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ABSTRACT 
 
The criterion for the onset of electrothermoconvection in a rotating horizontal layer of 

Brinkman porous medium is investigated for different types of velocity boundary conditions 

namely, (i) both boundaries stress-free, (ii) both boundaries rigid and (iii) lower rigid and 

upper free boundaries. Results indicate that the nature of boundaries and speed of rotation 

significantly influence the stability characteristics of the system. In the case of stress-free 

condition, it is shown that the necessary conditions for the occurrence of oscillatory onset are 

independent of an external electric field.  Contrary to their stabilizing effect in the absence of 

rotation, increasing the ratio of viscosities Λ and decreasing the Darcy number Da  show 

some destabilizing effect on the onset of stationary electrothermoconvection in the presence 

of rotation and some important observations are made on the stability characteristics of the 

system. Moreover, the similarities and differences between free-free, rigid-rigid and rigid-

free boundaries are emphasized in triggering the onset of electrothermoconvection in a 

rotating porous layer. For small Taylor number domain, the stress-free boundaries is found to 

be always unstable than that of rigid-rigid and rigid-free boundaries. However, this trend is 

reversed at higher Taylor number domain because the stability of the stress-free case is 

increased more quickly than the other boundaries.  
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1. Introduction  
 

 

The study of thermogravitational convection in a rotating fluid layer heated from 

below has attracted researchers since it is a relevant topic for meteorologists, climatologists, 

oceanographers and astrophysicists alike. The problem is also of importance in many 

engineering applications and copious literature is available on thermal convection in a 

rotating fluid layer (Chandrasekhar [1], Galdi and Straughan [2], Kloosterziel and Carnevale 

[3] and references therein). The corresponding problem in a rotating layer of porous medium 

has also received considerable attention in the literature.  Patil and Vaidyanathan [4] have 

studied thermal convection in a rotating fluid saturated porous layer under the influence of 

variable viscosity using the Brinkman model.  Palm and Tyvand [5] have used the Darcy 

model to study the linear stability problem of thermal convection in a rotating porous layer 

and they have shown that their results are equivalent to those of non-rotating anisotropic 

porous medium case. Using the Brinkman model, Qin and Kaloni [6] have studied the 

nonlinear stability of a rotating porous layer by including the convective inertia term in the 

Brinkman model. Vadasz [7] has used both linear and weak nonlinear theories to study the 

effect of Coriolis force on gravity-driven convection in a rotating porous layer heated from 

below by employing the modified Darcy model. An excellent review of research on thermal 

convection in a rotating porous medium is given by Vadasz [8]. A nonlinear stability analysis 

for thermal convection in a rotating porous layer has been performed by Straughan [9]. The 

problem of onset of thermal convection in a rotating porous medium bounded between rigid 

boundaries has been considered by Desaive et al.[10].  Shivakumara et al. [11] have 

investigated linear and weakly nonlinear thermal convection in a rotating porous layer and 

they have shown that decrease in the permeability and increase in the effective viscosity of 

the fluid have a destabilizing effect on the onset of stationary convection at high rotation 

rates. Recently, Falsaperla et al. [12] have considered the problem of thermal convection in a 

rotating horizontal layer of porous medium with Newton-Robin type of temperature boundary 

conditions.  
 

 It is recognizable that many convective instability problems of practical importance 

involve electrically conducting fluids. In such cases, the effect of external fields like 

magnetic and electric fields become important. In particular, the magnetic field effects 

become dominant if the fluid is highly electrically conducting.  To the contrary, if the fluid is 

dielectric with low electrical conductivity then the electric forces play a major role in driving 
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the motion. Several studies have been carried out to assess the effect of AC and DC electric 

fields on natural convection due to the fact that many problems of practical importance 

involve dielectric fluids. In these fluids, an applied temperature gradient produces non-

uniformities in the electrical conductivity and/or the dielectric permittivity. The variation of 

electrical conductivity of the fluid with temperature produces free charges in the bulk of the 

fluid. These free charges interacting with applied or induced electric field produce a force 

that eventually causes fluid motion. On the other hand, when there is variation in dielectric 

permittivity and the electric field is intense then the polarization force which is induced by 

the non-uniformity of the dielectric constant causes fluid motion. In either case, convection 

can occur in a dielectric fluid layer even if the temperature gradient is stabilizing and such an 

instability produced by an electric field is called electroconvection, which is analogous to 

Rayleigh-Benard convection. In addition, if the applied temperature gradient is also 

destabilizing then such an instability problem is called electrothermoconvection.  

 

 Natural convection problem under an AC and/or DC electric field has been studied 

extensively and an exhaustive review on this topic has been given by Jones [13] and Saville 

[14]. The combined effects of DC electric field and volumetric heat source on the onset of 

convection in a dielectric fluid layer heated from below is investigated by Shivakumara et al. 

[15], while the influences of vertical AC electric field as well as internal heat generation on 

the onset of electrothermoconvection in a horizontal dielectric fluid layer is analyzed by 

Shivakumara et al. [16]. A more detailed analysis on EHD instability in a horizontal fluid 

layer with electrical conductivity gradient subject to a weak shear flow is presented by Chang 

et al. [17]. Studies have also been undertaken in the past to understand the effect of rotation 

on electroconvection. Takashima [18] was the first to consider the effect of rotation on the 

onset of instability in a dielectric fluid layer under the action of a vertical AC electric field 

and a vertical temperature gradient. The influences of an AC electric field and rotation on 

Benard-Marangoni instability in a layer of an incompressible fluid with small electrical 

conductivity are investigated by Douiebe et al. [19]. Othman [20] has studied the stability of 

a rotating layer of viscoelastic dielectric liquid heated from below. Recently, Ruo et al. [21] 

have considered the EHD instability of a horizontal rotating fluid layer with a vertical 

electrical conductivity gradient for different kinds of velocity boundary conditions.  
 

 Electroconvection in a dielectric fluid saturated porous medium is of particular 

interest in a geophysical system, since the electric field can provide the driving force in 
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laboratory models of thermal convection of electrically conducting fluids in the earth’s core. 

Besides, the study of electric field on a fluid flow in porous media is of particular importance 

in view of its possibility of reduction of fluid viscosity in enhancing petroleum production 

(Moreno et al., [22]). Recently, electroconvection in a horizontal dielectric fluid saturated 

densely packed porous layer under the simultaneous action of vertical electric field and 

vertical temperature gradient when the walls of the layer are subjected to time periodic 

temperature modulation is investigated by Rudraiah and Gayathri [23].  
 

