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Abstract. By inverting the Bayes formula in a point-wise manner, we develop measures quantify-

ing the information gained by the Bayesian process, in reference to the Fisher information. Simple

examples are used for focused illustrations of the ideas. Numerical computation for the measures

is discussed with formulae. By extending the information gain concept to the broader context

of distribution theory, we arrive at a pairwise dependence measure, which can handle the case of

functional dependence and becomes Pearson’s φ2 when the joint probability density function (pdf)

is defined.
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1. Introduction

In standard Bayesian notation, we use π(θ) to denote the prior proba-
bility density function (pdf) of parameter θ with support S(Θ), L(y|θ)
the likelihood function (i.e. the pdf of data given the parameter) with
support S(Y |θ), p(θ|y) the posterior pdf with support S(Θ|y) of pa-
rameter given the data, and f(y) the unconditional pdf for the data
with support S(Y ). Both θ and y can be vectors. Note that in general,

the projection of S(Y |θ) into S(Y ) is a subset, i.e. S(Y |θ) pj.⊂ S(Y ),

and the equality S(Y |θ) pj.
= S(Y ) may hold for some θ. In regard

to integral or probability, the latter is essentially the same as when
the complement of the projection of S(Y |θ) into S(Y ) is a set of
measure zero. If the joint support S(Θ, Y ) equals the product space

S(Θ)×S(Y ), then S(Y |θ) pj.
= S(Y ) for all θ; and vice versa. A similar

relationship is true between S(Θ|y) and S(Θ).
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From the joint pdf identity, L(y|θ)π(θ) = p(θ|y)f(y), the Bayes
formula

p(θ|y) = π(θ)L(y|θ)/
∫

S(Θ|y)
π(θ)L(y|θ)dθ,

follows by a substitution of f(y), which is expressed as the integral
of the joint pdf with respect to θ over S(Θ|y). We can re-write the
above joint pdf identity as π(θ)L(y|θ)/p(θ|y) = f(y), where (θ, y) is
in the joint support S(Θ, Y ). Now for any fixed θ, we can integrate
both sides of the re-expressed joint pdf identity with respect to y over
S(Y |θ) and obtain the prior pdf at θ,

π(θ) =
∫

S(Y |θ) f(y)dy





∫

S(Y |θ)
L(y|θ)
p(θ|y)

dy





−1

(1.1)

≤




∫

S(Y |θ)
L(y|θ)
p(θ|y)

dy





−1

, (1.2)

where the equality holds if and only if S(Y |θ) pj.
= S(Y ), or the comple-

ment of the projection of S(Y |θ) into S(Y ) is a set of measure zero.
In particular, under the so-called “positivity assumption”, (cf. Tan-
ner and Wong, 1987; and Tanner, 1996, Chapter 5), where S(Θ, Y ) =
S(Θ)× S(Y ), we have

π(θ) =





∫

S(Y |θ)
L(y|θ)
p(θ|y)

dy





−1

, ∀θ ∈ S(Θ). (1.3)

In the words of Meng (1996, p.311), the explicit form (1.3) ‘was
“mysteriously” missing in the general literature.’ This may be due to
the tradition in the Bayesian literature to express the posterior distri-
bution in terms of the prior distribution. We shall follow Ng (1995,
1997) and call (1.3) the (point-wise) Inverse Bayes Formula (IBF),
in order to emphasize its unconventional character, in that the prior
distribution is expressed in terms of the the posterior distribution. In
fact, it is the harmonic mean of p(θ|y) with respect to L(y|θ).

