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ABSTRACT Under the effects of electric field and chemical reaction, the problem of 

dispersion of aerosols in a poorly conducting fluid in a channel is solved analytically 

using the mixture theory together with a regular perturbation technique. It is shown 

that the aerosols are dispersed relative to a plane moving with the mean speed of 

atmospheric fluid as well as the mean speed of agglomeration of aerosol with a 

relative diffusion coefficient, called Taylor dispersion coefficient.  This coefficient is 

numerically computed and the results reveal that it increases with an increase in the 

Electric number, but decreases with an increasing porous parameter. The physical 

explanations for the same are given in this paper. 
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1. Introduction 

This paper deals with the effects of electric field and chemical reaction on the 

dispersion of deformable aerosols in a poorly conducting atmospheric fluid flowing in 

a channel bounded by porous layers using Taylor’s [1] model.  

 

Electric fields are used extensively in different industrial problems particularly in 

those concerned with chemical, electrical, electronic and drug industries for various 

separation processes. Waterman [2] had reviewed the process of using electric fields 
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to improve coalescence and found these techniques to be quite effective in the 

removal of water from oil. Williams and Bailey [3] examined coalescence of poorly 

conducting drops in the presence of an electrical field both theoretically and 

experimentally.  Schmidt [4] performed experiments with different aerosols and 

observed that the application of an electric field had the effect of reducing 

sedimentation time. A detailed calculation of the aerosol particles and size distribution 

suggests that this phenomenon of reduction of sedimentation time is due to the 

electric field enhancing aerosol particle coalescence.  

 

Studies to predict the collision frequencies of settling mechanisms have been carried 

out in the past. Also, the deposition of nano-particles under different conditions was 

investigated in the recent numerical studies by Sun et al. [5], Gan et al. [6], Yin and 

Lin [7], and Liu and Lin [8].  Wang et al. [9] used a trajectory analysis for estimating 

the aggregation rates and found that the electric fields can enhance the gravitational 

settling of charged particles.  

 

Usually, when the Earth’s local weather is fair, the electric field is about 180-280 

 depending on the concentration of aerosols (see Jayaratne and Verma [10]). 

When the aerosols are in continuous deformation with relative motion resulting in 

particles colliding and coalescing to form larger particles where an electric field 

induces a dipole in uncharged aerosol particles, as explained by Rudraiah and 

Devaraju [11], who showed that the charges induced on the closest sides of the 

neighboring particles are of opposite sign. These particles experience an attractive 

force which can eventually lead to the particles colliding causing agglomeration or 

coalescence. That is, the difference in number concentration of aerosols causes 

variation in electrical conductivity

1Vm−

σ , which releases the charges forming distribution 

of charge density ερ . These charges produce an induced electric field, , known as 

concentration electric field. In addition, there may be an applied electric field,

indE
G

aE
G

, due 

to embedded electrodes of different potentials at the boundaries. The total electric 

field  produces not only a current density,t indE E= +
G G

aE
G

J
G

, according to Ohm’s law, 

but also an electric force e tEρ
G

, which is computed using Maxwell’s equations.  

                                                                                                                                            
 



 
The motion of atmospheric fluid is usually turbulent due to large length scales which 

result in large Reynolds number.  Therefore, to derive the required basic equations, 

we use the mechanism of mixture of aerosols and atmospheric turbulent fluid taking 

into account the combined effect of electric field, deformable aerosols and settling of 

large particles on primary as well as secondary admixture using Reynolds Averaging 

Procedure supplemented with gradient diffusion model. The primary pollutants, 

directly injected into the atmosphere, are assumed to satisfy the general equation 

involving the relative velocity between aerosol and atmospheric fluid.  The aerosol 

medium is assumed to be homogeneous, incompressible and isotropic in the presence 

of the body force.  In the literature (Kenyon [12], Bowen [13] and Barry et al. [14], 

Rudraiah and Devaraju [11]) mixture theory has been used to derive the basic 

equations for an ordinary fluid in the absence of electric field assuming the mixture of 

aerosol and atmospheric fluid as deformable porous media.  The dispersion of 

aerosols and other suspended particulate matter (SPM) in the presence of electric field 

in atmospheric turbulent fluid has not been given much attention in the literature.  

The study of it is the main objective of this paper because of its importance in many 

applications discussed above. To achieve the objectives of this paper, the required 

basic equations, relevant boundary conditions and the dimensionless form are given in 

section 2 on mathematical formulation of this paper.    

