 and si = d (coupled with appropriate Fi that extracts all surplus) will implement the
optimal effort for each principal. Here ti will work just as Fi as a fixed fee for the agent.
Other contracts with si + ti = d and ti < 0 (coupled with appropriate Fi that extracts all
surplus) will also work, where agents hide the result if it is bad and gets paid d if the outcome
is good. No matter the sign of ti, the basic structure is the same: a fixed fee that extracts
surplus and the agent gets paid d more only if he delivers a good fit.

Lemma 1. In the no-trading benchmark, the equilibrium outcome is the following.

Both agents exert effort effort level ê, where ê is determined by the following equation if
d < C ′(1

2
), otherwise, it is 1

2
:

d− C ′(ê) = 0

Let Π = (1
2

+ ê)d− C(ê).

Both principals offer two sell-out contracts: the agent is guaranteed an amount F =
−Π < 0, and if and only if he delivers a good fit, he will be paid an additional ŝ = d,
equivalent to a piece-rate of k̂ = 1.
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Both agents accept the contract and they always deliver a result to their own principals.

The expression d−C ′(ê) = 0 is simply the agent’s first order condition when the solution
is interior.

3.2 Allowing diverting but no fee sharing benchmark

Notice that all symmetric equilibria in the No-diverting Benchmark are also equilibria here.
Since agents will not get paid if they divert, they will divert according to our tie-breaking
assumption. (Even when the tie-breaking assumptions are different, the equilibrium effort
will be the same, while efficiency pay change.)

Moreover, these are the only equilibria, because no matter what the other principal offer,
each principal can always implement ê and extracts all the surplus from her agent. Also, a
principal cannot do better than that.

Therefore, this benchmark gives exactly the same equilibrium efforts and contract struc-
ture as the previous one.

Lemma 2. Allowing diverting but no fee-sharing benchmark gives the same equilibrium
efforts and contract structure as the no diverting benchmark, i.e., š = d (equivalent to a
piece-rate of ǩ = 1) and ě is determined by the following equation if d < C ′(1

2
), otherwise, it

is 1
2
:

d− C ′(ě) = 0

Remark: This shows that what really matters for the effort levels and piece-rate in the
agents’ interaction is the fee-sharing arrangements. Since the no-diverting and the allowing
diverting but no fee-sharing benchmarks have the same equilibrium effort levels and piece-
rates, we will sometimes refer to them together as no fee-sharing benchmarks.

3.3 First-best benchmark

Since whenever a result is created, it is going to be good for some principal, the efficient effort
level is e∗ = 0.6 This shows that in the previous two benchmarks, efforts are overly-high.

6If agent 1 gets a good fit and agent 2 gets a bad fit, then both agents give the results to principal 1 who
enjoys two pieces of good fits, while principal 2 gets nothing.
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To implement the efficient level of effort and efficient diverting decision, the contracts
must have only a fixed part. (If a contract rewards good fit over bad fit, then effort will be
positive. If a contract punishes good fit over bad fit, the diverting decision will be inefficient.
Therefore, the contract must pay the same no matter a good or a bad fit is delivered. This
implies s = 0 and t ≥ 0. Then diverting will not give an agent any payment, so to make
sure that the agent will divert, t = 0.

Each principal can extract half of the total surplus, which is d.

Lemma 3. The first-best outcomes are e∗ = 0. Given two contracts with only a negative
fixed payment −d, there is a symmetric equilibrium where the first-best level of welfare is
achieved.

4 Main Model

4.1 Preliminary results

We denote the subgame effort equilibrium by (ẽ1(s1, s2, t1, t2) and ẽ2(s1, s2, t1, t2)) or simply
ẽ1 and ẽ2) for convenience.7 We will also use 1→ 2 to denote the event that agent 1 diverts
a bad fit to agent 2 (so that a bad fit becomes a good fit), and 1← 2 to denote a diversion
of a bad fit in the other direction.

Because of the following lemma, we will focus on studying principal 1’s best response to
principal 2 given that principal 2 choose a strategy satisfying s2 + t2 ≥ 0.

Lemma 4. On any symmetric equilibrium, it must be that agents deliver a good fit to their
own principals and ṡ+ ṫ ≥ 0.

This lemma is proved in the Appendix.

We first tackle the choice of t1. The following lemma allows us to convert a problem
where a principal can potentially control two parameters s and t into a problem where she
essentially picks only one choice variable.

Lemma 5. Given any strategy of principal 2 with s2 + t2 ≥ 0, there always exists a best
response of principal 1 must have t1 = 0 and s1 ≥ 0.

7The bounded choice set implies that the subgame effort equilibrium exists and the convexity of C(·)
implies that it is unique.
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Remark: In general, a principal can choose to reward or punish an agent upon receiving
a bad fit relative to receiving no result. Interestingly, increasing the amount promised for a
bad fit, while keeping the incremental reward for a good fit (over a bad fit) the same would
give the agent more incentive to create a good fit (even though on equilibrium a principal
never receives a bad fit). This is because rewarding a bad fit increases the agent’s threat
point and reduces the net gain for the agent from Nash bargaining when the agent tries to
divert away a bad fit. This decreases the attractiveness of the event of getting a bad fit for
the agent and thus can motivate the agent to pay effort to create a good fit. However, we
show that it is not profitable for the principal to reward a bad fit (over no-result) despite
this subtle effect.