The not-so-well-known (1.3) deserves to be better known because
it can lead to a number of important consequences as those already
discussed in the above-cited papers and in Tan, Tian and Ng (2009).
The objective of this paper is to continue the exploration of other
consequences, including some unexpected.
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The plan of our paper is as follows. In Section 2, we introduce two
natural functions measuring Bayesian information gain, in reference to
Fisher’s information function, and justify them with the aid of (1.2).
And we propose two normalized information gain indices between 0
and 1, Γπ and Γπ(y), the former measuring the total information gain
aggregated over all parameter values and all possible data and the
latter measuring the information gain on all parameter values for the
datum y at hand. After fixing the ideas with simple examples, we
discuss numerical computation. In Section 3, we extend the concept
of total Bayesian information gain to the context of distribution the-
ory, yielding a natural pairwise dependence measure, ψ2, between two
random variables or random vectors under conditional specification.
This measure is normalized to a pairwise dependence index, δ, which
takes a value between zero and unity. The index δ equals zero if and
only if we have an independent pair. It equals unity for a highly de-
pendent pair, which can even be functionally dependent. When the
unconditional joint pdf is defined, ψ2 is the same as Pearson φ2. How-
ever, unlike Pearson’s φ2, our ψ2 does not require the existence of the
joint pdf. The difference is demonstrated by a functional dependence
example, for which φ2 is not defined. To illustrate the main ideas, we
include what we hope are instructive examples. In Section 4, we draw
some conclusions and describe an alternative sensitivity function.

2. Information Gain

The Fisher information function, I(θ), measures one particular kind of

information regarding the parameter in the sense that if I(θ1) is larger

than I(θ2), then the precision of likelihood inference is higher at θ1

than at θ2. It is defined as the expectation of the squared derivative

of the log-likelihood function, where the expectation is taken with

respect to the pdf of the data with the same θ as used in the likelihood.

There are two essential ingredients in Fisher’s construction: (i) the

function (of the parameter and the data) to be aggregated and (ii)
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the distribution with which to perform the aggregation. The function

in (i) should reflect the sensitivity to changes in the parameter. As a

measure of inference precision whose inverse measures the variability

(or uncertainty of inference), the positive definiteness of the resulting

function upon aggregation is particularly required. For want of better

terms, we shall call the function in (i) the sensitivity function and the

distribution in (ii) the aggregating distribution.

Similarly, in quantifying the information gained by a Bayesian pro-

cess, the pertinent question is what sensitivity function should be ag-

gregated with respect to which aggregating distribution. Since the

input to a Bayesian inferential process is the prior pdf, π(θ), and the

output from it is the posterior pdf, p(θ|y), in the light of an observation

y, it is natural to consider the change (p(θ|y)−π(θ)) as the sensitivity

function. Following Fisher, it is natural to use the likelihood L(y|θ) as

the aggregating distribution (over all possible data). The choice en-

tails the following Bayesian Information Gain on Parameter relative

to the prior π:

BIGPπ(θ) ≡ EL(y|θ)[p(θ|y)− π(θ)] = EL(y|θ)[p(θ|y)]− π(θ). (2.1)

Here and later, we use the notation Eν to denote the expectation with

respect to the pdf ν. Note that the first term on the right-hand side

of (2.1) is not difficult to obtain by simulation if the variate y given θ

can be generated. The subscript π in BIGPπ(θ), which indicates the

dependence of the information gain function on the choice of the prior

distribution π, can be dropped whenever the context is clear. Clearly,

before we can accept BIGPπ(θ) as a measure it must be non-negative,

since π(θ) reflects the available information about θ without any data.

We now show by means of (1.2) that BIGPπ(θ) ≥ 0 always.

Let AM and HM be respectively the arithmetic mean and the har-

monic mean of a function of a random variable with respect to the
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distribution of the random variable. It is well known that

AM ≥ HM. (2.2)

Treating the posterior pdf as a function of the data and the like-

lihood as the pdf of the data and by virtue of (1.2), we can express

(2.1) as

BIGPπ(θ) =
∫

S(Y |θ) p(θ|y)L(y|θ)dy − π(θ) (2.3)

≥
∫

S(Y |θ) p(θ|y)L(y|θ)dy −




∫

S(Y |θ)
L(y|θ)
p(θ|y)

dy





−1

= AM −HM ≥ 0,

where the equality in the second step holds if and only if S(Y |θ) pj.
=

S(Y ), or the complement of the projection of S(Y |θ) into S(Y ) is a set

of measure zero. In the last step, the equality BIGPπ(θ) = 0 holds for

all θ if and only if y and θ are independent, i.e. no information is gained

if y carries no information about the parameter. Since BIGPπ(θ)

measures the information gain at each θ and is always non-negative,

we may consider the total Bayesian Information Gain, or BIGπ for

short, by integrating the function BIGPπ(θ) (or summing if we are

dealing with a discrete distribution):

BIGπ ≡
∫

S(Θ)
BIGPπ(θ)dθ =

∫

S(Θ)

{∫

S(Y |θ) L(y|θ)p(θ|y)dy

}
dθ − 1.