 Under the circumstances, the rotational effect seems to be of significance on ETC in 

porous media and has not been given any attention in the literature.  Therefore, the aim of the 

present paper is to bring forth the salient features of the combined effects of rotation and AC 

electric field on the onset of convection in a dielectric fluid saturated Brinkman porous 

medium. To encompass both geophysical and laboratory problems, the stability analysis is 

carried out for three different types of velocity boundary conditions namely, (i)  both 

boundaries free, (ii) both boundaries rigid and (iii) lower boundary is rigid and upper 

boundary is free.  Equations for more general forms of convection in porous media are 

derived by Subramanian and Rajagopal [24], Kannan and Rajagopal [25], Rajagopal et al. 

[26] and it will be interesting to analyze the problem in these theories. However, in the 

present study a modified Lapwood-Brinkman extended Darcy model with fluid viscosity 

different from effective viscosity is used to describe the flow in the porous medium. An exact 

solution to the resulting eigenvalue problem is obtained in the case of stress-free boundaries, 

while for the other two boundary combinations the critical stability parameters are obtained 

numerically using the Galerkin-type of weighted residuals method. The effects of various 

physical parameters on the stability of the system are analyzed.  
 
 

2. Mathematical formulation 
 

 

The physical configuration is as shown in Fig.1. It consists of a dielectric fluid 

saturated sparsely packed horizontal porous layer of thickness d with a uniform vertical AC 

electric field applied across the porous layer which is kept rotating about the vertical axis 

with constant angular velocity (0,0, )Ω = Ω . The lower and upper boundaries of the porous 

layer are maintained at uniform, but different temperatures 0T  and 1T  (< 0T ) respectively, and 

thus a constant temperature difference 0 1( )T T TΔ = −  is maintained between the boundaries. A 

Cartesian coordinate system (x, y, z) is chosen with the origin at the bottom of the porous 
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layer and the z- axis normal to the porous layer in the gravitational field. Besides, it is 

assumed that the fluid and solid matrix are in local thermal equilibrium and rotation does not 

disrupt the isotropy of the porous medium.  

The relevant basic equations under the Oberbeck-Boussinesq approximation are: 
 

 0q∇ ⋅ =                                                                                                               (1) 

         ( ) ( ) 2
0 2

1 1 2
e

q q q q p g q q f
t k

μρ ρ μ
φ φ φ

⎡ ⎤∂
+ ⋅∇ + Ω× = −∇ + − + ∇ +⎢ ⎥∂⎣ ⎦

                          (2)      

         2( )TA q T T
t

κ∂
+ ⋅∇ = ∇

∂
                                                                 (3)        

         0 0{1 ( )}T Tρ ρ α= − −                                                       (4) 

where q  is the velocity vector, T is the temperature,  p is the pressure, ρ  is the fluid density, 

κ  is the effective thermal diffusivity, k is the permeability of the porous medium, μ  is the 

fluid viscosity, μ is the effective viscosity, g  is the acceleration due to gravity, A is the ratio 

of heat capacities, φ  is the porosity of the porous medium, α  is the thermal expansion 

coefficient, 0ρ is the density at reference temperature  0T T=  and ef  is the force of electrical 

origin which can be expressed as 

          .
ρ
ερερ 2

1
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

∇+∇⋅−= EEEEEf ee                                                               (5) 

Here E  is the electric field, eρ  is the charge density and ε  is the dielectric constant. In Eq. 

(5), the last electrostriction term can be grouped with the pressure p in Eq. (2) and it has no 

effect on an incompressible fluid. The first term on the right hand side is the Coulomb force 

due to a free charge and the second term depends on the gradient of ε. The electrical force ef  

will have no effect on the bulk of the dielectric fluid if both the dielectric constant ε  and the 

electrical conductivity σ  are homogeneous. Since ε  and σ  are functions of temperature, a 

temperature gradient applied to a dielectric fluid produces a gradient in ε  and σ . The 

application of a dc electric field then results in the accumulation of free charge in the liquid. 

The free charge increases exponentially in time with a time constant /ε σ , which is known as 

the electrical relaxation time. If an ac electric field is applied at a frequency much higher than 

the reciprocal of the electrical relaxation time, the free charge does not have time to 

accumulate. Moreover, the electrical relaxation times of most dielectric liquids appear to be 

sufficiently long to prevent the buildup of free charge at standard power line frequencies. At 
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the same time, dielectric loss at these frequencies is so low that it makes no significant 

contribution to the temperature field [13]. Under the circumstances, only the force induced by 

non-uniformity of the dielectric constant is considered.  
 

The relevant Maxwell equations are then  

 0E∇× =                                                        (6) 

 ( ) 0Eε∇ ⋅ = .                                                       (7) 

In view of Eq.(6), E can be expressed as 

 E V=−∇                                                                   (8) 

where V is the electric potential. The dielectric constant is assumed to be a linear function of 

temperature in the form   

 0 0[1 ( )]T Tε ε γ= − −                                                                             (9)                         

where γ  (>0) is the  thermal expansion coefficient of dielectric constant. 

 The basic state is quiescent and is given by 

            0, ( ), ( ), ( ), ( )b b b b bq q T T z p p z E E z zε ε= = = = = =                                                (10) 

where the subscript b denotes the basic state.  Substituting Eq.(10) in Eqs.(1) - (9), we get 

 
2

0 0 0

0
2

bb b b
b b

Ep g Eρ ε
ε

ρ ρ ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟=−∇ + +∇ − ∇⎜ ⎜⎟ ⎟⎜ ⎢ ⎥⎜ ⎟⎜⎟⎜ ∂⎝ ⎠⎝ ⎠ ⎣ ⎦
                                                        (11a) 

 
2

2 0bd T
dz

=                                                                                                                   (11b) 

 { }0 01 ( )b bT Tρ ρ α= − −                                                    (11c)  

 0 0[1 ( )]b bT Tε ε γ= − −                                                                                               (11d) 

 ( ) 0b bEε∇⋅ = .                                                                                                          (11e) 

Solving Eq.(11b) using the boundary conditions 

 
0

1

at 0

at

b

b

T T z

T T z d

= =

= =
                                        (12) 

we get 

 0 /bT T T z d− =−Δ .                                                    (13) 

In view of Eq.(11e) and noting that 0bx byE E= = , it follows that 

 0 0 constantb bzE Eε ε= = (say).                                       (14)           

Then we have 
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 0

1 /bz
EE
T z d

=
+Δ

                                                    (15)               

and hence        

0( ) (1 / )b
E dV z log Tz d

T
γ

γ
=− + Δ

Δ
                                                  (16)                  

where  

1
0

/
(1 )

V T dE
log T

γ
γ

Δ
=−

+ Δ
                                     (17) 

is the externally applied electric field at  z = 0.   