Proof. Here we prove for the case of the subgame following s1, s2, t1, t2 such that s1 + t1 >
max{t2, 0} and s2 + t2 > max{t1, 0}. For the other cases, refer to the Appendix.

The threat point of agent 1’s Nash Bargaining when he gets a bad fit is what he can get
if the bargaining fails, which is max{t1, 0} (disregarding the fixed payment he is guaranteed
of). So the role of t1 depends on whether it is positive or negative.

Case 1. t1 ≥ 0. Given the contracts and the other agent’s effort choice, agent 1 solves:

max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

+(
1

2
− e1)(

s2 + t2 − t1
2

+ t1)− C(e1)

⇔ max
e1∈[0, 1

2
]

(
1

2
+ e1)s1 + (

1

2
− e1)

s2 + t2 − t1
2

− C(e1)

Therefore, the first order condition for an interior solution of e1 is:

s1 −
s2 + t2 − t1

2
= C ′(e1)

A higher positive t1 decreases the payment from agent 2 to agent 1 when 1 → 2, so it
increases agent 1’s incentive to pay effort to create a good fit. Both s1 and t1 can increase
the effort of agent 1, but the effect from s1 is stronger. For any interior effort levels, we have:

∂ẽ1
∂s1

=
1

C ′′(ẽ1)
>

1

2C ′′(ẽ1)
=
∂ẽ1
∂t1

> 0
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Principal 1’s payoff is:

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ2)(d−

s1 + t1 −max{t2, 0}
2

) + (
1

2
− ẽ1)

s2 + t2 − t1
2

− C(ẽ1)

From the principal 1’s payoff, we see that, aside from effects on ẽ1 and ẽ2, a higher s1

increases the payment leaked to agent 2 when 1 ← 2 and a higher t1 when t1 > 0 increases
the payment leaked to agent 2 (with the same strength as s1) and in addition reduces the
payment gained by agent 1 when 1 → 2. Therefore, a cost-benefit analysis suggests that
principal should use a more cost effective s1 to motivate effort instead of t1. Formally, we
can prove by contradiction.

Suppose there is a best response with t1 > 0. Consider an alternative for principal 1
t′1, s

′
1 with t′1 = t1 − ε with ε > 0 small enough such that t′1 is still above zero, and at the

same time Let s′1 = s1 + ε
2
. When ε is small enough, we are still in the parameter case

s1 + t1 > max{t2, 0} and s2 + t2 > max{t1, 0}. This alternative makes s′1 +
t′1
2

= s1 + t1
2

, so
the incentive for agent 1 is the same, i.e. e′1 = e1. However, s′1 + t′1 < s1 + t1, so e′2 ≤ e2.
This implies the payoff strictly increases. Therefore, this contradicts the definition of a best
response.

Case 2. t1 ≤ 0. Given s1, s2, t1, t2 and e2, agent 1 solves:

max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

+(
1

2
− e1)(

s2 + t2
2

+ 0)− C(e1)

⇔ max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e1)

s2 + t2
2
− C(e1)

The first order condition for an interior solution is:

(s1 + t1)−
s2 + t2

2
= C ′(e1)

Notice that when t1 < 0, t1 has the same motivating effect on e1 as s1.

When t1 ≤ 0, principal 1’s payoff is:
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U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ2)(d−

s1 + t1 −max{t2, 0}
2

) + (
1

2
− ẽ1)

s2 + t2
2
− C(ẽ1)

Here we see that in both the agents’ incentive and the principal’s payoff, only the sum
of s1 + t1 matters. Therefore, If there is a best response with t1 < 0, we can find another
best response with t1 = 0 by decreasing s1.

Other things to notice about the first order condition is that one’s own principal’s con-
tingent payments motivate effort and the other principal’s contingent payments de-motivate
effort.

4.2 Main results

Lemma 5 implies that we only need to consider principal 1’s best response in a class of
strategy with t1 = 0 against a given strategy of principal 2 with t2 = 0.

Taking derivative of principal 1’s payoff with respect to k1, while setting t1 = t2 = 0,

∂U1

∂k1

= −1

2
(
1

2
− ẽ2)d+ ((1− k2

2
)d− C ′(ẽ1))

∂ẽ1
∂k1

+ (1− k1

2
)d(−∂ẽ2

∂k1

)

We can identify three effects influencing the choices of k1:

Leakage effect First, a higher piece-rate leaks more surplus to the other agent, which
ultimately goes to the other principal through the binding participation constraint of the
other agent. This gives each principal incentive to lower the piece-rate, represented by the
negative term −1

2
(1

2
− ẽ2)d.

Self-motivating effect Second, a higher piece-rate by principal 1 increases effort by
agent 1. The positive effect is represented by ((1− k2

2
)d−C ′(ẽ1)) ∂ẽ1∂k1

= (1−k1)d
∂ẽ1
∂k1

. However,
at k1 = 1, this effect is second order due to the Envelope Theorem.