(2.4)

Note that BIGπ is invariant with respect to a one-to-one transforma-

tion of the data y as well as the parameter θ. Now, in the repeated

integral, the outside one does not have the interpretation of an ex-

pectation as the inside one does, and thus the result may be positive

infinity. Thus it is often more convenient to use the following normal-

ized form, called the Information Gain Index, or Γπ for short, which
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is confined to the closed unit interval [0, 1]:

Γπ ≡ BIGπ/(1 + BIGπ) = 1−
{∫

S(Θ)

{∫

S(Y |θ) L(y|θ)p(θ|y)dy

}
dθ

}−1
.

(2.5)

The index is 0 if the parameter and the data are independent, and

1 if the total information gain is positive infinity. Different choices

of the prior distribution π(θ) can be compared by reference to Γπ, as

demonstrated later in examples.

A Bayesian data analyst may sometimes find the information gain

for data at hand more attractive than the total information gain ag-

gregated over all possible data. In that case, it is more relevant to use

the following Bayesian Information Gain conditional on the data,

BIGDπ(y) ≡ Ep(θ|y)L(y|θ)−Eπ(θ)L(y|θ) = Ep(θ|y)L(y|θ)− f(y) (2.6)

and the corresponding Bayesian Information Gain Index conditional

on the data,

Γπ(y) ≡ BIGDπ(y)/(1 + BIGDπ(y)), (2.7)

which obviously involves less and easier calculation, especially for y

in a numerical form. Using a completely analogous argument for

BIGPπ(θ) in (2.3), we can show that BIGDπ(y) ≥ 0 always, con-

firming its legitimacy as an information gain measure.

We can also get BIGπ through BIGDπ(y),

BIGπ =
∫

S(Y )
BIGDπ(y)dy =

∫

S(Y )

{∫

S(Θ|y)
L(y|θ)p(θ|y)dθ

}
dy − 1,

(2.8)

provided that the order of integration can be interchanged. However,

there is no direct relationship between Γπ(y) defined in (2.7) and the

Γπ defined in (2.5); specifically

Γπ 6=
∫

S(Y )
Γπ(y)dy. (2.9)
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We demonstrate the ideas by three simple examples before consid-

ering practical computation at the end of this section.

Example 1: For the Binomial likelihood

L(y|θ) =


 n

y


 θy(1− θ)n−y,

the usual prior distribution is from the Beta family, Be(a,b), of con-

jugate priors with pdf

π(θ) = θa−1(1− θ)b−1/B(a, b),

where B(a, b) is the Beta function. The posterior pdf is then

p(θ|y) = θy+a−1(1− θ)n−y+b−1/B(y + a, n− y + b)

The Bayesian information gain on parameter is

BIGPπ(θ) =
n∑

y=0


 n

y


 θ2y+a−1(1− θ)2n−2y+b−1

B(y + a, n− y + b)
− θa−1(1− θ)b−1

B(a, b)

and the total Bayesian information gain is thus

BIGπ =
n∑

y=0


 n

y


 B(2y + a, 2(n− y) + b)

B(y + a, n− y + b)
− 1,

Since the uniform prior with a = b = 1 is commonly used whenever

there is no information on θ before collecting the data, intuition would

suggest that this prior should result in the maximum information gain

after the Bayesian processing. It can be shown, however, that BIGπ

as well as Γπ is a decreasing function of a, b. That is, the prior with

a < 1 and b < 1 yields larger information gain than the uniform prior.

This includes Jeffreys prior with a = b = 0.5. Furthermore, when a or

b approaches 0, BIGπ approaches ∞ and hence the normalized index

Γπ approaches 1.
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On the other hand, BIGπ is an increasing function of n, confirming

the intuition that a larger sample size n should yield a larger informa-

tion gain.

