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Abstract In this paper a bimodal discrete urban road network design problem with
bus and car modes is investigated. The problem consists of decision making for lane
addition to the existing streets, new street constructions, converting some two-way
streets to one-way streets, lane allocation for two-way streets, and the allocation of
some street lanes for exclusive bus lanes. Two objectives are considered in the prob-
lem: maximization of consumer surplus, and maximization of the demand share of
the bus mode. The interaction of automobile and bus flows are explicitly taken into
account and a modal-split/assignment model is used to obtain the automobile and bus
flows in the deterministic user equilibrium state. The main contribution of the paper
lies in proposing a new network design problem that combines the road network design
decisions with the decision making for bus networks. The problem is formulated as a
mathematical program with equilibrium constraints. A hybrid of genetic algorithm and
simulated annealing, a hybrid of particle swarm optimization and simulated anneal-
ing, and a hybrid of harmony search and simulated annealing are proposed to solve
the problem. Computational results for a number of test networks are presented and
investigated.
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1 Introduction

Planning to cope with the ongoing growth of travel demand and increasing volumes
of traffic in urban transportation networks is one of the most challenging issues that
government authorities often face with. Improvement plans for urban transportation
networks usually encompass a wide range of schemes such as expansion and con-
figuration of network of streets, adjustment of traffic control systems and road tolls,
planning to expand public transit systems, and so on. The category of problems deal-
ing with the design of road and public transit networks can generally be called the
“Urban Transportation Network Design Problems” (UTNDPs). These problems can be
divided into four distinct classes: the “Transit Network Design Problem” (TNDP), the
“Road Network Design Problem” (RNDP), the “Bimodal Network Design Problem”
(BMNDP), and the “Multi-Modal Network Design Problem” (MMNDP).

The TNDP deals with the design of public transportation networks and their attri-
butes or parameters, and can even be broadened to include the operation of public
transit modes. The public transportation network consists of a set of stations and links,
which together form its skeleton. A set of routes are determined on the network and
a group of public transportation vehicles operate on each route on a regular basis.
In particular, the TNDP for the bus mode has been extensively studied by various
scholars. A wide range of problem assumptions and modeling approaches exist in
the literature of the TNDP for the bus mode. Typical problems in this field are the
design of network topology and operating lines, vehicle frequencies setting, transit
network timetabling, bus scheduling, driver scheduling, and combinations of these
problems. Two comprehensive reviews of these problems were given in Desaulniers
and Hickman (2007) and Guihaire and Hao (2008).

The RNDP is normally referred to as the “Network Design Problem” (NDP) in the
literature. RNDPs are always modeled as Stackelberg leader-follower games. Network
(or the government) authorities act as the leaders and network users respond to the
decisions made by the authorities. These problems can be expressed as bi-level pro-
gramming formulations, where the upper level problem optimizes the network based
on the existing constraints and the intended criteria set by the leader, and the lower level
problem describes the reaction of the network users to the design scenarios determined
in the upper level problem. RNDPs can be reformulated to single-level problems by
expressing the lower level problems as equilibrium constraints.

RNDPs mainly deal with single transportation mode, in which all vehicles such as
private automobiles, taxis, or even buses are considered as one mode. The problem
was extensively reviewed by Magnanti and Wong (1984), Friesz (1985), Migdalas
(1995), and Yang and Bell (1998). Traditionally, these problems are considered in
two forms: the Discrete NDP (DNDP) and the Continuous NDP (CNDP). The DNDP,
such as street construction and street orientation, is concerned with the discrete deci-
sion variables (e.g., Poorzahedy and Turnquist 1982; Wong and Yang 1997; Chen
et al. 2002, 2007, 2010a; Chen and Yang 2004; Gao et al. 2005; Meng and Khoo
2008; Meng et al. 2008), and the CNDP, such as setting signal timing and toll, is
concerned with continuous attributes of the network (e.g., Yin 2000; Meng et al.
2001; Meng and Yang 2002; Gao and Song 2002; Chiou 2008a,b, 2009a,b,c; Yin
et al. 2009; Chen et al. 2010b). Another less investigated form is the Mixed Network
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Design Problem (MNDP) which deals with both continuous and discrete decision
variables.