Cross-motivating effect Third, there is an effect on k1 through agent 2’s effort, ẽ2.
When k1 < 2, principal 1 wants a lower ẽ2 to increase the chance of a fit with agent 2’
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result. This pushes up k1. When k1 > 2, principal 1 wants to discourage receiving result
from agent 2 because too much commission would be leaked to agent 2 in that case. The
effect is represented by the term (1− k1

2
)d(− ∂ẽ2

∂k1
), which is first positive, then negative, as k1

increases, with a cutoff of k1 = 2.

In the appendix, Lemma 7 (the necessary condition) and Lemma 8 (the sufficient condi-
tion) characterize the unique (in terms of effort level) symmetric equilibrium of this model
for different parameter cases, based on which we can immediately reach at the comparison
with the benchmarks.8

Proposition 1. If cost of effort is high enough such that C ′′(0) ≥ 6d, then the first-best level
of effort is achieved, i.e., ė = e∗ = 0 < ě = ê.

If cost of effort is low enough such that C ′(1
2
) ≤ 3

5
d, then the unique equilibrium effort is

ė = 1
2

and any k̇ > 2
d
C ′(1

2
) and ṫ = 0 can form an equilibrium.

If cost of effort is in the intermediate range such that C ′′(0) < 6d and C ′(1
2
) > 3

5
d, then

the unique equilibrium effort is strictly above the first-best level and below that of the no
fee-sharing benchmarks, i.e., e∗ < ė < ě = ê. When ṫ = 0, the piece-rate k̇ may or may not
be below 1.

Note that at a symmetric pair of contracts with piece-rate k, the subgame equilibrium
ẽ (if interior) satisfies k

2
d = C ′(ẽ). Recall d = C ′(ě) when ě is interior, so to motivate an

effort level as high as the one in the no fee-sharing benchmarks, we need a piece-rate as high
as 2, at which the cross-motivating effect drops to zero and the other two effects are zero,
so the there cannot be an equilibrium with effort level as high as that in the no fee-sharing
benchmarks.

However, even when the effort level is interior, the equilibrium piece-rate might be above
the sell-out contract. This is because at the piece-rate of the sell-out contract, k = 1, there
are two effects competing. The leakage effect calls for a lower piece-rate and the cross-
motivating effect calls for a higher piece-rate. Lemma 7 shows that the relative strength of
the two forces depend on the cost function. For the special case of quadratic function, i.e.,
C(e) = ae2 with a > 0, the condition has a simple form9:

8The equilibrium contracts are not unique, because given any pair of equilibrium contract (k̇, ṫ) with ṫ = 0,
we can find another pair (k̇′, ṫ′) by k̇′ = k̇ + x

d and ṫ′ = −x for any x > 0, which also form an equilibrium.
This is because what matters in payoff both on and off the equilibrium is just s + t and max{t, 0} as long as
s + t ≥ 0.

9The parameter condition for an interior ė becomes a ∈ ( 3
5d, 3d).
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k̇ ≤ 1⇔ a ≥ d

When cost is very low, even a small piece-rate (when the cross-motivating effect is still
very strong and positive), the upper limit of the effort can always be hit. (If we consider a
special cost function with lime→ 1

2
C ′(e) =∞, then this parameter case will disappear.)

Figure 2 and Figure 1 show the equilibria across the benchmarks and the main model
for specific cost function examples. The figures highlight the reasons why equilibrium effort
level is lower than the no fee-sharing benchmarks. First, principals want to reduce leakage
of surplus to other agents and principals, which makes them offer contract with lower piece-
rates than what would be necessary to induce effort level as high as in the no fee-sharing
benchmarks (k = 2). Second, the ability of a piece-rate to motivate effort becomes lower, as
now a bad fit can be turned into a good fit by diverting it to other principals, so an agent
works less hard to create a good fit given a level of piece-rate. These two effects cause effort
level to be lower than the no fee-sharing benchmarks.

d
a0* k
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1ˆ  kk
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2
1ˆ  ee 
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 eCkd

0)('  eCkd

First-best 
benchmark

No fee- 
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e

k
d
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Figure 1: Quadratic cost function C(e) = ae2 with constant a ∈ (3
5
d, d).

Since the matching between results and principal is efficient under first-best benchmark,
allowing diverting but no fee-sharing benchmark and the main model, and the main model’s
equilibrium effort lies in between the first-best and that of the allowing diverting but no fee
sharing, the welfare ranking is immediate.
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Figure 2: Quadratic cost function C(e) = ae2 with constant a ∈ (d, 3d).

Corollary 1. The welfare comparison is:

W ∗ ≥ Ẇ ≥ W̌ > Ŵ

Since all surplus are shared equally by the two principals, the principals’ welfare increases
when the fee-sharing is allowed. Even though each agent works less hard to create a good
fit, the chance of getting a good fit is higher for the principal under fee-sharing. To see
that, without fee-sharing, each principal has probability (1

2
+ ê) of getting a good fit. With

fee-sharing, each principal has probability (1
2

+ ė) of getting a good fit from her own agent
and probability (1

2
− ė) of getting a good fit from the other agent. These two events can

happen at the same time, at which this principal receives two good fits.

5 Discussion

5.1 The restriction of one agent to contract with

We want to highlight the following assumption.
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Assumption: each principal can only contract with one agent.

