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Abstract. By inverting the Bayes formula in a point-wise manner, we develop measures quantify-
ing the information gained by the Bayesian process, in reference to the Fisher information. Simple
examples are used for focused illustrations of the ideas. Numerical computation for the measures
is discussed with formulae. By extending the information gain concept to the broader context
of distribution theory, we arrive at a pairwise dependence measure, which can handle the case of
functional dependence and becomes Pearson’s ¢? when the joint probability density function (pdf)

is defined.
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1. Introduction

In standard Bayesian notation, we use () to denote the prior proba-
bility density function (pdf) of parameter 6 with support S(0), L(y|0)
the likelihood function (i.e. the pdf of data given the parameter) with
support S(Y'|6), p(8|y) the posterior pdf with support S(Ol|y) of pa-
rameter given the data, and f(y) the unconditional pdf for the data
with support S(Y'). Both € and y can be vectors. Note that in general,

the projection of S(Y'|6) into S(Y) is a subset, i.e. S(Y|0) & S(Y),
and the equality S(Y]0) 2 S(Y) may hold for some 6. In regard
to integral or probability, the latter is essentially the same as when
the complement of the projection of S(Y|f) into S(Y) is a set of
measure zero. If the joint support S(©,Y") equals the product space
S(0) x S(Y), then S(Y|0) 2 S(Y) for all #; and vice versa. A similar
relationship is true between S(O|y) and S(O).



From the joint pdf identity, L(y|@)7(0) = p(0|y)f(y), the Bayes
formula

p(Oly) = 7 (O)LWI)/ [, 7(O)L(y]6)d0

follows by a substitution of f(y), which is expressed as the integral
of the joint pdf with respect to 6 over S(O|y). We can re-write the
above joint pdf identity as w(6)L(y|0)/p(0ly) = f(y), where (0,y) is
in the joint support S(©,Y). Now for any fixed #, we can integrate
both sides of the re-expressed joint pdf identity with respect to y over
S(Y'|#) and obtain the prior pdf at 6,

Liylo) |
x(0) = /S(m)f(y)dy{ [ p(g|y)dy} (11)

Lylo) , ™
{/Sm@ p(6ly) dy} | 2

where the equality holds if and only if S(Y'|0) 2 S(Y), or the comple-
ment of the projection of S(Y'|6) into S(Y') is a set of measure zero.
In particular, under the so-called “positivity assumption”, (cf. Tan-
ner and Wong, 1987; and Tanner, 1996, Chapter 5), where S(©,Y") =
S(0) x S(Y), we have

-1
() = {/ L(W)dy} Vo € S(O). (1.3)
s16) p(Bly) "]

In the words of Meng (1996, p.311), the explicit form (1.3) ‘was
“mysteriously” missing in the general literature.” This may be due to
the tradition in the Bayesian literature to express the posterior distri-
bution in terms of the prior distribution. We shall follow Ng (1995,
1997) and call (1.3) the (point-wise) Inverse Bayes Formula (IBF),
in order to emphasize its unconventional character, in that the prior
distribution is expressed in terms of the the posterior distribution. In
fact, it is the harmonic mean of p(f|y) with respect to L(y|0).

The not-so-well-known (1.3) deserves to be better known because
it can lead to a number of important consequences as those already
discussed in the above-cited papers and in Tan, Tian and Ng (2009).
The objective of this paper is to continue the exploration of other
consequences, including some unexpected.
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The plan of our paper is as follows. In Section 2, we introduce two
natural functions measuring Bayesian information gain, in reference to
Fisher’s information function, and justify them with the aid of (1.2).
And we propose two normalized information gain indices between 0
and 1, I'; and I';(y), the former measuring the total information gain
aggregated over all parameter values and all possible data and the
latter measuring the information gain on all parameter values for the
datum y at hand. After fixing the ideas with simple examples, we
discuss numerical computation. In Section 3, we extend the concept
of total Bayesian information gain to the context of distribution the-
ory, yielding a natural pairwise dependence measure, ¥, between two
random variables or random vectors under conditional specification.
This measure is normalized to a pairwise dependence index, d, which
takes a value between zero and unity. The index ¢ equals zero if and
only if we have an independent pair. It equals unity for a highly de-
pendent pair, which can even be functionally dependent. When the
unconditional joint pdf is defined, 1? is the same as Pearson ¢?. How-
ever, unlike Pearson’s ¢?, our ¥ does not require the existence of the
joint pdf. The difference is demonstrated by a functional dependence
example, for which ¢? is not defined. To illustrate the main ideas, we
include what we hope are instructive examples. In Section 4, we draw
some conclusions and describe an alternative sensitivity function.