 
Analytical solutions of coupled partial differential equations are derived in section 3 

of this paper using regular perturbation technique with a perturbation parameterε . 

The Taylor dispersion coefficient for atmospheric fluid and also for aerosols are 

determined in this section. These dispersion coefficients, the velocity for atmospheric 

fluid fu and for aerosols su  are numerically computed and the results are 

represented graphically and important conclusions are given in section 4.  

2. Mathematical formulation 

We consider a two-dimensional geometry as shown in Figure 1. It consists of flow 

through a symmetrical channel extended to infinity on both directions of x-axis.  The 

channel is filled with poorly conducting fluid saturated porous media regarded as a 

mixture of aerosol and atmospheric fluid bounded by permeable layers with 

embedded electrodes of different potentials at 0y =  and y h= . The applied 



pressure gradient / ( )p x G t∂ ∂ =  produces an axially directed flow. For an infinite 

channel, we assume fully developed unidirectional flow as in Taylor [1] so that there 

is no x-dependence in any of the physical quantities except the pressure, electric 

potential and concentration of aerosols. The unidirectional flow is represented with 

velocities 1
s sq = u  as the x-component of aerosol and 1

f fq u=  the x-component of 

atmospheric fluid.  Then the required momentum equations are given by  
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These equations, following Rudraiah and Devaraju [11], for the mixture of aerosol 

and atmospheric turbulent fluid with the assumptions stated above becomes,  
 

2

2

s s
s s s f

s e x
u u G K u u E
t y

ρ μ φ ρ⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ ∂
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∂ ∂
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where the superscript, s, represents solid phase (i.e. aerosol) and, f, the fluid phase (i.e. 

atmospheric poorly conducting fluid), s eμ μ μ= +  is one of the turbulent Lame 

constants, f a eμ μ μ= +  the effective viscosity (also called Brinkman viscosity) of 

poorly conducting atmospheric turbulent fluid, μ  the Lamé constant, eμ  the eddy 

viscosity,  the linear drag coefficient that is Darcy resistance offered by solid to 

fluid,  the pressure gradient, 

K

G sϕ  the aerosol volume fraction and fϕ  is the fluid 

volume fraction.  We make these equations dimensionless using 
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where ,  ,  and  are the characteristic length, pressure gradient, electric 

potential and time respectively and the asterisks (*) denote the dimensionless 

quantities.  

h 0G V 0t



 
Substituting Eq. (4) into Eqs. (2) and (3), simplifying and for simplicity neglecting the 

asterisks, we get  
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where iR  (  to  are dimensionless parameters defined by 1i = 4)
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The boundary conditions are the Saffman [15] slip conditions of the form  
 

1 2 at 0 and 1 for 0 respectively
s f

s f
p p

du duu u t
d d

α σ α σ η
η η

= ± , = ± , = > ,  (8) 

 
where /p h kσ =  is the porous parameter, 1α  and 2α  are the slip parameters.  

To find the electric force, e xEρ , first we have to find the electric field xE  and then 

the charge density eρ  using Maxwell’s equations given by  

 
Gauss’s law,  
 

0
i

e
i

E
x

ρ ε∂
= /

∂
  (9) 

 
Faraday’s law, neglecting induced magnetic field because 1σ � , and there is no 

applied magnetic field, 

 

0i
ijk i

j i

E E
x x

ε ∂ ∂Φ
= ⇒ = −

∂ ∂
  (10) 

 
Ampere’s law,  
 

i
ijk i e i

j

H J
x

qε ρ∂
= +

∂
  (11) 



 
Solenoidal property of magnetic field  
 

0i

i

H
x

∂
=

∂
  (12) 

 
These equations have to be supplemented with the equation of continuity of charges 
  

( ) 0e ie

i i

q J
t x x

ρρ ∂∂ ∂
+ +

∂ ∂ ∂
i =   (13) 

 
and using ohms law for a poorly conducting media ( 1σ � ) and neglecting convection 

current e iqρ  compared to conduction current and we denote 0i iD Eε= , i iJ Eσ= . 