One drawback of RNDPs is that they usually ignore the impact of the decisions on
the performance of public transportation systems, especially public transit networks
and their efficiencies. Some RNDPs even assume fixed travel demand, while actually
travel demand is elastic and is dynamically divided between existing modes. In real
world networks, the effect of the decisions for one transport-mode network (say the
automobile network) on the others (say the bus network) cannot be easily ignored.
One reason is that the alteration of two-way streets to one-way streets may result in a
disconnected bus network. Another reason is that the improvement of the public transit
services can make them more attractive to be used. This in turn can reduce the use of
private vehicles and result in lower congestion in urban areas. The third reason is that
the improvement of the automobile network can worsen the performance of the buses
when they share the streets with automobiles, leading to reduction of travel demand
for bus services. It is therefore important to consider more than one mode and elastic
demand.

The BMNDP and MMNDP are concerned with the UTNDPs considering both
transit and road networks simultaneously but the BMNDP just considers two modes
and the MMNDP considers more than two modes. Demand for each mode is elastic
in these two problems. These problems can take into account the effects of RNDP
decisions on public transit systems and transit demands.

Past efforts focused on both general BMNDPs or MMNDPs (e.g., Clegg et al. 2001;
Van Nes 2002) and specific problems such as pricing problems (e.g., Bellei et al. 2002;
Huang 2002; Ying and Yang 2005; D’Acierno et al. 2006; Hamdouch et al. 2007), the
link layout and signal setting problem (e.g., Cantarella and Vitetta 2006), the transit
fare or frequency setting problem (e.g., Lo et al. 2003; D’Acierno et al. 2005; Uchida
et al. 2007), and the simultaneous road toll, ticket price, and transit frequency setting
problem (e.g., Ferrari 1999). Two issues have not been received much attention in
these design problems:

1. The allocation of exclusive lanes to specific modes. Indeed, the allocation of exclu-
sive lanes to the modes such as buses, high occupancy vehicles (HOV’s), carpools,
and bicycles has been implemented in many real world urban road networks to
improve the traffic conditions and to reduce the travel times for those modes.
The allocation of exclusive bus lanes is a way to achieve more efficient bus ser-
vices especially in congested urban road networks. By allowing buses traveling
on exclusive lanes, they can move faster since they are not affected by the heavy
auto flow in streets which cause long delays for buses. However, bus travel times
for crossing intersections could be deeply affected by congestion on shared lanes.
To date, some studies (e.g., Seo et al. 2005; Elshafei 2006; Li and Ju 2009) on
this issue have been performed. These studies mainly focus on a selected corridor
or at most evaluating a few scenarios of possible allocations. Only Mesbah et al.
(2008) determine the optimal combination of exclusive bus lanes in a bimodal
network using the bi-level programming approach.

2. Determining optimal street network configuration such as determining the best
combination of one-way and two-way streets as well as the lane allocation in
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two-way streets, while explicitly considering bus routes. Decisions for street
network design and especially the street directions cannot be made properly with-
out taking into account the existing bus routes. Problems may arise in situations
that new one-way streets interfere with original bus routes, even if the new one-
way streets do not intend to modify or redesign the bus routes. Moreover, exclusive
bus lanes must be allocated carefully by considering the available street capaci-
ties to avoid congestion for auto flow. Furthermore, possible lane addition can be
determined in a way that they contribute to the improvement of both public and
private traffic flow conditions.

The concurrent allocation of exclusive bus lanes and determining optimal street
network configuration is a practical issue that is faced by the urban road network
planning authorities, and is often in the form of possible scenario evaluations. For
instance, in Tehran, the capital of Iran, one of the main two-way corridors, Vali Asr
Street, was transformed into a corridor for one-way normal traffic but was allocated
two dedicated lanes for forth and back bus routes (Tehran Times 2009). In another
case, it was decided to allocate exclusive bus lanes for some existing corridors and the
streets network configuration were redesigned (Tehran Times 2010).

The problem can be approached by the optimization techniques for a complete
network, rather than scenario evaluations for a restricted set of streets. When dealing
with a large set of streets, other decisions such as lane allocations and street construc-
tions can be included to further improve the network in seeking for synergic effects
of combined decisions on the network performance.