2. Information Gain

The Fisher information function, I(#), measures one particular kind of
information regarding the parameter in the sense that if 7(6;) is larger
than I(6s), then the precision of likelihood inference is higher at 6,
than at 6. It is defined as the expectation of the squared derivative
of the log-likelihood function, where the expectation is taken with
respect to the pdf of the data with the same 0 as used in the likelihood.
There are two essential ingredients in Fisher’s construction: (i) the

function (of the parameter and the data) to be aggregated and (ii)



the distribution with which to perform the aggregation. The function
in (i) should reflect the sensitivity to changes in the parameter. As a
measure of inference precision whose inverse measures the variability
(or uncertainty of inference), the positive definiteness of the resulting
function upon aggregation is particularly required. For want of better
terms, we shall call the function in (i) the sensitivity function and the
distribution in (ii) the aggregating distribution.

Similarly, in quantifying the information gained by a Bayesian pro-
cess, the pertinent question is what sensitivity function should be ag-
gregated with respect to which aggregating distribution. Since the
input to a Bayesian inferential process is the prior pdf, 7(#), and the
output from it is the posterior pdf, p(f]y), in the light of an observation
y, it is natural to consider the change (p(f|y) —7(0)) as the sensitivity
function. Following Fisher, it is natural to use the likelihood L(y|f) as
the aggregating distribution (over all possible data). The choice en-
tails the following Bayesian Information Gain on Parameter relative

to the prior 7:

BIGP,(0) = Evlp(6ly) — 7(0)] = Evalp(0ly)] - 7(0). (2.1)

Here and later, we use the notation £, to denote the expectation with
respect to the pdf v. Note that the first term on the right-hand side
of (2.1) is not difficult to obtain by simulation if the variate y given 6
can be generated. The subscript m in BIG P,(6), which indicates the
dependence of the information gain function on the choice of the prior
distribution 7, can be dropped whenever the context is clear. Clearly,
before we can accept BIGP,(0) as a measure it must be non-negative,
since (6) reflects the available information about § without any data.
We now show by means of (1.2) that BIGP,(0) > 0 always.

Let AM and HM be respectively the arithmetic mean and the har-

monic mean of a function of a random variable with respect to the



distribution of the random variable. It is well known that
AM > HM. (2.2)

Treating the posterior pdf as a function of the data and the like-
lihood as the pdf of the data and by virtue of (1.2), we can express
(2.1) as

BIGP(0) = [, POl L(yI0)dy — 7(6) (2.3)

Lylo) , |
> foo PO L(y10)dy ~ {/5<Y0> p(gly) dy}

— AM — HM >0,

where the equality in the second step holds if and only if S(Y'|) B
S(Y), or the complement of the projection of S(Y'|0) into S(Y) is a set
of measure zero. In the last step, the equality BIGP,(0) = 0 holds for
all 0 if and only if y and 6 are independent, i.e. no information is gained
if y carries no information about the parameter. Since BIG P, (0)
measures the information gain at each 6 and is always non-negative,
we may consider the total Bayesian Information Gain, or BIG, for
short, by integrating the function BIGP,(f) (or summing if we are

dealing with a discrete distribution):

BIG = [ BIGP.0)d0 = [ { fiv L(yw)p(e\y)dy} do—1.
(2.4)
Note that BIG; is invariant with respect to a one-to-one transforma-
tion of the data y as well as the parameter #. Now, in the repeated
integral, the outside one does not have the interpretation of an ex-
pectation as the inside one does, and thus the result may be positive
infinity. Thus it is often more convenient to use the following normal-

ized form, called the Information Gain Indez, or I'; for short, which



is confined to the closed unit interval [0, 1]:

-1
I, = BIG,/(1+ BIG,) =1 — { Lo { fiv L(y\e)p(my)dy} de}.

(2.5)

The index is 0 if the parameter and the data are independent, and

1 if the total information gain is positive infinity. Different choices

of the prior distribution 7(f) can be compared by reference to I';, as
demonstrated later in examples.