To study the stability of the basic state, we superimpose infinitesimally small perturbations 

( ), , , , ,q p E T ρ ε′ ′ ′ ′ ′ ′  on the basic state in the form 

 , , , , ,b b b b bq q p p p E E E T T T ρ ρ ρ ε ε ε′ ′ ′ ′ ′ ′= = + = + = + = + = + .                        (18)   

Substituting Eq.(18) into Eqs.(1) - (9), linearizing the equations by neglecting the products of 

primed quantities, eliminating the pressure from the momentum equation by operating curl 

twice and retaining the vertical component we get the required equations in  the form 
 

2 2 2 2 0 0
0

0 0 0

1 2 (19)h h
E T Vw g T E T

t k z d z
ε γμ μ ξα γ

ϕ ρ ρ ϕ ρ
⎛ ⎞ ⎡ ⎤′ ′∂ Ω ∂ −Δ ∂⎛ ⎞⎛ ⎞′ ′ ′− ∇ + ∇ = ∇ − + ∇ −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

 

2

0 0

1 2 w
t k z

μ μ ξ
φ ρ ρ φ

⎛ ⎞ ′∂ Ω ∂′− ∇ + =⎜ ⎟∂ ∂⎝ ⎠
                                                                       (20) 

2 TA T w
t d

κ∂ Δ⎛ ⎞ ′ ′− ∇ =⎜ ⎟∂⎝ ⎠
                                       (21)    

2
0

TV E
z

η
′∂′∇ =

∂
                                                              (22)    

where / /v x u yξ ′ ′ ′= ∂ ∂ − ∂ ∂  is the vertical component of perturbed vorticity vector.  Non-

dimensionalizing Eqs.(19)- (22) by scaling (x, y, z) by d,  t by 2 /d κ , q′  by / dκ ,ξ ′  by 
2/ dκ ,T ′  by TΔ and V ′  by 0E Tdγ Δ , we obtain ( after neglecting the primes for simplicity) 

2 1 2 2 1/ 2 21
t h ea h

VDa w R T Ta R T
Pr t z z

ξ−∂ ∂ ∂⎛ ⎞ ⎛ ⎞− Λ∇ + ∇ = ∇ − + ∇ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
                           (23) 

2 1 1/ 21 wDa Ta
Pr t z

ξ−∂ ∂⎛ ⎞− Λ∇ + =⎜ ⎟∂ ∂⎝ ⎠
                                                  (24) 

2A T w
t

∂⎛ ⎞− ∇ =⎜ ⎟∂⎝ ⎠
                                                                                                     (25) 
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2 TV
z

∂
∇ =

∂
                                                                                                             (26) 

where 3 /tR g Tdα νκ= Δ  and 2 2 2 2
0 0 ( ) /eaR E T dγ ε μκ= Δ  are the thermal and AC electric 

Rayleigh numbers, respectively, 2/Da k d= is the Darcy number, 2 4 2 24 /Ta d ν φ= Ω  is the 

modified Taylor number, /Pr =νφ κ  is the Prandtl number and /μ μΛ =  is the ratio of 

viscosities.  

The isothermal boundaries of the porous layer are assumed to be either free or rigid and we 

have considered the following boundary conditions [1, 18]:  
2

2 0w Vw T
z z z

ξ∂ ∂ ∂
= = = = =

∂ ∂ ∂
                                                 (27) 

on the stress-free boundary and  

0ww T V
z

ξ∂
= = = = =

∂
                                                                        (28) 

on the rigid boundary. 
 

3. Linear stability analysis 
 

To carry out the linear stability analysis, we employ the normal mode analysis procedure in 

which we look for the solution of the form 

 ( ), , , ( , , , )( ) exp( )w T V W Z z i x imy tξ ω= Θ Φ + +                                     (29) 

where and m are the horizontal wave numbers in the x and y directions respectively and 

( )r iiω ω ω= +  is the growth rate. Substituting Eq.(29) in Eqs.(23) - (26), we obtain 

( ) ( )2 2 1 2 2 2 1/ 2 2( ) t eaD a Da D a W R a Ta DZ R a D
Pr
ω −⎧ ⎫− Λ − + − = − Θ − − Θ − Φ⎨ ⎬

⎩ ⎭
      (30) 

2 2 1 1/ 2( )D a Da Z Ta DW
Pr
ω −⎧ ⎫− Λ − + =⎨ ⎬

⎩ ⎭
                                       (31)                         

( ){ }2 2A D a Wω − − Θ =                                            (32) 

( )2 2D a D− Φ = Θ                                                      (33) 

where /D d dz=  and 2 2a m= +  is the overall horizontal wave number.  

On using Eq.(29) in the boundary conditions (27) and (28), we get respectively 
2 0W D W DZ D= = Θ = = Φ =                                                     (34) 

and                                                                   

0W DW Z= = Θ = = Φ = .                                                              (35) 
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The above set of equations is a double eigenvalue problem for tR  or eaR  and ω , to be solved 

with respect to the chosen boundary conditions. Three types of velocity boundary conditions 

are considered for discussion namely, the boundaries are either (i) stress-free or (ii) rigid or 

(iii) lower boundary rigid and upper boundary stress-free. 

 

3.1 Exact solution for free-free boundaries  
    

    For both boundaries stress-free, let us assume the solution in the following form 

such that they satisfy the respective boundary conditions: 

1 2 3 4sin , sin , cos , cosW A z A z Z A z A zπ π π π= Θ = = Φ =                                   (36) 

 where 1 4A A−  are constants. Substituting Eq. (36) into Eqs. (30)-(33), we find the condition 

for the existence of a non-trivial eigenvalue is 

2 1 2 2 1/2 2

1/2 2 1 2

2

2

( )

0 0 0

1 0 0
0 0

t ea eaDa R R a Ta R a
Pr

Ta Da
Pr

A

ω δ δ π π

ωπ δ δ

ω δ
π δ

−

−

⎛ ⎞+ Λ + − + −⎜ ⎟
⎝ ⎠

⎛ ⎞− + Λ + =⎜ ⎟
⎝ ⎠

− +

           (37) 

where 2 2 2aδ π= + .  Expanding the above determinant yields the following cubic dispersion 

relation 
3 2

1 2 3 0ω δ ω δ ω δ+ + + =                                                    (38) 

where  

2
1

12Pr
A

δ δ η⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                   

22 6 2 6 2

2 2 2 2 2 2

2 t eaR R aPra Pr PrTa
a Aa a A A

δ η δ η πδ
δ δ

⎛ ⎞
= + + − −⎜ ⎟

⎝ ⎠
                                             

26 2
2 2

3 2 2 2
t eaR R aTaPr a

Aa a A A A
δ η πδ η

η δ
⎛ ⎞

= + − −⎜ ⎟
⎝ ⎠

                                                                   (39) 

with   1 2/Daη δ−= Λ + .  Putting ω = 0 in Eq. (38) and simplifying, it is found that stationary 

convection occurs at s
t tR R= , where 

22 6

2 2 2
s ea
t

R aTaR
a a

π δ η
η δ

= + − .                                                        (40) 
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It is interesting to check Eq.(40) for existing results in the literature under some limiting 

cases. In the absence of electric field (i.e., 0eaR = ) and rotation (i.e., 0)Ta =  , the above 

equation reduces to 
6 1 4

2
s
t

DaR
a

δ δ−Λ +
=                                                    (40a)                        

and this is the known result for Brinkman porous medium.  We note that s
tR  given by Eq. 