This assumption is important for the comparison with first-best. To see that we can
modify the model such that each principal simultaneously offer one contract to each agent
and the contract offer also specify that it is void unless the agent also accept the contract
offered by the other principal (such as in Bernheim and Whinston (1985)).

We can denote a contract offered to agent 1 by principal 1 as k1, F1, one offered to agent
2 by principal 1 as k̃2, F̃2, one offered to agent 1 by principal 2 as k̃1, F̃1, and one offered to
agent 2 by principal 2 as k2, F2. Recall that e∗ denotes the first-best effort level.

Proposition 2. There exists a first-best symmetric equilibrium, where each principal pays
piece-rate k1 = k2 = 1

2
to her own agent and piece-rate k̃1 = k̃2 = 1

2
to the other agent. The

equilibrium effort level is e∗ = 0.

The proof is in the Appendix.

Here principal 1 not only pays agent 1 more when she gets a good fit, she also pays agent
2 more, not knowing who created the good fit. First-best is achieved because the principal
internalizes both agents’ payoff. Notice that k1 + k̂2 = 1, so each principal “sells out” the
project, not to one agent, but to two agents. Then, when each principal is maximizing by
picking piece-rate, she is maximizing the total payoff of four players.

Despite the desirability of such an equilibrium, there are many real world applications
where principals do not have the ability to offer contracts to many agents. Just think of
the case of headhunters, it is prohibitively expensive for a company to contract with all
headhunters who can potentially exert effort to find the company a good candidate.

5.2 Un-targeted effort

The paper modeled targeted effort, efforts that is useful to only one principal. Similar
analysis can be applied to efforts that are “un-targeted”, i.e., efforts that are valuable to
both principals. One example of such effort is if effort just increases the vertical value of the
outcome. The “leakage” problem is still there and it depresses the piece-rates and efforts
compared to the no-trading benchmark. Since allowing trading or not does not change the
value of such “un-targeted” effort, the no-trading benchmark level effort is the same as the
first-best level of effort. Therefore introducing trading pushes the equilibrium level of effort
away from the first-best.
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6 N principals and n agents

The model can be easily extended to n principals and n agents with n > 1. One can imagine
n principals differ in one dimension and they are located on a circular city. The model is
symmetric, so what we describe for agent 1 applies to all other agents with the appropriate
substitution of index.

If agent 1 exerts effort e1, then his result has probability ( 1
n

+ e1) to fit principal 1 and
probability ( 1

n
− e1

n−1
) to fit any other principals. Principal 1 can choose effort from [0, n−1

n
].

The rest of the model does not change.

Agent 1’s problem, given contracts (k1, k2, . . . , kn), becomes:

max
e1

(
1

n
+ e1)k1d+ (

n− 1

n
− Σn

2ei
n− 1

)
k1

2
d+ (

1

n
− e1
n− 1

)
Σn

2ki
2

d− C(e1)

The effect of a piece-rate on the subgame equilibrium effort level is:

∂ẽ1
∂k1

=
d

C ′′(e1)

∂ẽi
∂k1

=− 1

n− 1

d

2C ′′(e1)
for all i 6= 1

Therefore, the principal 1 maximizes the following payoff:

U1 = (
1

n
+ ẽ1)d+ (

n− 1

n
− Σn

2 ẽi
n− 1

)(d− k1

2
d) + (

1

n
− ẽ1
n− 1

)
Σn

2ki
2

d− C(ẽ1)

∂U1

∂k1

= −1

2
(
n− 1

n
− Σn

2 ẽi
n− 1

)d+ (1− k1)d
∂ẽ1
∂k1

+ (1− k1

2
)d(−Σn

2

∂ẽi
∂k1

)

At a symmetric equilibrium, the first order derivative is:

f(k) ≡ U1

k1

∣∣∣∣
k1=k2=...=kn=k

= −1

2
(

n

n− 1
− e)d+ (d− 2C ′(e))

d

C ′′(e)
+ (d− C ′(e)) d

2C ′′(e)
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with kd
2

= C ′(e).

Here we see that the only impact of looking at n instead of 2 is that the leakage effect is
stronger here. The more other principals and agents there are, the more likely it is for the
principal to receive a result from outside. Since equilibrium ė and k̇ is determined through
f(k) = 0 for intermediate level of cost, higher n gives lower ė and k̇. However, the relative
comparison across the benchmarks does not chance. When n goes up, the higher leakage
effect does not interact with effort, so the analysis for general n is an almost word-to-word
replica of the analysis for the case of n = 2.10

Proposition 3. If cost of effort is high enough such that C ′′(0) ≥ 3dn
n−1

, then the first-best
level of effort is achieved, i.e., ė = e∗ = 0 < ě = ê.

If cost of effort is low enough such that C ′(n−1
n

) ≤ 3
5
d, then the unique equilibrium effort

is ė = n
n−1

and any pair of k̇ > 2
d
C ′( n

n−1
) can form an equilibrium.

If cost of effort is in the intermediate range such that C ′′(0) < 3dn
n−1

and C ′(n−1
n

) > 3
5
d,

then the unique equilibrium effort is strictly above the first-best level and below that of the no
fee-sharing benchmarks, i.e., e∗ < ė < ě = ê. The piece-rate k̇ may or may not be below 1.