From these, while using the assumption 1σ � , Eq. (13) becomes  
 

 0   ie i
i

ii i

qE E
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ρ σσ
∂∂ ∂ ⎛ ⎞∂ 0=+ + = ⎜ ∂∂ ∂ ∂ ⎝ ⎠
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Further using Eqs. (9) and (10), and taking ( )σ σ η= , we get  
 

2

2

1 0σ
η σ η η
∂ Φ ∂Φ ∂

+
∂ ∂ ∂

=   (15) 

 
with the boundary conditions due to potentials /Vx hΦ =  at  and 

 at  due to embedded electrodes as shown in Fig. 1. Making 

 dimensionless using V, the boundary conditions are 

0y =

0( ) /V x x hΦ = −

Φ

y h=

  
0 at 1;         at 0x x xη ηΦ = − = Φ = =   (16) 

 
Since 1σ � , perturbation on it is negligible and hence σ  depends on the basic 

concentration . Making bC σ  dimensionless using 0σ , and using  the basic 

concentration obtained by solving 

bC

2 2/bd C dη 0= satisfying 0bC C=  at 0η =  and 

 at 1CC = 1η = , in the form 1 0 0( )C C C Cb η= − + . Then σ  is given by  

  
1 (sinceeαησ αη α= + ≈ �1)   (17) 

 
where 1 0h C C C Cα α= , = −+ + .  Eq. (15), using Eq. (17), becomes 
  

2

2 0d d
d d

α
η η
Φ Φ
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The solution of Eq. (18), using the boundary condition given in Eq. (16), is  
 

0 (1 )
1

x ex
e

αη

α

−

−

−
Φ = −

−
  (19) 

 
Substituting Eq. (19) into xE and eρ , we get  
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If  is the concentration of aerosols in the atmosphere, and diffuses in the 

atmospheric turbulent fluid of unidirectional flow given by Eqs. (2) and (3), then , 

with first order chemical reaction, satisfies the equation 

C

C

  
2 2

12 2e
C C C Cu D k
t x x y

β ⎛ ⎞∂ ∂ ∂ ∂
+ = + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

C   (21) 

 
We study the electrohydrodynamic dispersion of aerosols by the atmospheric fluid 

and vice-versa using Taylor’s model, in the next section.  

3. Electrohydrodynamic dispersion of aerosols 

The required basic equations and the corresponding boundary conditions are given by 

Eqs. (5) to (16). These equations are coupled linear partial differential equations 

(PDE). Although it is possible to decouple these equations using a suitable operator, 

the resulting PDE becomes higher order and cumbersome and the required boundary 

conditions have to be extrapolated.  Therefore, we avoid this process and use a 

regular perturbation technique choosing ( )2 3 0 /( )s
sR R K tε μ ρ= =

0/ /s
s fK tμ ρ μ�

0t

fμ  to be small as a 

perturbation parameter. This assumption  is valid in our study of 

quasi-steady flow obtained following Taylor [1], where is very large and fμ , the 

viscosity of atmospheric fluid, is small.  In this technique, we look for solutions of 

Eqs. (5) and (6) in the form  

 
0 1 0 1,         f f f s s su u u u u uε= + + ... = + + ...ε   (22) 

 
Substituting Eqs. (22) and (20) into Eqs. (5) and (6) and assuming the normal mode 

solutions of the form  
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where , and on simplifying them, we get  0  1,  i = , ...
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where  and . The boundary conditions are the Saffman 

[14] slip conditions as given in Eq. (8), which become  

2
0 2( ) /a R n= − 2

0 /b n R=
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Similarly we can get equations for , but we restrict only to  and 1. The 

solutions of Eqs. (24) to (27), satisfying the condition given by Eq. (28), are 

1i > 0i =
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where the coefficients , 1 ( 1 9j jΔ = ,..., 2 ( 0 9j jΔ = ,..., , 3 ( 0 4j j )Δ = ,..., , are given 

in the appendix of this paper.   

 



From Eq. (22), using Eqs. (29) to (32), we get  
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where the coefficients  and 1  ( 1 8ia i = ,..., ( )1  1 9ib i = ,..., ,  are given in the 

appendix.  
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To find the concentration distribution, we assume, following Taylor [1], the 

longitudinal diffusion is much less than the transverse diffusion, which implies 

. Furthermore, we assume though there is a small longitudinal 

gradient of  along the flow, advection generates a small amount of aerosol across a 

section of the flow which moves with the mean speed. In other words, this small 

transport and the small longitudinal concentration gradient must be proportional to 

one another. Thus the combined effect of longitudinal advection and transverse 

diffusion is to disperse the aerosol longitudinally relative to a frame moving at the 

mean speed of flow by a mechanism which obeys the same law as an ordinary 

one-dimensional diffusion relative to fluid at rest.  Then Eq. (19) takes the form 

2 2 2/C x C y∂ ∂ ∂ ∂�

C

2/

  
2

12e
C C Cu D k
t x y

β∂ ∂ ∂
+ = −
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C   (35) 

 
In this paper, we consider two situations; one is for the advection of aerosols by the 

atmospheric fluid, and the other for the advection of atmospheric fluid by 

agglomeration, the solid phase of aerosol.  These are discussed as follows.  