(40a) attains its critical value at ca a= , where ca  is the critical wave number given by 

 
( ) ( )( )2 1 2 1 2 19

4c

Da Da Da
a

π π π− − −⎧ ⎫− Λ + + Λ + Λ +⎪ ⎪= ⎨ ⎬Λ⎪ ⎪⎩ ⎭

.                                    (40b) 

 As Da → ∞ and Λ = 1 (viscous case), from (40b), we note that 

/ 2ca π=                                                                (40c) 

 and the corresponding  critical  Rayleigh number s
tcR , from (40a) is found to be 

427
4

s
tcR π

=                                                               (40d) 

which are the known exact values[1].  When 0eaR = , 1Λ=  and as Da →∞ , Eq. (40) 

reduces to  
2 6

2 2
s
t

TaR
a a
π δ

= +                                                                                                        (40e) 

and coincides with Chandrasekhar [1].  When 0Ta = , 1Λ= and  as Da →∞ , Eq. (40) 

reduces to  
2 6

2 2
s ea
t

R aR
a
δ

δ
= − +                                                      (40f) 

and coincides with Roberts [27].  

To find the critical value of s
tR  , Eq. (40) is differentiated with respect to 2a  and equated to 

zero.  A polynomial in 2( )ca , whose coefficients are functions of the physical parameters 

influencing the instability is obtained in the form 
2 7 2 6 2 5 2 4 2 3 2 2 2

7 6 5 4 3 2 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) 0c c c c c c ca a a a a a a a a a a a a a a+ + + + − − − = .              (41) 

Where 

 3
7 2a = Λ  

 2 3 1 2
6 11 5a Daπ −= Λ + Λ  



 11

 4 3 1 2 2 1 2
5 24 22 4( )a Da Daπ π− −= Λ + Λ + Λ  

6 3 2 2 1 4 2 1 2 2 2 1 3
4 25 35 13( ) ( )eaa R Da Da Ta Daπ π π π π− − −= Λ − Λ + Λ + − Λ +  

1 3 2 1 2 4 1 2 4 1 6 2
3

4 2 8 3

2( ) 12( ) 2 4 20

2 10
ea

ea

a Da Da Da R Ta Da

R

π π π π π

π π

− − − −= + Λ − Λ − Λ + Λ

− Λ + Λ
 

1

1

1 2 2 1 4 1 2 6 4 6
2

8 2 6 2 10 3

( ) 2( ) 2 6

5 3
t ea

ea

a Da R Da Ta Da Ta Da R Ta

Da R

π π π π π

π π π

−

−

− − −= + + + Λ + Λ

+ Λ + Λ + Λ
 

1 3 6 1 6 1 2 8 8 1 10 2 12 3
1 2( ) 2 8( ) 4 10 4a Da Da Ta Da Ta Daπ π π π π π− − − −= + + Λ + Λ + Λ + Λ  

1 3 8 1 3 8 1 2 10 10 1 12 2 4 3
0 ( ) ( ) 3( ) 3 .a Da Da Ta Da Ta Daπ π π π π π− − − −= + + Λ + Λ + Λ + Λ      

  

The above equation is solved numerically for various values of eaR , Ta , Λ and 1Da−  and the 

minimum value of 2
ca  is obtained each time, hence the critical wave number is obtained. 

Using this in Eq. (40), the critical Rayleigh number, above which the convection sets- in is 

determined. 

In the absence of electric field ( eaR =0), Eq. (41) reduces to 

( ) ( )

( )

2
2 5 2 2 4 2 2 3 2 2 4 2 2

4 2 2
2

2( ) 5 0.4 ( ) 4 ( ) 2 ( )

2( ) 0

c c c c

c

Taa a a a

Ta a

πη π η η π η π η π

π η η

⎧ ⎫
′ ′ ′ ′ ′+ + + + + + − −⎨ ⎬Λ⎩ ⎭

⎛ ⎞′ ′− + + =⎜ ⎟Λ⎝ ⎠

     (42)                         

where 2 1 /Daη π −′ = + Λ . 

When Da → ∞ and Λ = 1 (non-porous domain case), Eq. (42) can be written as 

( )22 3 2 2 2 6 2 2
42( ) 3 ( ) 1 ( ) 0c c c

Taa a aπ π π
π

⎧ ⎫⎛ ⎞+ − + + =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

.                                      (43) 

Since ( )22 2 0,ca π+ ≠   it follows that 

2 3 2 2 2 6
42( ) 3 ( ) 1 0c c

Taa aπ π
π

⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

                                                  (44) 

a result which coincides with Chandrasekhar [1]. 

 

         To analyze the onset of oscillatory convection, we substitute iiω ω= , where iω  is a non-

zero real number, in Eq. (36) and equate the real and imaginary parts of the corresponding 

equation to obtain  
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 2 3

1
i

δω
δ

= and 2
2iω δ= .                                                                (45) 

Eliminating iω  finally leads to an expression for the Rayleigh number 0
t tR R=  at which the 

oscillatory convection occurs, where   

( ) 2 2
0 6 2

2 2

2 1
1

ea
t

PrA R aAPrR Ta
a PrA

η η
δ π

η δ

⎡ ⎤+ ⎛ ⎞
= + −⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥⎣ ⎦

.                                              (46) 

 

Now the condition that 2 0iω >  provides the fact that oscillatory instability can occur only if  

( )
( )

6 2

2

110 and
1

PrA
Pr Ta

A PrA
δ η η

η π η
+

< < >
−

.                                                              (47) 

It is interesting to note that these conditions are exactly in the same form as that of the 

ordinary viscous fluid saturating a rotating Brinkman porous layer (Shivakumara et al. [11]) 

suggesting that the vertical AC electric field does not influence the necessary conditions for 

the existence of oscillatory convection. If Ta =0, then we note that the instability sets in only 

via stationary convection. Further, the value of Pr depends on the physical parameters Da, Λ, 

φ and A also.  For the non-porous case (i.e., Da →∞ , 1Λ= and 1A φ= = ), the above 

conditions become 

( )
( )

6

2

1
1,

1
Pr

Pr Ta
Pr

δ
π

+
< >

−
                                                   (48) 

and coincide with those given by Chandrasekhar [1].  A glance at Eq. (47) reveals that the 

onset of oscillatory convection in a rotating porous layer is not limited to a particular domain 

of Prandtl number values as in the case of pure fluids. Moreover, it is interesting to note that 
2
iω  can be written in the form  

 
( ) ( )

2 2
2 0

2 1 2
s

i t t
Pr a R R

Pr A
ηω

δ η
= −

+
.                                                                        (49) 

From Eq. (49) it is evident that if the instability sets in as oscillatory motions, it always 

occurs at a Rayleigh number less than the stationary onset. 
 