The welfare comparison is the same as in the case of n = 2.

6.1 Bargaining with unequal bargaining power

The agents do not have to have equal bargaining power. As long as the contributor of the
result gets strictly positive bargaining power, the results of the model go through. To keep
the model symmetric, suppose that the agent who divert a result gets r share of the inter-
agent surplus and the agent who receives it and delivers it to his principal gets 1 − r, with
r ∈ (0, 1].

To achieve the no fee-sharing benchmark level of effort with a symmetric pair of contract,
we must have k = 1

1−r .

At a symmetric equilibrium, the first order derivative is:

10It is arguable that when the number of principals and agents change, the value of a fit d might change
as well. Since the magnitude of d does not play a role in the analysis, any assumption regarding d can be
easily accommodated by the model.
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f(k) ≡ U1

k1

∣∣∣∣
k1=k2=k

= −r(1

2
− e)d+ (1− k)

d2

C ′′(e)
+ (1− rk)

rd2

C ′′(e)

with (1− r)kd = C ′(e). This shows that the cross-motivating effect turns negative at k = 1
r
.

There are two cases. Case 1. r ≥ 1
2
. This case is equivalent to 1

1−r ≥
1
r
. In order to

motivate the same level of effort as in the no fee-sharing benchmark when the effort level is
interior, the the piece-rate k has to be equal to 1

1−r , at which level all three effects: leakage,
self-motivating and cross-motivating effects are non-positive.

Case 2. r < 1
2
. This implies 1

r
> 1

1−r >
1

1+r
. We will see that when k > 1

1+r
, the negative

self-motivating effect is always stronger than the positive cross-motivating effect. This is
because k > 1

1+r
⇔ −r(1 − rk) < −(1 − k). Since k = 1

1−r satisfies k > 1
1+r

. This sum of

three effects is negative at k = 1
1−r .

Therefore, the symmetric equilibrium effort level is lower (weakly) than that in the no
fee-sharing benchmark regardless of the bargaining powers.

7 Conclusion

In this paper, we show that, when fee-arrangement and result-diverting are allowed among
agents, who can exert effort to increase the probability of a fit, not only the efficiency
increases because of gain from better matching between results and principals, but also
from less wasteful targeted efforts. Lower equilibrium effort is due to two reasons. First,
principals want to reduce leakage of surplus to other agents and principals, which makes
them offer contract with lower piece-rates than what would be necessary to induce effort
level as high as in the no fee-sharing benchmarks. Second, the ability of a piece-rate to
motivate effort becomes lower, as now a bad fit can be turned into a good fit by diverting it
to other principals, so an agent works less hard to create a good fit given a level of piece-rate.
These two effects causes effort level to be lower than the no fee-sharing benchmarks. The
equilibrium effort level does not reach the first-best level except when the cost of effort is high
enough. This comparison with the first-best is due to our assumption that each principal
is restricted to contracting with only one agent. Without this assumption, the equilibrium
would be fully efficient.
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8 Appendix

Proof for Lemma 4.

Proof. We need to rule out two cases: 1) agent diverts a good fit or 2) agent hides a good
fit.

Case 1. agent diverts a good fit.

Subcase 1. Agent diverts a good fit and delivers a bad fit. This implies that s ≤ 0 and
t ≥ 0. Then following the contracts, both agents pay zero effort and the payoff for principal
1 is:

1

2

t2 − (s1 + t1)

2
− 1

2
t1 − (s2 + t2)2 ≤

1

2

t2
2

Principal 1 is strictly better off by offering s1 = d and t1 = −∞.

All the other cases are refuted in the same spirit. For any symmetric equilibrium where
agents either divert their good fits or hide their good fits, their efforts must be zero. So
all the payoff for a principal is purely from transfers and each of them have incentive to
unilaterally reduce their transfer to the other principals.

The remaining part of proof for Lemma 5.

Proof. Suppose (s1, t1) is a best response to (t2, s2.

(i) Consider the subgame following s1, s2, t1, t2 such that 0 ≤ s1 + t1 < t2 and s2 + t2 >
max{t1, 0}. This implies that the agent 2 will not divert a bad fit and agent 1 will divert a
bad fit.

Case 1. t1 ≥ 0. Given the contracts and the other agent’s effort choice, agent 1 solves:
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max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e1)(

s2 + t2 − t1
2

+ t1)− C(e1)

⇔ max
e1∈[0, 1

2
]

(
1

2
+ e1)s1 + (

1

2
− e1)

s2 + t2 − t1
2

− C(e1)

Therefore, the first order condition for an interior solution of e1 is:

s1 −
s2 + t2 − t1

2
= C ′(e1)

Principal 1’s payoff is:

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ1)

s2 + t2 − t1
2

− C(ẽ1)

Suppose t1 > 0. If ẽ1 <
1
2
, then (1

2
− ẽ1) > 0, we can again decrease t1 by ε and increase

s1 by ε
2

to improve principal 1’s payoff to reach a contradiction. If ẽ1 = 1
2
, then the principal

1’s payoff is simply (1
2

+ ẽ1)d− C(ẽ1). We can replace (s1, t1) with t′1 = 0 and s′1 > C ′(1
2
).

Case 2. t1 ≤ 0.