A Bayesian data analyst may sometimes find the information gain

for data at hand more attractive than the total information gain ag-

gregated over all possible data. In that case, it is more relevant to use

the following Bayesian Information Gain conditional on the data,

and the corresponding Bayesian Information Gain Index conditional
on the data,

'y (y) = BIGD,(y)/(1+ BIGD.(y)), (2.7)

which obviously involves less and easier calculation, especially for y
in a numerical form. Using a completely analogous argument for
BIGP,(0) in (2.3), we can show that BIGD,(y) > 0 always, con-
firming its legitimacy as an information gain measure.

We can also get BIG, through BIGD,(y),

BIG: = /S(Y) BIGD:(y)dy = /Sm {/S(GM L(y|9)p(9|y)d9} dy — 1,
(2.8)
provided that the order of integration can be interchanged. However,
there is no direct relationship between I';(y) defined in (2.7) and the
I'; defined in (2.5); specifically

Ty # /Sm Lz (y)dy. (2.9)
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We demonstrate the ideas by three simple examples before consid-

ering practical computation at the end of this section.

Example 1: For the Binomial likelihood

Lolo) = ) - oy

the usual prior distribution is from the Beta family, Be(a,b), of con-

jugate priors with pdf
m(0) =0 (1 - 6)""'/B(a,b),
where B(a,b) is the Beta function. The posterior pdf is then
p(ly) = "7 (1 = 0)" 7By + a,n —y +)

The Bayesian information gain on parameter is

( n ) (92y+a—1(1 _ (9)2n—2y+b—1

y Qa_l(l _ e)b—l
BIGP,(0) = _
() yzo B(y+a,n—y+b) B(a,b)

and the total Bayesian information gain is thus

n (n>B(2y+a,2(n—y)+b)

BIG, =
ygo y) Bly+an—y+b)

—1

Y

Since the uniform prior with a = b = 1 is commonly used whenever
there is no information on 6 before collecting the data, intuition would
suggest that this prior should result in the maximum information gain
after the Bayesian processing. It can be shown, however, that BIG,
as well as I'; is a decreasing function of a, b. That is, the prior with
a < 1 and b < 1 yields larger information gain than the uniform prior.
This includes Jeffreys prior with a = b = 0.5. Furthermore, when a or
b approaches 0, BIG, approaches oo and hence the normalized index

I'; approaches 1.



On the other hand, BIG; is an increasing function of n, confirming
the intuition that a larger sample size n should yield a larger informa-
tion gain.

Instead of the aggregated information gain, we may sometimes wish
to focus on the information gain at a particular observation y. In this

case, we first note the unconditional pdf for the observation y:

o(y) = (n) By +a,n—1y+b)

y B(a,b)
and obtain the Bayesian information gain conditional on the observa-

tion y at hand, namely

n) (B(2y+a,2(n—y)+b) _B(y—l—a,n—y—i—b))
y .

BIGD,(y) :( Bly+an—y+0) B(a, b)

As a function of a and b, BIGD,(y) depends on both y and n in a

much more complicated way, but it can be computed easily using the
software SAS or R.

Example 2: Consider the following likelihood function as a dislo-
cated exponential with a positive but unknown location parameter

and an exponential prior pdf for the positive parameter,
L(yld) = e W fory >0 >0; n(0) =X e ford >0, where A > 0.

Since A completely determines the prior distribution in this family, we
wish to find the A\ which achieves the maximum of information gain

I'y. In this case, the posterior pdf is defined in the domain 0 < 8 < y:
pOly) =1/y if A=1, (A—1)e W V/(1—e ) if X1,

In words, if A\ = 1, the posterior pdf is uniform in (0,y). If A > 1,
it is a right-truncated Exponential(A — 1) defined in (0,y). If A < 1,
it is proportional to the increasing function of 6, (1 — )\)e(l_”e, but

normalized within the interval (0, y).
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For A < 1, the repeated integral in (2.5) is positive infinity and thus
the information gain index I'y = 1. We can easily use any software to

compute I'y for A > 1, obtaining the following table and Figure 1:

A1 2 3 4 5 6 7 8 9 10
r'y 1 0392 0.2v9 0.217 0.178 0.151 0.131 0.116 0.104 0.094

A

Figure 1: Information Gain Index as a function of A

In conclusion, the measure I') achieves the maximum possible value

of 1, if A < 1. This is quite natural since A\ equals the modal value of

pdf at the origin. The greater its value, the greater the concentration

around the origin, so that a large A corresponds to high prior infor-

mation to start with, leading to a correspondingly small gain in the
end.