Instead of the aggregated information gain, we may sometimes wish

to focus on the information gain at a particular observation y. In this

case, we first note the unconditional pdf for the observation y:

g(y) =


 n

y


 B(y + a, n− y + b)

B(a, b)

and obtain the Bayesian information gain conditional on the observa-

tion y at hand, namely

BIGDπ(y) =


 n

y





B(2y + a, 2(n− y) + b)

B(y + a, n− y + b)
− B(y + a, n− y + b)

B(a, b)


 .

As a function of a and b, BIGDπ(y) depends on both y and n in a

much more complicated way, but it can be computed easily using the

software SAS or R.

Example 2: Consider the following likelihood function as a dislo-

cated exponential with a positive but unknown location parameter

and an exponential prior pdf for the positive parameter,

L(y|θ) = e−(y−θ) for y > θ > 0; π(θ) = λ e−λθ for θ > 0, where λ > 0.

Since λ completely determines the prior distribution in this family, we

wish to find the λ which achieves the maximum of information gain

Γλ. In this case, the posterior pdf is defined in the domain 0 < θ < y:

p(θ|y) = 1/y if λ = 1, (λ− 1)e−(λ−1)θ/(1− e−(λ−1)y) if λ 6= 1.

In words, if λ = 1, the posterior pdf is uniform in (0, y). If λ > 1,

it is a right-truncated Exponential(λ − 1) defined in (0, y). If λ < 1,

it is proportional to the increasing function of θ, (1 − λ)e(1−λ)θ, but

normalized within the interval (0, y).
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For λ ≤ 1, the repeated integral in (2.5) is positive infinity and thus

the information gain index Γλ = 1. We can easily use any software to

compute Γλ for λ > 1, obtaining the following table and Figure 1:

λ 1 2 3 4 5 6 7 8 9 10

Γλ 1 0.392 0.279 0.217 0.178 0.151 0.131 0.116 0.104 0.094

2 4 6 8 10

λ

0.2

0.4

0.6

0.8

1

Γ

Figure 1: Information Gain Index as a function of λ

In conclusion, the measure Γλ achieves the maximum possible value

of 1, if λ ≤ 1. This is quite natural since λ equals the modal value of

pdf at the origin. The greater its value, the greater the concentration

around the origin, so that a large λ corresponds to high prior infor-

mation to start with, leading to a correspondingly small gain in the

end.

For completeness of the example, the unconditional pdf of the data,

y > 0, is as follows:

g(y) = ye−y if λ = 1, (λ/(λ− 1))e−y(1− e−(λ−1)y) if λ 6= 1.

Thus, if λ = 1, g(y) is Gamma(2); otherwise it is a mixture of Expo-

nential(1) and Exponential(λ) with respective weights of w and 1−w,

where w = λ/(λ− 1) for λ > 1 and w = 1− (1− λ)−1 for λ < 1.
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Example 3: Consider the following likelihood, which is not so stan-

dard,

L(y|θ) = e|θ|(2πy)−1/2 exp(−θ2/2y − y/2), y > 0, −∞ < θ < ∞.

This likelihood is related to the inference of the mean velocity θ (neg-

ative sign for moving towards left) of a particle moving in a linear

Brownian motion. Other parameters have been omitted for a simpler

illustration here. The sample average of first-passage times of such

a particle over a unit length of distance is distributed as an inverse

Gaussian distribution and the reciprocal of the sample average is in-

terpreted as an estimator of the velocity of the particle. See Johnson

et al. (1994, Chapter 15) for more detail.

As suggested by the range of θ, suppose that we wish the posterior

distribution of θ to be as simple as the normal with zero mean and

variance y, N(0, y), i.e.

p(θ|y) = (2πy)−1/2 exp(−θ2/2y), −∞ < θ < ∞, y > 0.

However, in general, there may not exist a joint distribution yielding

a pair of families where each is the conditional pdf of the other; that

is, a conditional specification of the joint distribution may not be

compatible without further checking. In the present case, the Inverse

Bayes Formula (1.3) yields a proper prior pdf. Hence, L(y|θ) and

p(θ|y) are compatible. Indeed, by (1.3) we have

π(θ) =
{
e|θ|

∫ ∞
0

e−y/2dy
}−1

= e−|θ|/2,

which is the standard Laplace (or double exponential) distribution,

confirming the compatibility. Note that the compatibility can also be

confirmed by the successful factorization

L(y|θ)× π(θ) = 2−1(2πy)−1/2 exp(−θ2/2y − y/2)

= (2πy)−1/2 exp(−θ2/2y)× 2−1e−y/2

= p(θ|y)× g(y), − ∞ < θ < ∞, y > 0,
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where the unconditional pdf of data, g(y), is an exponential distribu-

tion with mean 2.