Agent 1’s incentive:

(s1 + t1)−
s2 + t2

2
= C ′(e1)

Principal 1’s payoff:

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ1)

s2 + t2
2
− C(ẽ1)

Therefore, only s1 + t1 matters, so if t1 < 0, we can always replace it with t′1 = 0 and
decreasing s1.
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(ii) Consider the subgame following s1, s2, t1, t2 such that s1+t1 > max{t2, 0} and s2+t2 <
max{t1, 0}. This implies that the agent 1 will not divert a bad fit, and agent 2 will divert a
bad fit.

Case 1. t1 ≥ 0. Given the contracts and the other agent’s effort choice, agent 1 solves:

max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

+ (
1

2
− e1)t1 − C(e1)

⇔ max
e1∈[0, 1

2
]

(
1

2
+ e1)s1 + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

− C(e1)

Agent 1’s incentive:

s1 = C ′(e1)

Principal 1’s payoff:

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ2)(d−

s1 + t1 −max{t2, 0}
2

)− C(ẽ1)

If 1
2
− 1̃2 > 0 then it is in principal 1’s interest to reduce t1. Otherwise, one can replace

a positive t1 with zero.

Case 2. t1 ≤ 0. Agent 1 solves:

max
e1∈[0, 1

2
]

(
1

2
+ e1)(s1 + t1) + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

− C(e1)

⇔ max
e1∈[0, 1

2
]

(
1

2
+ e1)s1 + (

1

2
− e2)

s1 + t1 −max{t2, 0}
2

− C(e1)

Agent 1’s incentive:

s1 + t1 = C ′(e1)
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Principal 1’s payoff:

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ2)(d−

s1 + t1 −max{t2, 0}
2

)− C(ẽ1)

So only s1 + t1 matters. Therefore, one can replace a negative t1 with zero and decreasing
s1 accordingly.

(iii) Consider the subgame following s1, s2, t1, t2 such that 0 ≤ s1 + t1 < max{t2, 0} and
s2 + t2 < max{t1, 0}. This implies that the agent 1 will not divert a bad fit, and agent 2 will
not divert a bad fit.

Agent 1’s incentive:

s1 = C ′(e1)

Principal 1’s payoff is:

U1 ≡ (
1

2
+ ẽ1)d− C(ẽ1)

Therefore, there is always another best response with t′1 = 0.

By Lemma 4, we have exhausted all cases.

Lemma 6. On any symmetric equilibrium, ṡ ≤ 2d.

Proof. Suppose s > 2d, then when agent 2 sends over a result that is a good fit for principal
1, principal suffers a net loss because d− s

2
< 0. The payoff of principal 1 is (1

2
+ e1)d+ (1

2
−

e2)(d− s1
2

) + (1
2
− e1) s22 −C(e1) = d−C(e). Consider a deviation principal 1 keeps the same

t1, but reduces t1 to t′1 = 2d. Then the deviation profit is (1
2

+ ẽ1)d + (1
2
− ẽ1) s22 − C(ẽ1) >

d− C(ẽ1) ≥ d− C(e), which is a strictly positive deviation.

Lemma 7. (Necessary condition) If there exists a symmetric equilibrium in the main model,
(ė, k̇, ṫ with ṫ = 0, then the following is true.

1. If C ′′(0) ≥ 6d, then ė = 0, k̇ = 0 and (̇t) = 0.
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2. If C ′(1
2
) ≤ 3

5
d, then ė = 1

2
and k̇ ≥ 2

d
C ′(1

2
).

3. If C ′′(0) < 6d and C ′(1
2
) > 3

5
d, then ė ∈ (0, ě) and is also unique, and k̇ = 2

d
C ′(ė),

ṫ = 0. In particular, if the following condition is satisfied, then k̇ ≤ 1 and otherwise,
k̇ ∈ (1, 6

5
):

1

2
− e ≥ C ′(e)

C ′′(e)
with C ′(e) =

d

2

Proof.

max
k1,t1

U1 ≡ (
1

2
+ ẽ1)d+ (

1

2
− ẽ2)(d−

k1d+ t1 − t2
2

) + (
1

2
− ẽ1)

k2d+ t2 − t1
2

− C(ẽ1)

Denote by f(k) the first order derivative of a principal’s payoff with respect to k1 with
k ∈ (0, 2

d
C ′(1

2
). Denote the symmetric effort level corresponding to k by e. That is,

f(k) ≡ U1

k1

∣∣∣∣
k1=k2=k,t1=t2=t

= −1

2
(
1

2
− e)d+ (d− 2C ′(e))

d

C ′′(e)
+ (d− C ′(e)) d

2C ′′(e)

with kd
e

= C ′(e). We use U1(k) to denote U1|k1=k2=k.

First, there cannot be equilibrium with k̇ so big such that d − C ′(ė) < 0 because it
implies f(k̇) < 0 and both principal will be better off to decrease the piece-rate by a little
bit. Therefore, equilibrium k̇ < 2, i.e. d− C ′(e) > 0. This immediately implies ė < ě = ê.