3.1. Advection by atmospheric fluid 

In this case, denoting fβ = , Eq. (35) takes the form  
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Making this equation dimensionless using the scales  
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where  is the initial slug,  is the characteristic length along this flow direction, 0c

0 /

L

2
fU h G μ=  is the characteristic velocity and all other scales are the same as 

defined in Eq. (4) and  
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is the average fluid velocity, where  
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and for simplicity neglecting the asterisks, we get  
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where 0 1f F b= − , and  are constants given in the appendix.  1 ( 1, ,9ib i = … )
 
Following Taylor [1], we assume the partial equilibrium at any cross-section of the 

layer and obtain concentration as a function of y by approximating Eq. (36) in the 

form  
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where ( )( )2

1 //D Ch DL ξ= ∂ ∂  and  is the reaction rate parameter. For 

compatibility with the atmospheric layer we solve this equation for permeable to 

concentration given by  
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The solution of Eq. (42), after using Eqs. (41) and (43), we get 
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where  and  are constants and are given in the appendix. The 

volumetric rate at which the aerosol is transported across a section of a layer of unit 

breadth is 

1 2 c c, 1 ( 1 7ie i, = ,...,
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Hence, using Eqs. (44) and (45), performing the integration and after simplification, 

we get  
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y

.  Following Taylor [1], we assume that the variation 

of  with  is small compared to the longitudinal direction and if  is the 

mean concentration over a section, then 

C mC

/C ξ∂ ∂  is indistinguishable from /mC ξ∂ ∂  

so that Eq. (46) can be written as 
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This shows that  will be dispersed relative to plane which moves with the mean 

velocity 

mC

fu  exactly as though it is being diffused by a process which obeys the same 

law as molecular diffusion but with a relative diffusion coefficient  
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called Taylor diffusion coefficient for the mixture of deformable agglomeration and 

atmospheric fluid, 1/f fPe hu D=  is the Peclet number and 
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and fw  is given in Eq. (41) This is integrated using Eqs. (44) and (41).  The fact 

that no material is lost in the process is expressed by the continuity equation for  

namely 

mC

  
1 mCM
L tξ
∂∂

= −
∂ ∂

  (50) 

 
where the time derivative pertains to a point at which ξ  is fixed.  Eq. (47), using 

Eqs. (49) and (50), takes the form  
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ξ
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This equation represents the longitudinal dispersion of deformable agglomeration in 

the atmospheric fluid and dispersed with the dispersion coefficient fD  given by Eq. 

(48). This is computed for different values of electric number  , Reynolds number eW

Re , Peclet number  and reaction rate parameter Pe 1β , and the results are depicted 

graphically and are discussed in section 4.  

3.2. Advection by agglomeration of aerosol 

We also note that the advection of atmospheric fluid by agglomeration can also be 

discussed following the analysis of section 3.1 by substituting sβ =  in Eq. (35). 

Following the same procedure as explained in section 3.1, we get  
 

s s sD Pe N=   (52) 
 
where /s s

mPe hu D=  and  
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As in Eq. (49), this is integrated using sw  and 1C −  and the sD  is computed for 

different values of electric number , Reynolds number eW Re , Peclet number  

and the reaction rate parameter 

Pe

1β , the results are depicted graphically and are 



discussed in the next section.  

4. Results and Discussions 

One of the necessary tasks associated with industrialization is to achieve progress in 

the removal of solid or liquid particles from gases discharged to the environment. 

Design of optimized pollution control devices becomes increasingly important 

towards achieving that goal. Fibrous filters are effective in the removal of 

submicrometer aerosol particles but their application is limited to low concentrations 

of aerosol dust in air. On the other hand, cyclones are efficient only at high gas flow 

rates and for larger particles. Cyclones, although very common devices, are still 

objects of intensive research because of their wide range of applications. In the case 

of smaller aerosol particulates an increase in the collection efficiency of particles in 

the turbulent flow is necessary. An application of an externally applied electric field 

in a turbulent flow assisting the inertial removal effect should result in increased 

cleaning effectiveness, in particular for small particles of poorly conducting materials. 