The prior distribution so derived from the posterior distribution

concentrates more around the origin than a normal prior. Here we

can envisage a particle performing a linear Brownian motion on the

surface of some medium for which the prior expectation of the velocity

(ignoring direction, i.e. |θ|) of the particle is as close to zero as in an

exponential distribution.

Now let us find BIGπ and Γπ, according to (2.4) and (2.5). In

general, the repeated integral can be calculated by numerical integra-

tion methods. For the present case, the order of integration can be

interchanged and we can find the exact solution for the double integral
∫∫

L(y|θ)p(θ|y)dydθ =

∫ ∞
−∞

∫ ∞
0

e|θ|(2πy)−1 exp(−θ2/y − y/2) dydθ.

First, note that the integrand as a function of θ is symmetric about

zero. The double integral equals twice the double integral that is

restricted to positive θ,
∫ ∞
−∞

∫ ∞
0

e|θ|(2πy)−1 exp(−θ2/y − y/2) dydθ =

∫ ∞
0

∫ ∞
0

eθ(πy)−1 exp(−θ2/y − y/2) dydθ.

Changing variables (θ, y) to (t, s) by θ = ts and y = s with the

Jacobian being equal to s, we have
∫ ∞
0

∫ ∞
0

eθ(πy)−1 exp(−θ2/y − y/2) dydθ =

π−1
∫ ∞
0

{∫ ∞
0

exp{−s(t2 − t + 1/2)} ds
}

dt = 3/2.

Hence we obtain the following from (2.4) and (2.5),

BIGπ = 3/2− 1 = 1/2, and Γπ = 1− (3/2)−1 = 1/3.
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In real applications, numerical computation is usually employed.

Suppose we can sample from π(θ) and from L(y|θ) for a given θ;

i.e. the joint distribution of (Θ, Y ) can thus be sampled. For the

BIGDπ(y) in (2.6) with a particular y, we can compute f(y) by Monte

Carlo integration of L(y|θ) through sampling from the given prior π(θ),

f(y) ≈
M∑

i=1
L(y|θi)/M, θi ∼ π(θ). (2.10)

Then through sampling from p(θ|y) = π(θ)L(y|θ)/f(y) with the com-

puted f(y), we can obtain the conditional expectation given y by

Monte Carlo again,

Ep(θ|y)[L(y|θ)] ≈
M∑

i=1
L(y|θi)/M, θi ∼ p(θ|y). (2.11)

For cases where the propagation of computational error by a numerical

f(y) is of concern, we can instead sample from p(θ|y) by any one of the

following methods that do not not require the normalizing constant

1/f(y), namely the Rejection Method of von Neumann (1951), Adap-

tive Rejection Sampling (Gilks & Wild, 1992), Metropolis Sampling

(Metropolis et al, 1949, 1953), Metropolis-Hastings Sampling (Hast-

ings, 1970), the SIR method (Rubin, 1987 and 1988), and others. The

MCMC methods and Gibbs sampling may be used in conjunction with

the above variate-generating methods in the above sampling processes

if stationarity can be assured (or trusted) on termination of iterations;

see Gelman et al. (2004).

In regard to the information gain BIGPπ(θ) in (2.1) for a particular

θ, we can compute EL(y|θ)[p(θ|y)] in the formula by drawing a sample

(y1, · · · , yM2
) from L(y|θ) and taking average of p(θ|yj). Since each

f(yj) in the expression p(θ|yj) = π(θ)L(yj|θ)/f(yj) is computed as in

(2.10) with a sample from π(θ), say a common sample (θ1, · · · , θM1
)
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for all f(yj), we therefore have