Second, we will show that U1(k) is strictly concave in k for all k ≤ 6
5
.

f ′(k) =
d2

4C ′′(e)
− [d− 2C ′(e)]

d

(C ′′(e))2
C ′′′(e)

∂e

∂d
− 2d

∂e

∂d

− d2

4C ′′(e)
− (d− C ′(e)) d

2(C ′′(e))2
C ′′′(e)

∂e

∂d

∼− [d− 2C ′(e)]
C ′′′(e)

(C ′′(e))2
− 2− (d− C ′(e)) C ′′′(e)

2(C ′′(e))2

=(−3

2
d+

5

4
kd)

C ′′′(e)

(C ′′(e))2
− 2
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This implies for any k ≤ 6
5
, we have f ′(k) ∼ −2 < 0. This means that U1(k) is strictly

concave over [0, 6
5
].

Third, we show that U1(k) is decreasing over k > 6
5
.

f(
6

5
) = −1

2
(
1

2
− e)d− 1

5
d

d

C ′′(e)
+

1

5
d

d

2C ′′(e)
= −1

2
(
1

2
− e)d < 0

Notice that k ≥ 1 implies that (d−2C ′(e)) d
C′′(e)

< 0. Also, (d−C ′(e)) d
2C′′(e)

is decreasing

in k (as − d2

4C′′(e)
− (d − C ′(e)) d

2(C′′(e))2
C ′′′(e) ∂e

∂d
< 0). Therefore, for all k < 6

5
, we have

f(k) < 0. This implies that k̇ < 6
5
.

Also, for any k ≥ 2
d
C ′(1

2
), the effort level is constant at 1

2
and the principal’s payoff is the

same as when k = 2
d
C ′(1

2
).

When f(0) ≤ 0, we have f(k) < 0 for all k ∈ (0, 6
5
), therefore, the equilibrium k̇ = 0

and the corresponding effort level is ė = 0. The parameter case equivalent to f(0) ≤ 0 is
C ′′(0) ≥ 6d.

When f(2
d
C ′(1

2
) ≥ 0 (which by itself implies 2

d
C ′(1

2
) < 6

5
), we have f(k) > 0 for all

k ≤ 2
d
C ′(1

2
), therefore, the equilibrium ė = 1

2
and the corresponding piece-rate is k̇ ≥ 2

d
C ′(1

2
).

This parameter case is equivalent to C ′(1
2
) ≤ 3

5
d.

Note that the above two parameter case is disjoint because:

C ′′(0) ≥ 6d⇒C ′′(e) ≥ 6d for all e ∈ (0,
1

2
)

⇒C ′(1

2
) =

∫ 1
2

0

C ′(e)de ≥ 6d
1

2
= 3d >

3

5
d

When C ′′(0) < 6d and C ′(1
2
) > 3

5
d, i.e., when the cost is in the intermediate range, k = 0

or k = 2
d
C ′(1

2
) cannot appear on a symmetric equilibrium as each principal has profitable

local deviation, therefore, we must have k̇ = 0. Under this parameter case, we have f(0) > 0
and f(min{2

d
C ′(1

2
), 6

5
}) < 0 and f(·) is strictly decreasing over (0, 2

d
C ′(1

2
)). Therefore, there

exists a unique k̇ ∈ (0,min{2
d
C ′(1

2
), 6

5
}) with f(k̇) = 0.

We can further analyze whether the interior k̇ is below or above k = 1 (i.e., the piece-
rate of a sell-out contract). Because f(·) is strictly decreasing, k̇ ≤ 1 is equivalent to
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0 = f(k̇) ≥ f(1), which is equivalent to the following:

1

2
− e ≥ C ′(e)

C ′′(e)
with C ′(e) =

d

2

By Lemma 5, we know that if ė < 1
2
, then ṫ = 0.

Lemma 8. (Sufficient condition) All the equilibrium candidates in Lemma 7 are actually
equilibria.

Proof. Define gκ(k1) by the following:

gκ(k1) =
∂U1

∂k1

∣∣∣∣
k2=κ

First, we prove sufficiency for the parameter case C ′′(0) ≥ 6d. We study the best response
of principal 1 given k2 = 0 (which implies that e2 = 0).

g0(k1) = −1

4
d+ (1− k1)

d2

C ′′(e1)
+ (1− k1

2
)
d2

C ′′(0)

g0(1) = −d
4

+
d2

4C ′′(0)
≤ −d

4
+

d2

4(6d)
< 0

That is, principal 1’s best response is a piece-rate strictly less than 1.

g′0(k1) = − d2

C ′′(e1)
− (1− k1)

d2

(C ′′(e1))2
C ′′′(e1)

∂e1

∂k1

− d2

4C ′′(0)

Note that when k < 1, we have g′0(k1) < 0, that is, g0(·) is strictly concave over [0, 1].

g0(0) = −d
4

+
3

2

d2

C ′′(0)
≤ −d

4
+

3

2

d2

6d
= 0
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Strict concavity and g0(0) ≤ 0 implies that g0(k) ≤ 0 for all k ∈ [0, 1]. Therefore,
principal 1’s best response to k2 = 0 is k1 = 0. That is, k̇ = 0 is an symmetric equilibrium.