For completeness of the example, the unconditional pdf of the data,

y > 0, is as follows:
gy) =ye ¥ if A=1, WA =1)e Y1 —e DY) if X £1.

Thus, if A =1, ¢g(y) is Gamma(2); otherwise it is a mixture of Expo-
nential(1) and Exponential() with respective weights of w and 1 —w,
where w = A\/(A = 1) for A >1land w=1— (1 —-\)"! for A < 1.
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Example 3: Consider the following likelihood, which is not so stan-
dard,

L(y|0) = el (2my) 2 exp(—=0% /2y — y/2), y >0, —00 < 0 < 0.

This likelihood is related to the inference of the mean velocity 6 (neg-
ative sign for moving towards left) of a particle moving in a linear
Brownian motion. Other parameters have been omitted for a simpler
illustration here. The sample average of first-passage times of such
a particle over a unit length of distance is distributed as an inverse
Gaussian distribution and the reciprocal of the sample average is in-
terpreted as an estimator of the velocity of the particle. See Johnson
et al. (1994, Chapter 15) for more detail.

As suggested by the range of 8, suppose that we wish the posterior
distribution of # to be as simple as the normal with zero mean and

variance y, N(0,y), i.e.
p(0ly) = (2my) ™" exp(—6°/2y), —o0 <6 < o0, y > 0.

However, in general, there may not exist a joint distribution yielding
a pair of families where each is the conditional pdf of the other; that
is, a conditional specification of the joint distribution may not be
compatible without further checking. In the present case, the Inverse
Bayes Formula (1.3) yields a proper prior pdf. Hence, L(y|6) and
p(f]y) are compatible. Indeed, by (1.3) we have

oo -1 B
(0) = {ew'/o e y/Qdy} = e 19/9,
which is the standard Laplace (or double exponential) distribution,

confirming the compatibility. Note that the compatibility can also be

confirmed by the successful factorization
L(ylf) x =(8) = 27" (2my)""2 exp(—6°/2y — y/2)
= (2my) Y2exp(—6?/2y) x 27 Le Y/?
= p(ly) xg(y), —oo<f <00, y>0,
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where the unconditional pdf of data, g(y), is an exponential distribu-
tion with mean 2.

The prior distribution so derived from the posterior distribution
concentrates more around the origin than a normal prior. Here we
can envisage a particle performing a linear Brownian motion on the
surface of some medium for which the prior expectation of the velocity
(ignoring direction, i.e. |6]) of the particle is as close to zero as in an
exponential distribution.

Now let us find BIG, and I';, according to (2.4) and (2.5). In
general, the repeated integral can be calculated by numerical integra-
tion methods. For the present case, the order of integration can be

interchanged and we can find the exact solution for the double integral
| L@lo)p(Oly)dydo =

Loy e @my) exp(~6%/y — y/2) dydb.
First, note that the integrand as a function of  is symmetric about

zero. The double integral equals twice the double integral that is

restricted to positive 0,
[ [ 2my) exp(—02/y — y/2) dydd —

/0 /0 e’ (my) ' exp(—0°/y — y/2) dydo.
Changing variables (0,y) to (t,s) by # = ts and y = s with the

Jacobian being equal to s, we have

/OOO /OOO e (my) L exp(—62/y — y/2) dydd =

1 [®

LA {/()Ooexp{—s(tQ—t+1/2)} ds}dt:3/2.