A standard design cyclone, with a tangential inlet in which an electric field is 

generated in the space between an external wall and the central outlet channel is 

considered. The dispersion of large size deformable aerosols mixed with a poorly 

conducting atmospheric fluid is discussed in this paper analytically using Taylor’s 

model valid asymptotically for large time with the objective of understanding the 

effect of electric field on the dispersion of atmospheric aerosols because of its 

importance in the applications mentioned above. The dispersion of deformable 

agglomeration in quasi-steady flow is discussed in Section 3. The equations governing 

the flow for atmospheric fluid, poorly conducting fluid and for deformable 

agglomeration obtained under the assumption of fully developed flow are the coupled 

partial differential Eqs. (5) and (6). These equations are solved analytically using 

regular perturbation technique given by Eq. (22) with . This 

assumption is valid in our study of quasi-steady flow as considered in Rudraiah and 

Ng [16]. Using these approximations and following the analysis of Taylor we 

obtained the solutions analytically. Using these solutions the dispersion coefficient 

0 /( ) 1s
s fK tε μ ρ μ= �

Dβ  is determined as given by Eq. (48) for advection by atmospheric fluid ( )fβ =  

and by Eq. (52) for advection by agglomeration ( s)β = . The results are represented 

graphically. Figures 2 and 3 represent the effect of electric number on the velocity 



profiles of atmospheric fluid and aerosols. From these figures we find that fu  

increases with We , because electric field induces a small scale turbulence but 

decreases with an increase in pσ  because the permeability dampens the velocity 

profile. Figure 4 represents the effect of porous parameter on the dispersion of 

aerosols in a atmospheric poorly conducting fluid for different values of Reynolds 

number Re and it shows that the dispersion coefficient fD  decreases with an 

increase in porous parameter because of its dampening effect but increases with an 

increase in Reynolds number. Figures 5 and 7 show the effect of deformation 

parameter on the dispersion coefficient sD  for different values of Reynolds number 

and this figure shows that the sD  decreases for small values of 1R  up to 0.2 and for 

higher values from 0.25 it remains uniform. It also reveals that increase in Re  

slightly increases for values 1R  up to 0.5 and for , 1 0 5R > . fD  remains uniform. 

Figure 6 shows that fD  decreases with an increase in 1R  up to 0.5 and also 

decreases with an increase in  up to Pe 1 0 5R = .  and then remain uniform with 

respect to increase in 1R  and . Figure 7 shows that Pe sD  decreases with an 

increase in 1R  and for  it tends to unity. However, 1R 0 7> . sD

1

 decreases with an 

increase in  up to 100 and tends to  at Pe 2110 1R =  and for  it 

increases. Figure 8 shows that the 

100Pe >

fD  increases with an increase in We  

for . Similarly, Figure 9 shows that 150Pe = fD  increases with an increase in 

reaction rate parameter 1β for 50We = and and reaches the maximum 

value 4 5  for

310Re =

2410. × 1 40β = .    

5. Conclusions 
 
In this paper we investigated the effect of electric field and the first order chemical 

reaction on the dispersion of aerosols in a channel bounded by porous layers using 

Taylor’s model. Analytical solutions for velocities and concentration distributions are 

obtained using a regular perturbation technique. It is shown that the aerosols are 

dispersed relative to a plane moving with the mean speed of atmospheric fluid as well 

as the mean speed of agglomeration of aerosol with a relative diffusion coefficient, 

called Taylor dispersion coefficient. This dispersion coefficient is numerically 

computed and the results reveal that the electric field and chemical reaction enhances 



the transport (dispersion) of aerosols, i.e., the electric field removes efficiently the 

solid or liquid particles from gases discharged to the environment. Therefore, results 

through a light on aerosol removal mechanisms. Also, it is found that the transport of 

aerosols decreases with an increase in the porous parameter. 