 

3.2 Numerical solution for rigid-rigid and rigid-free boundaries 
   

 It has been observed that oscillatory convection occurs only if the Prandtl number Pr   

is less than unity and the Taylor number exceeds a threshold. But for dielectric liquids, 
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Prandtl number is much greater than unity (for example, for corn oil Pr  = 480, silicone oil 

Pr  =100 and for caster oil Pr  =10000) and hence the oscillatory convection is ruled out as 

the preferred mode of instability.  Under the circumstances, we restrict ourselves to the case 

of steady onset and put ω = 0 in Eqs. (27) - (30). As in the case of stress-free boundaries, an 

exact solution is not possible for these two types of boundary conditions and the Galerkin 

method as explained in the book by Finlayson [28] is adopted to solve the resulting 

eigenvalue problem. Accordingly, the variables are written in a series of basis functions as  
 

, , ,i i i i i i i iW AW B Z C Z D= Θ = Θ = Φ = Φ∑ ∑ ∑ ∑                                               (50) 

where , ,i i iA B C  and iD  are constants and the basis functions , ,i i iW ZΘ  and iΦ  will be 

represented by the power series satisfying the respective boundary conditions. Substituting 

(50) into (50)–(53), multiplying the resulting momentum equation by )(zW j , vorticity 

equation by )(zjξ , energy equation by )(zjΘ , electric potential equation by )(zjΦ ; 

performing the integration by parts with respect to z between z = 0 and z = 1 and using the 

boundary conditions, leads to the following system of linear homogeneous algebraic 

equations: 

 

0

0

0

0

ji i ji i ji i ji i

ji i ji i

ji i ji i

ji i ji i

E A F B G C H D

I A J B

K A L C

M B N D

+ + + =

+ =

+ =

+ =

                                                  (51)  

where 

 2 2 4 2 1 22ji j i j i j i j i j iE D W D W a W W a DW DW Da DW DW a W W−= Λ < + + > + < + >  

 2 2
ji t j i ea j iF R a W R a W= − < Θ + Θ > , 1/ 2

ji j iG Ta W DZ= − < > , 2
ji ea j iH R a W D=< Φ > , 

ji j iI W=< Θ > , 2
ji j i j iJ D D a= − < Θ Θ + Θ Θ > ,  1/ 2

ji j iK Ta Z DW=< >  

 2 1( )ji j i j i j iL DZ DZ a Z Z Da Z Z−= − < Λ + + > , ji j iM D= − < Φ Θ >  

 2 .ji j i j iN D D a= − < Φ Φ + Φ Φ >                                                             

Here the inner product is defined as 
1

0

fg fgdz< >= ∫ .   

The above set of homogeneous algebraic equations can have a non-trivial solution if and only 

if 
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0 0

0.
0 0

0 0

ji ji ji ji

ji ji

ji ji

ji ji

E F G H

I J

K L

M N

=                                                                (52)         

We select trial functions satisfying the appropriate boundary conditions. For both boundaries 

rigid case, the trial functions chosen are 
1 2 3 1 1 12 , , ,i i i i i i i i i

i i i iW z z z z z z z Z z z+ + + + + += − + Θ = − Φ = − = −                (53) 

while the trial functions chosen in the case of lower boundary rigid and upper boundary free 

are 
3 1 2 1 2 1 2 12 3 5 , , ,i i i i i i i i i i i

i i i iW z z z z z Z z z z z z z+ + + + + + + += + − Θ = − = − − Φ = − − .        (54)                         

Substituting Eq. (53) or (54) as the case may be in Eq.(52) and expanding the determinant 

leads to the characteristic equation giving the thermal Rayleigh number tR  as a function of 

the wave number a  as well as other parameters Da , eaR , Ta and Λ .  The inner products 

involved in the determinant are evaluated analytically rather than numerically in order to 

avoid errors in the numerical integration. The critical Rayleigh number t cR  is obtained by 

minimizing tR  with respect to the wave number a for different fixed values of other 

parameters.  Computations reveal that the convergence in finding t cR  crucially depends on 

the value of Ta , and for higher values of Ta  more number of terms are found to be required 

in the Galerkin expansion. The results presented here are for 8== ji  the order at which the 

convergence is achieved, in general.     
 

 

4. Results and discussion  

 

 The simultaneous effect of Coriolis force and vertical AC electric field on the 

criterion for the onset of convection in a dielectric fluid saturated rotating Brinkman porous 

layer heated from below is investigated. Attention is focused on three types of velocity 

boundary conditions namely, (i) both boundaries free, (ii) both boundaries rigid and (iii) 

lower boundary rigid and upper boundary free. To solve the resulting eigenvalue problem, 

both analytical and numerical techniques are used depending on the choice of velocity 

boundary conditions. Since the oscillatory convection is not a preferred mode of instability 

for the problem considered, the discussion is limited to stationary onset. 
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4.1 Both boundaries stress-free 

From Eq. (40), we note / 0s
tR Ta∂ ∂ >  and / 0s

t eaR R∂ ∂ <  indicating that s
tR  is an 

increasing function of Ta  but decreasing function of eaR  and hence the effect of increasing 

Ta  and eaR  is to delay and hasten the onset of electrothermal convection, respectively. 

Nonetheless, it is noted that  
4 2

22
2 2

2

s
t

1 1

R Ta
Da a Daa

δ π

δ
δ

− −

∂
= −

∂ ⎛ ⎞
Λ +⎜ ⎟

⎝ ⎠

                                                  (64) 

and 
6 2

2

2

s
t

2 1
2

R Ta
a Daa

δ π

δ

−

∂
= −

∂Λ ⎛ ⎞
Λ +⎜ ⎟

⎝ ⎠

.                                          (65) 

Here, it is observed that the right-hand side of the above equations may be either negative or 

positive depending on the parametric values. That is to say that an increase in the value of 
1Da−  and Λ  might lead to an instability of a rotating porous layer in the presence of an AC 

electric field; a contrast result noted when compared to non-rotating case. Distinctly this fact 

has been exhibited graphically in Figs. 2 and 3. 