Hence we obtain the following from (2.4) and (2.5),

BIG,=3/2—-1=1/2, and T,=1-(3/2)"'=1/3.
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In real applications, numerical computation is usually employed.
Suppose we can sample from 7(0) and from L(y|f) for a given 0;
i.e. the joint distribution of (©,Y") can thus be sampled. For the
BIGD,(y) in (2.6) with a particular y, we can compute f(y) by Monte
Carlo integration of L(y|f) through sampling from the given prior 7(0),

Fly) ~ S L(yl6)/M, 6, ~ (6). (2.10)

i=1
Then through sampling from p(0|y) = 7 (0)L(y|0)/ f(y) with the com-
puted f(y), we can obtain the conditional expectation given y by
Monte Carlo again,

M

By [L0I0)) & 3= I8 /M. 65 ~ p(0ly). (2.11)

For cases where the propagation of computational error by a numerical
f(y) is of concern, we can instead sample from p(6|y) by any one of the
following methods that do not not require the normalizing constant
1/f(y), namely the Rejection Method of von Neumann (1951), Adap-
tive Rejection Sampling (Gilks & Wild, 1992), Metropolis Sampling
(Metropolis et al, 1949, 1953), Metropolis-Hastings Sampling (Hast-
ings, 1970), the SIR method (Rubin, 1987 and 1988), and others. The
MCMC methods and Gibbs sampling may be used in conjunction with
the above variate-generating methods in the above sampling processes
if stationarity can be assured (or trusted) on termination of iterations;
see Gelman et al. (2004).

In regard to the information gain BIG P, (0) in (2.1) for a particular
0, we can compute Er,g)[p(0]y)] in the formula by drawing a sample
(y1,- -+, ynm,) from L(y|f) and taking average of p(f]y;). Since each
f(y;) in the expression p(8|y;) = 7(0)L(y;|0)/f(y;) is computed as in

(2.10) with a sample from 7(6), say a common sample (61, --,0y,)

12



for all f(y;), we therefore have

M,
Eryelp(@ly)] = w(0) % Z{L(yﬂ@)/ Z L(y;l0:)},  (2.12)
where 6; ~ 7(0), y; ~ L(y|0).

Now for the total Bayesian Information Gain, BIG,, the numerical
computation for the repeated integral in (2.4) or (2.8) needs caution,
as the second integration may lead to infinity. Assume, however, the
repeated integral in (2.4) is finite. Then by p(0|y) = 7(0)L(y|0)/ f(y),

we have

2(y|0
ey (Brcinlotont) o= [y 30 b wtoran. - 213

This integral can be interpreted as the expectation of the function
L(Y|©)/f(Y) with respect to the joint density 7(60)L(y|0) for (©,Y).
When it is finite, we can draw a sample {(01,v1), -, (0, yar)} from
m(0)L(y|0) by first generating 6; from 7(#) and then y; from L(yl|6;),
i =1,...,M. Applying (2.10) to each f(yx) with the same sample
{6;} from 7(6) before plugging in L(Y|0)/f(Y), we have

/5(@) {ELyinp0ly)]} df =~ é{L(yka)/iL(ykwi)}, (2.14)

where 0 ~ w(0), yr ~ L(y|0k).

3. Pairwise dependence measure and Pearson’s ¢’

As we have seen, the concepts of Bayesian information gain func-
tion and total information gain after the Bayesian processing arise
naturally. We have shown that the stronger the dependence between
the data and the parameter, the more information we can gain. In
this section, we discuss how these concepts, when extended to the
general distributional set-up, can be employed to measure pairwise

dependence between two random variables, or two random vectors.
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Let X and Y be a pair of random variables, or random vectors.
We use the following notation that is more common in distribution
theory: fxy(zly), frix(y|z), fx(x), fy(y), and fxy(z,y) shall denote
either the pdf (probability density function) or the pmf (probability
mass function) depending on whether the distribution indicated in the
subscript is continuous or discrete. By the same token, Z = fyx(y|X)
is a random variable as a function of X through its being the second
argument of the pdf of the conditional distribution of Y given X, and
Exy—y[fyx(y|X)] denotes the expectation of Z with respect to the
conditional distribution of X given Y = y.

The X here plays the same mathematical role of © as in the previous
section, but is symmetrical in its relationship with Y. In view of the
total Bayesian gain in (2.4) and the equal footing of X and Y, we
define ¥?(X,Y), the Pairwise Dependence Measure, between X and
Y as:

CXY) = [ Exyerx@lX)ldy -1 (3.1
- /{/fXIY<$|y)fY|X(y|IIJ)d:E} dy — 1
= [ Evix=lfxy(@Y))dz — 1 (3.2)

B /{/fXIY(33|y)fY|X(y|ZIJ)dy} dr — 1,

provided that the two repeated integrals in the above are equal. Here
and in the sequel, we shall omit the specification of various supports
of the random variables or vectors in the integrals for simplicity. Note
that ¥2(X,Y) = ¢?(Y, X) and we simplify the notation to 2. Now,
corresponding to the Information Gain Index (2.5), we define the Pair-

wise Dependence Index, d, by

5 = U1+ 4 = 1/(1+1/¢?) (3.3)
which takes values in the range 0 < § < 1. Note that 6 = 0 if and
only if X and Y are independent. The example below shows that for
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bivariate standard normal distribution with correlation coefficient p,

we have § = p?, suggesting a benchmark comparison of § with p?.