EL(y|θ)[p(θ|y)] ≈ π(θ)
M1

M2

M2∑

j=1
{L(yj|θ)/

M1∑

i=1
L(yj|θi)}, (2.12)

where θi ∼ π(θ), yj ∼ L(y|θ).
Now for the total Bayesian Information Gain, BIGπ, the numerical

computation for the repeated integral in (2.4) or (2.8) needs caution,

as the second integration may lead to infinity. Assume, however, the

repeated integral in (2.4) is finite. Then by p(θ|y) = π(θ)L(y|θ)/f(y),

we have
∫

S(Θ)

{
EL(y|θ)[p(θ|y)]

}
dθ =

∫

S(Θ)





∫

S(Y |θ)
L2(y|θ)
f(y)

dy



 π(θ)dθ. (2.13)

This integral can be interpreted as the expectation of the function

L(Y |Θ)/f(Y ) with respect to the joint density π(θ)L(y|θ) for (Θ, Y ).

When it is finite, we can draw a sample {(θ1, y1), · · · , (θM , yM)} from

π(θ)L(y|θ) by first generating θi from π(θ) and then yi from L(y|θi),

i = 1, . . . , M . Applying (2.10) to each f(yk) with the same sample

{θi} from π(θ) before plugging in L(Y |Θ)/f(Y ), we have

∫

S(Θ)

{
EL(y|θ)[p(θ|y)]

}
dθ ≈

M∑

k=1
{L(yk|θk)/

M∑

i=1
L(yk|θi)}, (2.14)

where θk ∼ π(θ), yk ∼ L(y|θk).

3. Pairwise dependence measure and Pearson’s φ2

As we have seen, the concepts of Bayesian information gain func-

tion and total information gain after the Bayesian processing arise

naturally. We have shown that the stronger the dependence between

the data and the parameter, the more information we can gain. In

this section, we discuss how these concepts, when extended to the

general distributional set-up, can be employed to measure pairwise

dependence between two random variables, or two random vectors.
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Let X and Y be a pair of random variables, or random vectors.

We use the following notation that is more common in distribution

theory: fX|Y (x|y), fY |X(y|x), fX(x), fY (y), and fXY (x, y) shall denote

either the pdf (probability density function) or the pmf (probability

mass function) depending on whether the distribution indicated in the

subscript is continuous or discrete. By the same token, Z = fY |X(y|X)

is a random variable as a function of X through its being the second

argument of the pdf of the conditional distribution of Y given X, and

EX|Y =y[fY |X(y|X)] denotes the expectation of Z with respect to the

conditional distribution of X given Y = y.

The X here plays the same mathematical role of Θ as in the previous

section, but is symmetrical in its relationship with Y . In view of the

total Bayesian gain in (2.4) and the equal footing of X and Y , we

define ψ2(X, Y ), the Pairwise Dependence Measure, between X and

Y as:

ψ2(X,Y ) ≡
∫

EX|Y =y[fY |X(y|X)]dy − 1 (3.1)

=
∫ {∫

fX|Y (x|y)fY |X(y|x)dx
}

dy − 1

=
∫

EY |X=x[fX|Y (x|Y )]dx− 1 (3.2)

=
∫ {∫

fX|Y (x|y)fY |X(y|x)dy
}

dx− 1,

provided that the two repeated integrals in the above are equal. Here

and in the sequel, we shall omit the specification of various supports

of the random variables or vectors in the integrals for simplicity. Note

that ψ2(X,Y ) ≡ ψ2(Y,X) and we simplify the notation to ψ2. Now,

corresponding to the Information Gain Index (2.5), we define the Pair-

wise Dependence Index, δ, by

δ ≡ ψ2/(1 + ψ2) = 1/(1 + 1/ψ2) (3.3)

which takes values in the range 0 ≤ δ ≤ 1. Note that δ = 0 if and

only if X and Y are independent. The example below shows that for
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bivariate standard normal distribution with correlation coefficient ρ,

we have δ = ρ2, suggesting a benchmark comparison of δ with ρ2.

Example 4: Consider the bivariate normal distribution with zero

means, unit variances and correlation coefficient ρ. Although the

bivariate pdf exists in this case, we shall use only the conditional

pdf’s in order to keep to the spirit of our conditional approach. Now,

Y |X = x ∼ N(ρx, 1 − ρ2) and X|Y = y ∼ N(ρy, 1 − ρ2). Thus,

the repeated integral in (3.1) is the same as that in (3.2) due to the

symmetry in x and y, and is given by

I ≡
∫ ∞
−∞





∫ ∞
−∞

1

2π(1− ρ2)
exp



−

(y − ρx)2 + (x− ρy)2

2(1− ρ2)



 dx



 dy.