            Figure 2 depicts the curves of t cR  as a function of 1Da−  for different values of Λ(=1, 

2, 3 and 4) and eaR (= 0, 500, 1000) when the value of Ta  fixed at 105. From the figure it is 

seen that the destabilization due to 1Da−  manifests itself as minimum in the t cR - 1Da−  curve. 

The range of 1Da−  up to which the system becomes destabilized increases with the decrease 

in the value of Λ.  This may be due to a delicate balance between Coriolis and Darcy 

frictional forces, while elsewhere a strong ‘two-dimensionality prevails, being provided at 

lower values of 1Da−  by Coriolis forces, and at higher values of 1Da−  by frictional forces. 

This phenomenon is similar to the one observed by Chandrasekhar [1] in the study of thermal 

instability in a rotating fluid layer in the presence of vertical magnetic field; where it is 

observed that the simultaneous presence of rotation and magnetic field destabilizes the 

system although their individual effect is to make the system more stable. Moreover, it is 

found that t cR  attains its minimum value with 1Da− , denoted by min( )t cR , at 1Da− = 1
mDa− , 

where 
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2 2 4 4 2 2

1
2 2

( 1) 2c c c
m

c

Ta a a a
Da

a
π π π π

π
− + − Λ + − Λ

=
+

.                                                  (66) 

It is evident that 1
mDa−  decreases with an increase in the value of Λ  but increases with an 

increase in the value of Ta .  

A similar type of behavior, as observed above, is noticed when we allow to vary Λ  by 

fixing 1Da−  and the results are presented in Fig. 3. The dual role of viscosity ratio Λ  on the 

stability of a rotating porous layer is evident from Fig. 3. It is observed that t cR  attains its 

minimum value in the t cR − Λ plane. It is noted that the system gets destabilized up to a 

certain value of Λ  and the range of this value goes on decreasing with increasing 1Da− . Here, 

min( )t cR  denotes the minimum value attained by t cR  with respect to Λ  when the other 

parameters are held fixed.  In this case, t cR  attains its minimum value with Λ  (i.e., min( )t cR ) 

at Λ = minΛ  ,  where 

1

min 2 2 2 2 2 2( ) ( ) ( )c c c

Da Ta
a a a

π
π π π

−−
Λ = +

+ + +
.                                                   (67) 

It is seen that minΛ  decreases with an increase in the value of 1Da− , while it increases with 

increase in Ta . In this case the coupling between 1Da−  and minΛ   is found such that min( )t cR  

value remains unaltered and coincides with the one obtained previously by varying Λ .  
 

4.2 Both boundaries rigid, and lower rigid and upper stress-free boundaries 
  

  For these two boundary combinations, the eigenvalue problem is solved numerically 

using the Galerkin technique. To validate the numerical procedure used, first the test 

computations are carried out under different limiting cases for these two boundary conditions. 

The critical Rayleigh number t cR  and the corresponding wave number ca  obtained for 

different values of Ta  when eaR =0, 1 0Da− =  and Λ =1(i.e., classical viscous case) are 

compared with those of Chandrasekhar [1] in Table 1 for rigid-rigid boundaries, while the 

critical AC electric Rayleigh number eacR  and the corresponding wave number obtained for 

rigid boundaries for different values of tR  when Ta =0 are compared with those of Roberts 

[27] in Table 2. From these Tables it is seen that the results obtained from the present 

solution procedure are in excellent agreement with the earlier published ones and thus 

verifies the accuracy of the method used.  
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As observed in the stress-free boundaries case, the numerically computed results 

reveal that both 1Da−  and Λ  show some destabilization on the onset of stationary convection 

even in the case of rigid-rigid and rigid-free boundaries. Figures (4) and (5) depict this aspect 

for rigid-rigid and rigid-free boundaries respectively in the t cR − Λ  plane for different values 

of 1Da− . From these two figures it is seen that t cR  passes through a minimum with an 

increase in the value of Λ and the crossing of curves shows the destabilization due to 1Da− as 

well. Further, the range of Λ  up to which the system gets destabilized decreases with 

increasing 1Da−  as observed in the case of free-free boundaries. The destabilization due to 

increasing 1Da−  is shown in Figs. 6 and 7 for different values of Λ for rigid-rigid and rigid-

free boundaries respectively. The destabilization manifests itself as minimum in the 
1

t cR Da−−  plane. From the figures it is noted that the range of 1Da−  up to which the system 

gets destabilized increases with the decrease in the value ofΛ.  
 

 

4.3 Comparison of results for different types of boundaries 
 

The critical thermal Rayleigh number t cR  and the corresponding wave number ca , 

computed for different values of physical parameters and velocity boundary conditions, are 

illustrated in Figs. 8(a,b)–10(a,b) and also tabulated in Tables 3-6 with the perspective of 

understanding the effect of  boundaries on the onset of electrothermoconvection in a rotating 

porous layer. The variation of t cR  and ca  is presented in Figs. 8(a) and 8 (b), respectively as 

a function of eaR for different values of 1Da−  with Ta = 1000 and Λ =4. Figure 8(a) shows 

that the onset of electrothermoconvection is delayed with increasing 1Da− . This is because of 

decrease in the permeability of the porous medium, which in turn requires more heating for 

instability. On the contrary, when the AC electric field is increased, the porous layer becomes 

more and more unstable due to an increase in the electrical destabilizing effect. In other 

words, the effect of increasing AC electric field strength is to enhance the heat transfer and to 

hasten the onset of convection. We note that the results for different velocity boundary 

conditions differ only quantitatively, and the system is found to be more stable when both 

boundaries are rigid, while the free boundaries are the least stable for the moderate values of 

Taylor number considered. This figure also exhibits that the deviation in the t cR  values 

between different boundary conditions increases slightly with an increase in the value of 
1Da− . Figure 8(b) illustrates that the critical wave number ac increases slowly with an 
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increase in the value of eaR  but significantly increases with an increase in the value of 1Da− in 

the case of free-free and rigid-free boundaries when compared to rigid-rigid boundaries. Thus 

their effect is to contract the size of convection cells.  Further, it is observed that 

( ) ( ) ( )c rigid rigid c rigid free c free freea a a− − −> > .                                                  (68) 

Figures 9(a) and 9(b) respectively show the variation of t cR  and ca  as a function of 

eaR  for several values of Taylor number with 1Da−  fixed to 100 and Λ  fixed to 4. The results 

indicate that an increase in the strength of rotation is to delay the onset of electrothermo 

convection. Figure 9(b) depicts that the critical wave number increases with increasing Ta  

and hence its effect is to contract the size of convection cells. 