Example 4: Consider the bivariate normal distribution with zero
means, unit variances and correlation coefficient p. Although the
bivariate pdf exists in this case, we shall use only the conditional
pdf’s in order to keep to the spirit of our conditional approach. Now,
YIX =2 ~ N(pr,1 — p?) and X|Y =y ~ N(py,1 — p?). Thus,
the repeated integral in (3.1) is the same as that in (3.2) due to the
symmetry in x and y, and is given by

]Eé/w{/m1@m{_(y—pr+%$—wwV}dx}mﬁ

—00 —00 27‘(‘(1 — pz) 2(1 — p2)

The exponential term in the integrand can be re-written as the prod-

uct:
exp{ = (1/2B)(@ — AP | exp{~(B/2y*}
where A = 2py/(1 + p*) and B = (1 — p?)/(1 + p?). Thus,
00 00 1
I = /_oo fl(.’]j|y)d$ X /—oo fQ(y)dy X 1_7p2,
where fi(x]y) is the pdf of N(A, B) and fs(y) is the pdf of N(0, B™1).
This implies that 1 = 1/(1 — p?), so the pairwise dependence index is,
by (3.3),
§=1-1/I=1—(1-p%) =p~

Example 2 (Continued):
In Example 2, let § and y be X and Y, 6 = I'; and p? = 1/(1+ \?).
The following table compares the two quantities for various values of

A
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A 1 2 3 1 5 6 7 8 9 10

J 1 0392 0.2v9 0.217 0.178 0.151 0.131 0.116 0.104 0.094
p® 0.500 0.200 0.100 0.059 0.038 0.027 0.020 0.015 0.012 0.010

Example 3 (Continued) In Example 3, I'; = 1/3. Now, let 6 be
the X variable. The pairwise dependence index between X and Y is
0 =Ty = 1/3. It turns out that the squared correlation coefficient
p? = 0, clearly not as useful as a measure of dependence. To see this,
the joint pdf is
1

Fxv(z,y) = 5 NoT
It can be shown that F(XY) = 0, by means of the bivariate transfor-
mation of s = ,/y and t = x/y in the double integral. We omit the
detail.

1/,.2,—1
e 2@V S 0, —00 < < 0.

When the joint distribution of two or more random variables (or
random vectors), say (X,Y,7), does not degenerate into a lower di-
mensional subspace, so that the joint pdf fxyz(z,y,z)) is defined,
Pearson’s ¢? (1904) for measuring multi-party dependence is defined

as

/// e XYZ ’ y, z ) drdydz — 1. (3.4)

See Joe (1989, p.161) for a dlscussmn of ¢* and for more references.

In the case of a pair of random variables (or random vectors), we have

¢ = // ny x y dxdy—l (3.5)
- // fX|Y 5U|y)fY|X(?J|x) dedy — 1
= ¢2.

16



Pearson’s ¢? uses the expectation of the ratio of the joint pdf to
the product of marginal pdf’s, which should be equal to unity in the
case of independence, to measure the departure from independence.
However, his approach cannot accommodate functional dependence of
continuous random variables, which is a stronger form than statistical
dependence. On the other hand, as we have seen that the ? has
the advantage of being capable of handling both types of dependence,
namely functional and statistical. Because its development is based
on conditional expectations, its extension to more than two parties,
however, is not as readily available as for ¢?. The following example

underlines the difference between the two approaches.