 
 



Appendix 
 

2 2 2
0 1 0 0 1 0sinh 2 cosh ,a a aα σ α σ⎛ ⎞

⎜ ⎟
⎝ ⎠

Δ = + + a

0

 

 
0 0 1sinh cosh ,a a aδ α σ= +  

 
1

1 2 2 2
1 1 0 0

2 2
0 1 1 11 1

2 2 2 2 2 2
1 1 0 0 1 0 0

( )
( )

( ) ( ) ,
( ) ( )

s
e

s s
e e

Wc
R a a

a W W e
R a a R a a

α

α α σ ϕ
α σ α

α σ α δ α σ α σ αα σδϕ α σ ϕ
α σ α α

−

−
= +

−

⎛ ⎞− −
+ − + +⎜ ⎟Δ − −⎝ ⎠

 

  
2 2

1 1 11 1
2 2 2 2 2 2 2

1 0 0 1 0 0

( ) ( )1 ,
( ) ( )

s s
e eW W ec
R a a R a a

αα σ α δ α σ α σ αα σδϕ α σ ϕ
α α

−⎛ ⎞− −
= − + +⎜ ⎟Δ − −⎝ ⎠

 

  

0 1 2 2 0 0 0 3 3 2
3 2 42 2 2

02 0 0 0 2 0

( )( cos sin ) ( ),      ,
( ) sin 2 cos
b l l b b b c lc l c bb b b b

α σ α
α σ α σ

− − −
= + =

− +
σ

 

  

2 1 0 0 2 2 0 0 2 2
1 2 2 2 2 2 2 2 2 2

44 0 0 4 0 0 0 1 4 0 0

2 2 1 0 2 2 2 0 2 2
2 2 2 2 2 2 2 2

44 0 0 4 0 0 0 1 4 0

sinh cosh 1
( ) ( ) ( ) ( )

cosh sinh 1
( ) ( ) ( ) ( )

f
e

e

R c a a R c a a e W Rl RR a b R a b b R R a b

R c a R c a e W R R
RR a b R a b b R R a

α

α

λ λ α λ α σϕ
α α

α σλ α σλ ασ λ α σ
α α

−

−

⎛ ⎞
= + + − −⎜ ⎟+ + + −⎝ ⎠

⎛ ⎞
+ + − − −⎜ ⎟+ + + −⎝ ⎠

λ 2
2 2

4 0 0

,
( )

s

R a b
ϕ

+
  

2 2 0 2
2 2 2 2 2 2 2 2

42 4 0 0 2 0 0 1 4 0 0

2 1 2 2
2 2 2 2 2 2 2 2

44 0 0 0 1 4 0 4 0 0

1
( ) ( ) ( )

1
( ) ) ( ) ( )

f
e

s
e

R c a W Rl RR a b a b R R a b

WR c R R
RR a b b R R a R a b

λ α λ ϕ
α σ α σ α

λ σ λ λ ϕ
α α

⎛ ⎞−
= − −⎜ ⎟+ + −⎝ ⎠

⎛ ⎞
+ − − −⎜ ⎟+ + −⎝ ⎠

−

  

  

2 1 32 2
3 4 0 2 2 2 2 2 2 2 2

0 4 1 1 0 0 1 1 4 0 0 1 0 0

2 1 2
2 2 2 2 2 4 2

1 4 0 0 4 0 0

( )1
2 ( ) ( )( ) ( )

( )   
( ) ( )

e

s
e

W R R cR cl c b a R R a b R R a b R a b

R R W R
R R a b R a b

α λλ
α σ α σ α α

λ λ ϕ
α α

+⎛ ⎞= + − −⎜ ⎟ + − +⎝ ⎠
+

− +
− +

+
 

 

0 3 0 4 0 2 1 0 2 0 1 2 0 0
4 2 2 2 2

1 0 0 0 1 4 0 0

2 1 1 3 0 4 0 1 2 1 0 2 0
2 2 2 2 2 2 2

1 4 0 0 0 1 0 0 0 1 4 0 0

( sin cos ) [( ) cosh ( )sinh ]1
( ) 2 ( )

( ) ( cos sin ) ( sinh cosh )  
( )( ) ( ) 2 (

e

b c b c b R c a c a c c a a
l

R a b a R R a b

W e R R c b c b R c a c a
R R a b R a b a R R a b

α

λ

α λ α σ α σλ
α α

−

− + + +⎡ −= ⎢ + +Δ ⎣
− + +

+ −
− − + + 2

2 2
1 2 1 0

2 2 2 2 2
1 4 0 0

)

( ( ))  ,
( ) ( )

eW e R R a
R R a b

αα σ λ α
α α

− ⎤− −
− ⎥− + ⎦

 