 As pointed out in the introduction, Brinkman’s model rests on an effective viscosity 

μ  different from fluid viscosity μ  denoted through Λ  in dimensionless form and it has a 

determining influence on the onset of electrothermal convection in porous media. The 

influence of viscosity ratio on the critical stability parameters is summarized in Figs. 10(a) 

and 10(b). It is seen that t cR  as well as deviation in its values among different boundary 

conditions increases with an increase in the value of Λ  (see Fig. 10a). In contrast to this, the 

critical wave number decreases with Λ (see Fig. 10b). Thus the effect of Λ  is to suppress the 

onset of electrothermal convection due to an increase in viscous diffusion and also to increase 

the dimension of convection cells. 

The values of minΛ , 1
mDa−  and the corresponding min( )t cR  computed numerically for 

different values of 1Da− , Λ  and eaR  for free-free, rigid-rigid and rigid-free boundaries when 

510Ta = and 52 10Ta = × are compared in Tables 3 – 6. From the tables, it may be noted that 

there is a coupling between the values of Λ and 1
mDa−   as well as 1Da−  and minΛ  such that the 

values of min( )t cR  remain the same for a fixed value of eaR in the case of free boundaries. In 

particular, it is observed that increasing Λ  and eaR  is to decrease 1
mDa− , while increasing Ta  

is to increase min( )t cR  as well as 1
mDa− . Nonetheless, no such coupling is found between either 

1Da− and minΛ  or Λ  and 1
minDa−  such that min( )t cR  remains same in the case of rigid-rigid 

and rigid-free boundaries. Besides, the range of Λ  up to which the system gets destabilized is 

the least for rigid-rigid boundaries and the range is more in the case of free-free boundaries. 

The stress-free boundaries are found to be less stable than rigid-free as well as rigid-rigid 

boundaries only at small and moderate values of Taylor number domain (see Fig. 9a). To the 
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contrary, the stress-free boundaries are found to be more stable than that of rigid-rigid and 

rigid-free boundaries at higher values of Taylor number. This is because a viscous boundary 

layer will appear near the rigid boundary which in turn arrests the fluid motion. Although the 

boundary layer exerts a pure stabilizing mechanism up to moderate values ofTa , it exhibits a 

dual effect at higher values ofTa . On the one hand, the viscosity dissipates the kinetic energy 

required for the onset of instability in the porous layer; on the other hand, the viscous force 

resists the fluid to attach to the vortex lines and makes the fluid to find a means for achieving 

cross-isobar flow through which potential energy is released [21]. The dual mechanisms 

coupled with the EHD force exhibit a more instability behavior in the case of rigid boundary. 

 

5. Conclusions 
 

The effect of Coriolis force due to rotation on the onset of electrothermal convection 

in a dielectric fluid saturated porous medium has been investigated. The analysis has been 

performed for three different types of velocity boundary conditions namely free-free, rigid-

rigid and lower-rigid and upper-free boundaries. It is observed that both rotation and vertical 

AC electric field play a vital role on the stability characteristics of the system. Dual behavior 

of porous medium permeability and ratio of viscosities on the criterion for the onset of 

electrothermoconvection is observed in the presence of rotation. Under some choices of 

parametric values, it is found that decrease in the Darcy number and increase in the ratio of 

viscosities destabilize the system contrary to their stabilizing effect in the absence of rotation. 

The range of 1Da−  and Λ  up to which the system becomes destabilized increases with the 

decrease in the value of Λ, and increase in 1Da−  respectively.  Besides, the effect of 

increasing AC electric field enhances the heat transfer and hence hastens the onset of 

convection, while increasing the strength of rotation is to inhibit the onset of electrothermo- 

convection. The system is found to be more stable when both boundaries are rigid, while the 

free boundaries are least stable only up to moderate values of Taylor number. At higher 

Taylor number, the trend is reversed since the stability of the free-free boundaries will be 

enhanced rapidly than the rigid boundaries case. The effect of increase in Ta , eaR  and 1Da−  

is to contract  the dimension of the convection cells, while increase in Λ is to elongate the 

same. 
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Fig. 2. t cR Vs 1Da−  for different values of Λ  and eaR  when 510Ta =  for (a) eaR = 0, 
(b) eaR =500 and (c) eaR = 1000 for free-free boundaries 
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Fig. 3. t cR Vs Λ  for different values of 1Da−  and eaR   when 510Ta =  for (a) eaR = 0,  
 (b) eaR = 500 and (c) eaR = 1000 for free-free boundaries  
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Fig. 6. t cR  Vs 1Da−  for different Λ  when 510Ta = for rigid-rigid boundaries when 

eaR =0( ___ ); eaR =500(- - -). 
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Fig. 8(a). t cR Vs eaR  for different values of 1Da−  when Λ = 4, 510Ta =  for (a) rigid-rigid,  
(b) rigid-free and (c) free-free boundaries  
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Fig. 8(b).  ac Vs eaR  for different values of  1Da−  when Λ = 4, 510Ta =   for (a) rigid-rigid, 
(b) rigid-free and (c) free-free boundaries  
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Fig. 9(a). t cR  Vs eaR  for different values of Ta  when Λ = 4, 1 210Da− =  for (a) rigid-rigid,  
(b) rigid-free and (c) free-free boundaries    
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Fig. 9(b). ac Vs eaR  for different values of Ta  when Λ = 4, 1 210Da− =  for (a) rigid-rigid, 
 (b) rigid-free and (c) free-free boundaries 
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Fig. 10(a). t cR Vs eaR  for different values of Λ when 510Ta = , 1 210Da− =  for (a) rigid-rigid, 
(b) rigid-free and (c) free-free boundaries 
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Fig. 10(b). ac Vs eaR  for different values of Λ when 510Ta = , 1 210Da− =  for (a) rigid-rigid, 
(b) rigid-free and (c) free-free boundaries 
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Chandrasekhar [1] Present study 
Ta  t cR  ca  t cR  ca  
10 1713.0 3.10 1712.67 3.12087 
100 1756.6 3.15 1756.35 3.16 
500 1940.5 3.30 1940.2 3.31926 
1000 2151.7 3.50 2151.34 3.48 
2000 2530.5 3.75 2530.13 3.74693 
5000 3469.2 4.25 3468.52 4.26 
10000 4713.1 4.80 4712.06 4.7849 

              
Table 1. Values of t cR  and ca  for different values of Ta  for rigid-rigid boundaries 
           
 
 
 
          

 

     
 
 

 

 

 

 
Table 2. Values of eacR  and ca for different values of tR  for rigid-rigid boundaries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Roberts [27] Present Study 
tR  eacR  ca  s

eacR  ca  
− 1000 3370.077 3.2945 3370.08 3.29446 
− 500 2749.868 3.2598 2749.87 3.25983 

0 2128.696 3.2260 2128.696 3.22596 
500 1506.573 3.1929 1506.57 3.19287 
1000 883.517 3.1606 883.517 1506.57 