Example 5: Let X have a continuous distribution on the real line,
which is symmetric about zero such as N(0,1), and let Y = X2 It
is a classic example to illustrate the limitations of p as a measure of
association, because p? = 0 in this case while X and Y are obviously
and strongly associated. This is in stark contrast with the measure
0, which takes the value 1 in this case, thus achieving the maximum
of its range as shown below. Owing to the deterministic relationship,
the joint distribution of (X,Y) is degenerate and restricted to the
parabola, Y = X2, in the upper-half of the X x Y plan, and does not
have a joint pdf fyy(x,y) with respect to the familiar Lebesgue mea-
sure on the plan. Therefore, ¢? is not defined. However, the induced
conditional distributions are discrete distributions with genuine prob-
ability mass functions on the parabola. The conditional pmf fy|x (y|v)

is an atom along the parabola y = 22,

frix(ylr) =1if y = 2%, and 0 otherwise.
The other conditional pmf fxy(z|y) is defined as:
When y > 0: fxy(zly) = 1/2if v =—/y or \/y, and 0 otherwise.
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When y = 0: fxy(zly) = 1if 2 =0, and 0 otherwise.
So we have Exy—o[fy|x(0|X)] = 1 and for y > 0,
Ex|yzy[fy‘X(y|X)] = 1/2 X 1+ 1/2 x1=1.

so that
/_oo EXIYzy[fY\X(Z/\X)]dy = 0.

Similarly,

By x—|fxy(x]Y)] = 1/2 for all z, except that Eyx—o[fxy(0]Y)] =1

and
/_O:O By x| fxy(2]Y)]dr = oo.

Hence 9% = oo and 6 = 1, reflecting the deterministic relationship
between X and Y.

4. DISCUSSIONS

Inspired by the essential ideas behind Fisher’s information function
from a frequentist framework to a Bayesian framework, we have pro-
posed a natural measure, denoted by BIG P,(6), of the average infor-
mation gained at any particular value of § when the data collection
set-up is repeated indefinitely. Under positivity condition, this gain
actually equals the arithmetic mean minus the harmonic mean of the
posterior distribution with respect to the likelihood. Integrating the
function BIGP,(0) with respect to 6 we have the total Bayesian in-
formation gain BIG, and an index I'; taking value between 0 and
1 as a normalized measure. In regard to Bayesian data analysis, we
also consider a measure of Bayesian information gain conditional to
datum at hand, denoted by BIGD,(y), and its normalized index,

['+(y). We have used very simple examples for focused demonstration
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on the ideas and then indicated the way forward for numerical com-
putation. Reversing the Bayes’ formula is a long-neglected thought
process by Bayesian statisticians. Our examples, especially Example
3, have highlighted the fact that the inverse Bayes’ formula can lead
to many unexpected consequences.

Noting that the amount of information gain measures the degree of
dependence between the data and parameter, we have extended the
measure to the general distribution theory, in which the data and pa-
rameter are treated, on equal footing, as a pair of random variables,
or random vectors. We are thus led to the measure, 12, for pairwise
dependence by defining it in terms of the two relevant conditional dis-
tributions. When the unconditional joint pdf is defined, ? reduces to
Pearson’s ¢2. However, one advantage enjoyed by ? is that it can han-
dle functional dependence while ¢* cannot. We have also introduced
the Pairwise Dependence Index, denoted by 9, which is capable of re-
vealing non-linear association. Moreover, d can achieve its maximum
of one when the variables are functionally related, thus completing the
spectrum from dependence to independence of two random variables
or two random vectors.

Of course, (p(Aly) — w(0)) is not the only possible sensitivity func-
tion. An alternative is log(p(0|y)/m(0)), for which we have the follow-

ing Bayesian Information Gain on Parameter in Log:

BIGPL:(0) = ELy) log(p(Bly)/m(0)) = Erye) log p(0ly) — logm(0).

(4.1)
Its similarity to the Kullback-Leibler measure permits similar inter-
pretation. The requirement for BIGPL,(f) > 0 is guaranteed by the

following inequalities

Y
Ja
=

Liylo) 17"
exp {/S(Yw) L(yl0) logp(G\y)dy} > {/S(Y'e) p((g||y))dy}
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where the first inequality is between the geometric mean on the left-
hand side and the harmonic mean on the right-hand side, while the sec-
ond is just (1.2). Analogous to (2.4) and (2.5), we have the Bayesian

Information Gain in log,

BIGL, = /S ) BIGPL(0)df (4.3)

oy Loty LI 08lp (01 /7(0))dy | do. (1.0

and the Information Gain Index on log scale, or Logl', for short,

LogT'y = BIGL, /(1 + BIGL,). (4.5)
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