The exponential term in the integrand can be re-written as the prod-

uct:

exp

{
− (1/2B)(x− A)2

}
exp{−(B/2)y2},

where A = 2ρy/(1 + ρ2) and B = (1− ρ2)/(1 + ρ2). Thus,

I =
∫ ∞
−∞ f1(x|y)dx×

∫ ∞
−∞ f2(y)dy × 1

1− ρ2 ,

where f1(x|y) is the pdf of N(A,B) and f2(y) is the pdf of N(0, B−1).

This implies that I = 1/(1− ρ2), so the pairwise dependence index is,

by (3.3),

δ = 1− 1/I = 1− (1− ρ2) = ρ2.

Example 2 (Continued):

In Example 2, let θ and y be X and Y , δ = Γπ and ρ2 = 1/(1+λ2).

The following table compares the two quantities for various values of

λ:
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λ 1 2 3 4 5 6 7 8 9 10

δ 1 0.392 0.279 0.217 0.178 0.151 0.131 0.116 0.104 0.094

ρ2 0.500 0.200 0.100 0.059 0.038 0.027 0.020 0.015 0.012 0.010

Example 3 (Continued) In Example 3, Γπ = 1/3. Now, let θ be

the X variable. The pairwise dependence index between X and Y is

δ = Γπ = 1/3. It turns out that the squared correlation coefficient

ρ2 = 0, clearly not as useful as a measure of dependence. To see this,

the joint pdf is

fXY (x, y) =
1

2
√

2π y
e−

1
2 (x2y−1+y), y > 0, −∞ < x < ∞.

It can be shown that E(XY ) = 0, by means of the bivariate transfor-

mation of s =
√

y and t = x/y in the double integral. We omit the

detail.

When the joint distribution of two or more random variables (or

random vectors), say (X, Y, Z), does not degenerate into a lower di-

mensional subspace, so that the joint pdf fXY Z(x, y, z)) is defined,

Pearson’s φ2 (1904) for measuring multi-party dependence is defined

as

φ2 =
∫∫∫ f 2

XY Z(x, y, z)

fX(x)fY (y)fZ(z)
dxdydz − 1. (3.4)

See Joe (1989, p.161) for a discussion of φ2 and for more references.

In the case of a pair of random variables (or random vectors), we have

φ2 =
∫∫ f 2

XY (x, y)

fX(x)fY (y)
dxdy − 1 (3.5)

=
∫∫

fX|Y (x|y)fY |X(y|x) dxdy − 1

= ψ2.
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Pearson’s φ2 uses the expectation of the ratio of the joint pdf to

the product of marginal pdf’s, which should be equal to unity in the

case of independence, to measure the departure from independence.

However, his approach cannot accommodate functional dependence of

continuous random variables, which is a stronger form than statistical

dependence. On the other hand, as we have seen that the ψ2 has

the advantage of being capable of handling both types of dependence,

namely functional and statistical. Because its development is based

on conditional expectations, its extension to more than two parties,

however, is not as readily available as for φ2. The following example

underlines the difference between the two approaches.

Example 5: Let X have a continuous distribution on the real line,

which is symmetric about zero such as N(0, 1), and let Y = X2. It

is a classic example to illustrate the limitations of ρ as a measure of

association, because ρ2 = 0 in this case while X and Y are obviously

and strongly associated. This is in stark contrast with the measure

δ, which takes the value 1 in this case, thus achieving the maximum

of its range as shown below. Owing to the deterministic relationship,

the joint distribution of (X, Y ) is degenerate and restricted to the

parabola, Y = X2, in the upper-half of the X × Y plan, and does not

have a joint pdf fXY (x, y) with respect to the familiar Lebesgue mea-

sure on the plan. Therefore, φ2 is not defined. However, the induced

conditional distributions are discrete distributions with genuine prob-

ability mass functions on the parabola. The conditional pmf fY |X(y|x)

is an atom along the parabola y = x2,

fY |X(y|x) = 1 if y = x2, and 0 otherwise.