1707.762 0 3.1162 0 3.11621 
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Free-free boundaries 

 
 
 
 
 
 
 
 
 

 
 
Rigid-rigid boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
Λ 

min( )t cR  1
minDa−  min( )t cR  1

minDa−  min( )t cR  1
minDa−  

1 15728 83.34 15289.4 82.65 14849.8 81.95 
1.2 15611 66.24 15171 65.43 14731.4 64.63 
1.4 15487 48.44 15047 47.54 14606 46.62 
1.6 15354 29.72 14913 28.65 14472 27.58 
1.8 15211 9.62 14768 8.36 14325.3 7.078 

 
 
Rigid-free boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
Λ 

min( )t cR  1
minDa−  min( )t cR  1

minDa−  min( )t cR  1
minDa−  

1 16152 126.07 15763.5 124.84 15373 123.61 
2 16119 82.71 15729.5 81.14 15338 79.57 
3 16127 42.64 15737.4 40.78 15346 38.92 
4 16174 5.441 15785.7 3.328 15395 1.213 

 
 
Table 3. Values of min( )t cR  and 1

minDa−  for different values of Λ and Re when 510Ta =  
                
 
 
 
 
 
 
 
 
 

eaR =0 eaR =500 eaR =1000       
Λ  

min( )t cR  1
minDa−  min( )t cR  1

minDa−  min( )t cR  1
minDa−  

1 16217.4 152.96 15882.9 151.31 15546.2 149.66 
2 16217.4 123.35 15882.9 121.29 15546.2 119.23 
3 16217.4 93 15882.9 91.17 15546.2 88.70 
4 16217.4 64 15882.9 61.26 15546.2 58.37 
5 16217.4 34.53 15882.9 31.24 15546.2 27.94 
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Free-Free boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
1Da−  

min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  
10 16217.4 5.828 15882.9 5.708 15546 5.589 
20 16217.4 5.491 15882.9 5.375 15546 5.261 
30 16217.4 5.153 15882.9 5.041 15546 4.932 
50 16217.4 4.477 15882.9 4.375 15546 4.275 
100 16217.4 2.789 15882.9 2.710 15546 2.632 
150 16217.4 1.100 15882.9 1.044 15546 0.989 

 
 
Rigid-rigid boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
1Da−  

min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  
10 14953 2.596 14520 2.581 14087 2.565 
20 15052 2.444 14618 2.428 14185 2.413 
30 15147 2.289 14714 2.274 14281 2.259 
50 15331 1.99 14898 1.964 14464 1.951 
100 15743 1.196 15308 1.186 14874 1.176 
150 16118 0.578 15684 0.574 15250 0.569 

 

Rigid-free boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
1Da−  

min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  
10 16159.2 3.651 15767 3.603 15374 3.556 
20 16146.2 3.428 15754 3.382 15361 3.336 
30 16135.7 3.204 15744 3.159 15352 3.116 
50 16222 2.276 15731 2.716 15340 2.676 
100 16126 1.646 15738 1.616 15348 1.588 

 
  
 
Table 4. Values of min( )t cR  and minΛ  for different values of 1Da−  and eaR  when 510Ta =   
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Free-Free boundaries 
 

 
eaR =0 eaR =500 eaR =1000 

Λ  
min( )t cR  1

minDa−  min( )t cR  1
minDa−  min( )t cR  1

minDa−  
1 22934.9 228.96 22600.7 227.056 22265 225.52 
2 22934.9 198.99 22600.7 197.16 22265 195.33 
3 22934.9 169.37 22600.7 167.27 22265 165.15 
4 22934.9 139.76 22600.7 137.36 22265 104.77 
5 22934.9 110.16 22600.7 107.47 22265 74.59 
6 22934.9 80.54 22600.7 77.57 22265 44.40 

 
 
Rigid-rigid boundaries 
 

eaR =0 eaR =500 eaR =1000 
Λ 

min( )t cR  1
minDa−  min( )t cR  1

minDa−  min( )t cR  1
minDa−  

1 22484 152.84 22046.8 152.244 21607.7 151.66 
1.2 22366.8 135.94 21927.8 135.302 21488.8 134.66 
1.4 22252.1 119.09 21812.8 118.40 21373.3 117.703 
1.6 22136 102.05 21696.2 101.292 21253.3 100.53 
1.8 22015 84.63 21575.5 83.79 21351 82.96 
2 21890 66.68 21449.2 65.76 21008.3 64.83 

 
 
Rigid-free boundaries 
 

 
eaR =0 eaR =500 eaR =1000 

Λ 
min( )t cR  1

minDa−  min( )t cR  1
minDa−  min( )t cR  1

minDa−  
1 22865 197.52 22477 196.32 22088 195.18 
2 22816 152.21 22427 150.84 22037 149.46 
3 22714 109.87 22404 108.27 22014 106.66 
4 22801 69.73 22411 67.92 22021 66.11 
5 22836 31.62 22466 29.63 22056 27.63 

 
 
Table 5. Values of min( )t cR  and 1

minDa−  for different values of Λ and eaR when 52 10Ta = ×           
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Free-Free boundaries 
 
 

eaR =0 eaR =500 eaR =1000  
1Da−  min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  

10 22934.9 8.382 22600 8.260 22265 8.140 
20 22934.9 8.045 22600 7.925 22265 7.808 
30 22934.9 7.706 22600 7.591 22265 7.477 
50 22934.9 7.032 22600 6.922 22265 6.814 
100 22934.9 5.342 22600 5.249 22265 5.158 
150 22934.9 3.654 22600 3.578 22265 3.502 

 
 
Rigid-rigid boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
1Da−  

min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  
10 21106 3.735 20673 3.719 20240 3.703 
20 21205 3.583 20772 3.567 20339 3.551 
30 21303 3.429 20870 3.414 20436 3.398 
50 21493 3.120 21060 3.106 20626 3.091 
100 21935 2.334 21501 2.325 21067 2.312 
150 22327 1.564 21893 1.554 21459 1.544 

 
 
Rigid-free boundaries 
 
 

eaR =0 eaR =500 eaR =1000 
1Da−  

min( )t cR  minΛ  min( )t cR  minΛ  min( )t cR  minΛ  
10 22858 5.254 22466 5.206 22073 5.158 
20 22844 5.034 22452 4.987 22060 4.940 
30 22832 4.808 22440 4.762 22048 4.717 
50 22812 4.359 22421 4.316 22030 4.273 
100 22793 3.242 22404 3.206 22013 3.017 
150 22812 2.142 22424 2.112 22035 2.083 

 
 
Table 6.Values of min( )t cR  and minΛ  for different values of 1Da−  and eaR  when 52 10Ta = ×   