Based on the above explanations, and motivated by the fact that the concurrent
design of public and private transportation networks provides more robust and effi-
cient networks, this paper addresses a BMNDP taking in account the allocation of
exclusive bus lanes in combination with a set of RNDP decisions. Specifically, the
problem considers the following decisions:

(i) Constructing new streets;
(ii) Adding lanes to the existing network streets;

(iii) Determining the directions of one-way streets;
(iv) Determining lane allocation in two-way streets, and
(v) Allocating exclusive street lanes for buses.

The first four decisions were considered in DNDPs previously by some authors in
various forms. Constructing new streets as an individual decision and sometimes in
combination with lane addition were investigated by some authors (e.g., Steenbrink
1974; LeBlanc 1975; Poorzahedy and Turnquist 1982; Poorzahedy and Abulghasemi
2005; Poorzahedy and Rouhani 2007). Lane addition was considered in the studies as
a yes-no decision among other decisions such as road resurfacing, or improving the
capacity of existing lanes (e.g., LeBlanc 1975). Street orientation and in some cases in
combination with signal timings were under focus in a number of works (e.g., Roberts
and Xu 1988, 1989, 1992, 1994; Lee and Yang 1994; Drezner and Wesolowsky 1997;
Drezner and Salhi 2000, 2002; Cantarella et al. 2006; Gallo et al. 2010). Lane reallo-
cation in streets in peak periods has been considered in Zhang and Gao (2007), and
lane allocation and street orientation along with signal timing and parking lane allo-
cation were investigated in Cantarella and Vitetta (2006). Finally, the combination of
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street construction and mixed one-way and two-way street configuration was studied
in Drezner and Wesolowsky (2003).

In a previous work of the authors (Miandoabchi et al. 2010), a multi-objective
DNDP was proposed to consider the decisions (i)–(iv). In the present paper the previ-
ous work is extended to encompass decision (v). The inclusion of the latter transforms
the problem into a network design problem that deals with the simultaneous design
of public transit (bus) and private vehicle networks. The type of the problem studied
here has not been considered in any research before. The most related research to
the problem studied in this paper, is the work of Li and Ju (2009) where a dynamic
multimodal traffic assignment model is used to evaluate the performance of the auto-
mobile and bus modes on a multimodal test network under two conditions: network
with exclusive bus lanes on some bus routes, and network without any exclusive bus
lanes.

All of the mentioned issues require a compromise between the performance mea-
sures of private and public transportation networks. Thus the proposed problem is
formulated as a bi-objective nonlinear bi-level programming problem. The upper level
problem is to maximize the consumer surplus (i.e., the total user benefit) and to max-
imize the demand share for bus services. The lower level problem is a combined
modal-split/assignment problem to capture the elasticity of the travel demand of each
mode. Because of the intrinsic complexity and non-convexity of the model, three
multi-objective hybrid evolutionary algorithms are proposed as the solution methods
to obtain a set of Pareto-optimal solutions to the problem. To summarize, this paper
contributes the literature in two aspects:

1. proposing a new bi-objective bi-modal network design problem which includes
the bus network design decisions in a DNDP, while explicitly considering the
interactions between bus and car flows, and

2. developing three improved meta-heuristics for the problem.

The rest of the paper is organized as follows: In the next section the problem is
defined. In Sect. 3, the notations and mathematical formulation of the problem are
given. In Sect. 4, the metaheuristic solution procedures are proposed to solve the
network design problem under focus. Section 5 contains the computational results.
Finally, conclusions and future research suggestions are made in Sect. 6.

2 Problem definition

The problem under consideration is to design a bimodal urban road network under a
bi-objective decision-making framework taking into account the effects of automobile
flow on bus flow or vice versa. Before proceeding to the problem definition, a clear
definition of the network elements is presented. Here, all types of streets are referred
to as “links” (i.e., the counterpart of the term “edges” in graph studies). Each link con-
sists of two arcs if it is two-way, and each link consists of only one arc if it is one-way.
Each arc is characterized by a set of street lanes. It is obvious that if a movement is
not allowed in one direction of a link, no arc will exist in that direction.