 



0 1 2 2 0 0 0 0 1 2 2 0 0 0
11 2 122 2 2 2 2 2

2 0 0 0 2 0 2 0 0 0 2

( )( cos sin ) ( )( cos sin ) ,
( )sin 2 cos ( )sin 2 cos
b l l b b b b l l b b bl

b b b b b b b b0

α σ α σ
α σ α σ α σ α σ

− − − −
Δ = + , Δ =

− + − +
 

 

2 1 2 2 2
13 14 152 2 2 2 2 2 2 2

4 0 0 4 0 0 1 4 0 4 0

1
( ) ( ) ( )

eWR c R c R
R a b R a b R R b R b

λ λ λ
α α

⎛ ⎞− − −
Δ = , Δ = , Δ = − ,⎜ ⎟+ + +⎝ ⎠ +

 

4 3 2 0 0 1 02
16 172 2 2 2 2 2

4 0 0 0 0 1 0 0 1 0

( ) ( sinh cosh
( )sinh 2 cosh

s f l l a a aR )
R a b b a a a a

α σ α σλ ϕ ϕ
α σ α σ

− +
Δ = + , Δ = ,

+ +
 

 
02 1 2 2

18 19 3 17 202 2 2 2
0 1 4 0 0 1 0 1 4 0 0

,    
2 ( ) 2 (

aR c R cl
a R R a b a R R a b )

λ λ
α σ

Δ = Δ = + Δ , Δ = ,
+ +

 

 
34

21 222 2 2 2
1 0 0 1 0 0

,
( ) ( )

cc
R a b R a b

Δ = , Δ =
+ +

 

 

2 2
23 242 2 2 2 2 2 2 4 2 2 2

1 4 0 4 0 0 4 0 0 0 0

1
( ) ( )

s f
eWR R

R R a R a b R a b a b
λ λ
α α α

⎛ ⎞ ⎛
Δ = − , Δ = − + ,⎜ ⎟ ⎜− − +⎝ ⎠ ⎝

ϕ ϕ ⎞
⎟
⎠

 

 
2 6 5 2 6 52 1

25 6 26 27 28
2 0 0 2 0

( ) ( )         ,
2 2

l l l ll
b b b 0b

α σδ α σλ λ
α σδ α σδ

− −
Δ = − , Δ = − , Δ = , Δ =

+ +
 

 

3 0 6 5
29 302 2 2 2 2 2

0 0 0 0 0 0

2      ,
( )

a
a b a b a b
λ λ λ⎛ ⎞ ⎛

Δ = − − , Δ = −⎜ ⎟ ⎜+ + +⎝ ⎠ ⎝

⎞
⎟
⎠

 

 

0 5 64
31 322 2 2 2 2 2 2

0 0 0 0 0 0

2      ,
( )

a
a b a b a b

λ λλ⎛ ⎞
Δ = − − , Δ = −⎜ ⎟+ + +⎝ ⎠

 

 
7 8

33 342 2 2
0 0

     ,
b b

λ λ
α

Δ = − , Δ = −
+

 

 
11 1 19 12 26 13 2 17 14 18 15 21a c a a c a aε ε ε ε= + Δ , = Δ , = + Δ , = Δ , = Δ ,ε  

 

16 22 17 23 18 24 11 11 252 2 2
1 0 0

    
( )

s
eWa a a b

R a a
ϕε ε ε

α
− −

= Δ , = + Δ , = + Δ , = Δ + Δ ,
−

ε  

 
12 26 13 12 27 14 28 15 13 29 16 30b b b b bε ε ε ε ε= Δ , = Δ + Δ , = Δ , = Δ + Δ , = Δ ,  

 
17 14 31 18 32 19 15 33 20 16 34b b b bε ε ε= Δ + Δ , = Δ , = Δ + Δ , = Δ + Δε  

 
  



References 
[1] TAYLOR G. I. Dispersion of soluble matter in solvent flowing slowly through a 

tube[J]. Proc. Roy. Soc Lond. A, 1953, 219(1137): 186-203.  
[2] WATERMAN P. C. Matrix formulation of scattering[J]. Proc. IEEE, 1965, 53: 

805-812.  
[3] WILLIAMS T. J. and BAILEY A. G. Changes in the size distribution of a 

water-in-oil emulsion due to electric-field induced coalescence[J]. IEEE Trans. 
Ind. Appl., 1986, 22(3): 536-541. 