The other conditional pmf fX|Y (x|y) is defined as:

When y > 0 : fX|Y (x|y) = 1/2 if x = −√y or
√

y, and 0 otherwise.
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When y = 0 : fX|Y (x|y) = 1 if x = 0, and 0 otherwise.

So we have EX|Y =0[fY |X(0|X)] = 1 and for y > 0,

EX|Y =y[fY |X(y|X)] = 1/2× 1 + 1/2× 1 = 1.

so that ∫ ∞
−∞EX|Y =y[fY |X(y|X)]dy = ∞.

Similarly,

EY |X=x[fX|Y (x|Y )] = 1/2 for all x, except that EY |X=0[fX|Y (0|Y )] = 1

and ∫ ∞
−∞EY |X=x[fX|Y (x|Y )]dx = ∞.

Hence ψ2 = ∞ and δ = 1, reflecting the deterministic relationship

between X and Y .

4. DISCUSSIONS

Inspired by the essential ideas behind Fisher’s information function

from a frequentist framework to a Bayesian framework, we have pro-

posed a natural measure, denoted by BIGPπ(θ), of the average infor-

mation gained at any particular value of θ when the data collection

set-up is repeated indefinitely. Under positivity condition, this gain

actually equals the arithmetic mean minus the harmonic mean of the

posterior distribution with respect to the likelihood. Integrating the

function BIGPπ(θ) with respect to θ we have the total Bayesian in-

formation gain BIGπ and an index Γπ taking value between 0 and

1 as a normalized measure. In regard to Bayesian data analysis, we

also consider a measure of Bayesian information gain conditional to

datum at hand, denoted by BIGDπ(y), and its normalized index,

Γπ(y). We have used very simple examples for focused demonstration
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on the ideas and then indicated the way forward for numerical com-

putation. Reversing the Bayes’ formula is a long-neglected thought

process by Bayesian statisticians. Our examples, especially Example

3, have highlighted the fact that the inverse Bayes’ formula can lead

to many unexpected consequences.

Noting that the amount of information gain measures the degree of

dependence between the data and parameter, we have extended the

measure to the general distribution theory, in which the data and pa-

rameter are treated, on equal footing, as a pair of random variables,

or random vectors. We are thus led to the measure, ψ2, for pairwise

dependence by defining it in terms of the two relevant conditional dis-

tributions. When the unconditional joint pdf is defined, ψ2 reduces to

Pearson’s φ2. However, one advantage enjoyed by ψ2 is that it can han-

dle functional dependence while φ2 cannot. We have also introduced

the Pairwise Dependence Index, denoted by δ, which is capable of re-

vealing non-linear association. Moreover, δ can achieve its maximum

of one when the variables are functionally related, thus completing the

spectrum from dependence to independence of two random variables

or two random vectors.

Of course, (p(θ|y)− π(θ)) is not the only possible sensitivity func-

tion. An alternative is log(p(θ|y)/π(θ)), for which we have the follow-

ing Bayesian Information Gain on Parameter in Log:

BIGPLπ(θ) ≡ EL(y|θ) log(p(θ|y)/π(θ)) = EL(y|θ) log p(θ|y)− log π(θ).

(4.1)

Its similarity to the Kullback-Leibler measure permits similar inter-

pretation. The requirement for BIGPLπ(θ) ≥ 0 is guaranteed by the

following inequalities

exp

{∫

S(Y |θ) L(y|θ) log p(θ|y)dy

}
≥





∫

S(Y |θ)
L(y|θ)
p(θ|y)

dy





−1

≥ π(θ),

(4.2)
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where the first inequality is between the geometric mean on the left-

hand side and the harmonic mean on the right-hand side, while the sec-

ond is just (1.2). Analogous to (2.4) and (2.5), we have the Bayesian

Information Gain in log,

BIGLπ ≡
∫

S(Θ)
BIGPLπ(θ)dθ (4.3)

=
∫

S(Θ)

{∫

S(Y |θ) L(y|θ) log[p(θ|y)/π(θ)]dy

}
dθ, (4.4)

and the Information Gain Index on log scale, or LogΓπ for short,

LogΓπ ≡ BIGLπ/(1 + BIGLπ). (4.5)
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