Second, we prove sufficiency for the parameter case C ′(1
2
) ≤ 3

5
d. We study principal 1’s

best response to k2 = 2
d
C ′(1

2
). If k1 ≥ 2

d
C ′(1

2
), then e1 = e2 = 1

2
, and if k1 <

2
d
C ′(1

2
), then

e1 <
1
2

and e2 = 1
2
.

g 2
d
C′( 1

2
)(k1) = (d− C ′(1

2
)− C ′(e1))

∂e1

∂k1

+ (1− k1

2
)d(−∂e2

∂k1

)

Since C ′(1
2
) ≤ 3

5
d, k1 ≤ 2

d
C ′(1

2
) implies k1 < 2. The range k1 ≤ 2

d
C ′(1

2
) also implies that

C ′(e1) ≤ C ′(1
2
), that is d− C ′(1

2
)− C ′(e1) ≥ 0. Therefore, for k1 ≤ 2

d
C ′(1

2
), g 2

d
C′( 1

2
)(k1) ≥ 0,

so k1 = 2
d
C ′(1

2
) is a best response, and so does all k1 ≥ 2

d
C ′(1

2
), which all gives ė = 1

2
.

Third, we prove sufficiency for the parameter case C ′′(0) < 6d and C ′(1
2
) > 3

5
d.

gκ(k1) = −1

2
(
1

2
− e2)d+ (1− k1)d

∂e1

∂k1

+ (1− k1

2
)d(−∂e2

∂k1

)

Notice that gκ(k1) has the property that if gκ(τ) < 0 for some τ , then for all k1 > τ ,
gκ(τ) < 0. This implies that a local second order condition is sufficient for global maximiza-
tion (even though the payoff function may not be strictly concave on the whole range of
k1).

g′κ(κ1) = d
∂e2

∂k1

− d∂e1

∂k1

+ (1− k1)
∂2e2
∂k2

1

+ (1− k1

2
)d(−∂

2e2
∂k2

1

)

g′κ(κ1)|k1=κ = − 3d2

2C ′′(e)
+ (−5

4
+

7

8
κ)
d3C ′′′(e)

(C ′′(e))2

Since κ < 6
5
, we have g′κ(κ1)|k1=κ < 0. That is, the local second order condition is

satisfied.
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Proof for Proposition 2.

Proof. The fixed parts of principal 1’s contract keeps both agents’ rationality constraint
binding:

−F1 = F̃1 + [(
1

2
+ e1) + (

1

2
− e2)]k1d+ [(

1

2
− e1) + (

1

2
+ e2)]k̃1d− C(e1)

A similar expression exist for −F̃2 using agent 2’s rationality constraint.

−F̃2 = F2 + [(
1

2
+ e1) + (

1

2
− e2)]k̃2d+ [(

1

2
− e1) + (

1

2
+ e2)]k2d− C(e2)

Therefore, principal 1 maximizes:

[(
1

2
+ ẽ1) + (

1

2
− ẽ2)]d+ [(

1

2
− ẽ1) + (

1

2
+ ẽ2)](k2 + k̃1)d− C(ẽ1)− C(ẽ2)

Given that the other principal’s strategy is to offer k2 + k̃1 = 1, principal 1 maximizes
the total surplus of four players:

[(
1

2
+ ẽ1) + (

1

2
− ẽ2)]d+ [(

1

2
− ẽ1) + (

1

2
+ ẽ2)]d− C(ẽ1)− C(ẽ2) = 2d− C(ẽ1)− C(ẽ2)

Since the piece-rates of principal 1 is no longer in the expression, principal 1 will choose
piece-rates so that the effort levels are efficient.

Agent 1’s problem is:

max
e1

[(
1

2
+ e1) + (

1

2
− e2)]k1d+ [(

1

2
− e1) + (

1

2
+ e2)]k̃1d− C(e1)

So, to implement efficient effort for agent 1 (e1 = 0), principal 1 just need to set k1 = k̃1.
Similarly, k̃2 = k2. The other constraints are k1 + k̃2 = 1 and k2 + k̃1 = 1.
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This constitutes a continuum of efficient equilibria. In particular, there is a symmetric
one with k1 = k̃1 = 1

2
and k̃2 = k2 = 1

2
.

Alternative assumptions on the contract and number of units demanded by each principal.

Contracts that can discriminate on the number of units In the paper, we assumed
that the contract has to non-discriminatory, i.e., if should pay the same per unit no matter a
principal receives two units or one unit. Here we discuss what will happen if the contract can
be more general. Suppose a principal does not have to pay twice when receiving two good
fits than when receiving one good fit. We can equivalent think of the contract specifying a
reward for the first unit of good fit and another reward for the second unit of good fit.

When principal 1 receives two units, she is sure that one of the two units is provided
by agent 2. To reduce the amount leaked out to agent 2, she will optimally pay zero (or
arbitrarily small amount) for the second unit. Then the reward for the first unit of good fit
serves to motivate agent 1’s effort. When it is higher, agent 2 may paradoxically want to
exert more effort to create a good fit for principal 2. This is because a higher effort by agent
1 reduces the chance that agent 2 can supply the result to agent 1 to earn the reward for
the first unit. The relative strength and sign of the three effects are more dependent on the
cost functions and thus it is harder to get clear-cut general results.

Each principal can only enjoy one unit The intuition is exactly the same as the one
for the “first unit” in the above analysis.
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