[4] SCHMIDT J. J. Experimental study of electro-coalescence in a unit reactor[D]. 
Master Thesis, University of Texas, 2000. 

[5] SUN LEI, LIN JIANZHONG, BAO FUBING Numerical simulation on the 
deposition of nanoparticles under laminar conditions[J]. J. Hydrodynamics, 
2006,18(6): 676-680. 

[6] GAN FUJUN, LIN JIANZHONG, YU MINGZHOU Particle size distribution in 
a planar jet flow undergoing shear-induced coagulation and breakage[J]. J. 
Hydrodynamics, 2010, 22(4): 445-455. 

[7] YIN ZHAOQIN and LIN JIANZHONG Numerical simulation of the formation 
of nano-particles in an impinging twin-jet[J], J. Hydrodynamics, 2007, 19(6): 
533-541. 

[8] LIU SONG and LIN JIANZHONG, Numerical simulation of nanoparticle 
coagulation in a Poiseuille flow via a moment method[J]. J. Hydrodynamics, 
2008, 20(1): 1-9.  

[9] WANG H., ZENG S., LOEWENBERG M. and DAVIS R. H. Particle 
aggregation due to combined gravitational and electrophoretic motion[J]. J. 
Colloid Interface Sci., 1997, 187(1): 213-220.  

[10] JAYARATNE E. R. and VERMA T. S. Environmental aerosols and their effect 
on the Earth’s local fair-weather electric field[J]. Meteorol. Atmos. Phys., 2004, 
86(3-4): 275-280.  

[11] RUDRAIAH N. and DEVARAJU N. Effects of the reaction rate and the large 
size deformable aerosols on dispersion in atmospheric flow regarded as the 
turbulent fluid saturated porous media[J]. J. Porous Media, 2011 (in press).  

[12] KENYON D. E. A Mathematical model of water flux through aortic tissue[J]. 
Bull. Math. Bio., 1979, 41(1): 79-90.  

[13] BOWEN R. M. Incompressible porous-media models by use of the theory of 
mixtures[J]. Int. J. Engg. Sci., 1980, 18(9): 1129-1148.  

[14] BARRY S. I., PARKER K. H. and ALDIS G. K. Fluid flow over a thin 
deformable porous layer[J]. J. Appl. Math. Phys. (ZAMP), 1991, 42(5): 
633-648.  

[15] SAFFMAN P. G. On the boundary condition at surface of a porous medium[J]. 
Stud. Appl. Math., 1971, 50(2): 93-101.  

[16] RUDRAIAH N. and NG C. O. Dispersion in porous media with and without 
reaction: a review[J]. J. Porous Media, 2007, 10(3), 219-248.  



Figure Captions 
 
FIGURE 1: Physical configuration. 
 
FIGURE 2: Velocity profile for atmospheric fluid for different values of electric 

numberWe . 
  
FIGURE 3: Velocity profile of aerosols for different values of electric number We. 
 
FIGURE 4: Dispersion coefficient fD versus porous parameter for different Re . 
 
FIGURE 5: Dispersion coefficient sD versus deformation parameter for different Re . 
 
FIGURE 6: Dispersion coefficient fD versus deformation parameter for different .  Pe
 
FIGURE 7: Dispersion coefficient sD versus deformation parameter for different . Pe
 
FIGURE 8: Dispersion coefficient fD versus electric number.  
 
FIGURE 9: Dispersion coefficient fD versus reaction rate parameter.  



 
 
 

FIGURE 1: Physical configuration. 
 
  



 
 

FIGURE 2: Velocity profile for atmospheric fluid for different values of electric 
numberWe . 

  
 
 



 
FIGURE 3: Velocity profile of aerosols for different values of electric number We. 

 
 
 
 
 



 
FIGURE 4: Dispersion coefficient fD versus porous parameter for different Re . 

 
 
 
 
 



 
FIGURE 5: Dispersion coefficient sD versus deformation parameter for different Re . 

 
 
 
 
 



 
FIGURE 6: Dispersion coefficient fD versus deformation parameter for different . Pe

 
 
 
 



 
FIGURE 7: Dispersion coefficient sD versus deformation parameter for different . Pe

 
 
 
 
 
 



 
FIGURE 8: Dispersion coefficient fD versus electric number. 

 
 
 
 
 



 
FIGURE 9: Dispersion coefficient fD versus reaction rate parameter. 
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