A number of “bus lines” operates on the road network. A bus line is identified
by a sequence of road network arcs, in which a group of buses runs through them,
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Auto lane Exclusive bus lane Exclusive bus lane Exclusive bus lane 

Auto lane Auto lane Auto lane Shared auto-bus lane 

Auto lane Auto lane Shared auto-bus lane Shared auto-bus lane 

Auto lane Exclusive bus lane Shared auto-bus lane Shared auto-bus lane 

Two-way auto link One-way bimodal link Two-way bimodal link One-way bimodal link

Fig. 1 Instances of lane allocations

and travels back and forth between two terminal stations. In this paper, bus lines are
assumed to have forth and back routes on the same set of road network links. There
are two reasons for this. First, this condition is imposed as there is an advantage that
the passengers who get off at a bus stop in one direction can easily find another bus
stop in the opposite direction for the return trip. Second, the TNDP literature (e.g.,
Abdulaal and LeBlanc 1979; Kov et al. 2010) usually does not distinguish between
forth and back routes.

In this regard, the links of road networks can be distinguished as two types: (1)
links that no bus lines pass through them are referred to as “auto links”, and (2) links
that bus lines pass through them are referred to as “bimodal links”. Bimodal links
may have lanes exclusively assigned to bus flow on one or both of their arcs. In the
presence of exclusive bus lanes, buses are not allowed to travel on other lanes but travel
on exclusive bus lanes, whereas in the absence of exclusive bus lanes, buses share the
lanes with autos. Lanes are categorized in three types: (1) “auto lanes”, i.e., lanes of
arcs on auto links, or lanes of arcs on bimodal links in which exclusive bus lanes are
allocated, (2) “exclusive bus lanes”, and (3) “shared auto-bus lanes”. Figure 1 depicts
some instances of lane allocations.

2.1 Assumptions

The main assumptions for the studied problem are listed below:

• A basic network with all two-way links exists in advance where all bus routes share
the street lanes with automobiles;

• Bimodal links are allowed to have different number of lanes in each direction, but
two-way auto links must be symmetric in terms of lane allocation in each direction;

• Only one exclusive lane can be dedicated to buses on each arc of a link;
• Travel demand between each origin and destination (OD) pair is fixed and known,

but the travel demand for each mode is elastic and can be determined by a logit
modal split function;

• Travel times for crossing intersections are negligible;
• Auto and bus flows on shared lanes influence each other, and thus the travel

time/cost function for each mode is asymmetric, and;
• Automobile drivers follow the deterministic user equilibrium principle in selecting

their paths whereas bus passengers select bus lines based on the shortest hyperpath
(e.g., De Cea and Fernández 1993; Uchida et al. 2007).
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Since we focus on network planning and not the actual operation, we need to propose
a formulation that can handle large networks. The frequency-based approach is there-
fore more suitable than the schedule-based approach (e.g., Nuzzolo et al. 2001) in this
case. Moreover, the frequency-based approach adopted by Uchida et al. (2007) can
handle larger networks than that by Nguyen et al. (1998) as some of the line sections
are combined in the modified network. Therefore, we adopt the modeling framework
of Uchida et al. (2007) with some modifications to account for shared auto-bus lanes,
exclusive bus lanes, and bimodal links.

2.2 Inputs

The following are the required inputs for the problem:

• The estimated total travel demand matrix;
• Existing bus lines and their frequencies;
• Attributes of network links such as capacities, investment costs, and travel time

functions;
• Candidate new link construction projects defined by the network authority and

their costs (indeed, a link construction project includes the construction of a new
street connecting a pair of nodes of the network);

• Candidate lane addition projects and their costs (indeed, a lane addition project
includes the construction of a pair/s of new lanes on each side of the existing street).
The maximum possible number of lanes added for each project is determined by
the network authority;

• Total budget limit for lane addition and link construction projects, and
• The values of walking, waiting and travel times, auto toll, and bus fare.

2.3 Outputs

The following are outputs of the problem:

• The orientation of one-way links,
• The number of lanes allocated to each direction of links,
• New links constructed,
• New lanes added to the existing network links,
• Exclusive lanes allocated to the bus mode, and
• Auto and bus flows on each link.

Multi-modal network design problems are intrinsically more than one objective,
since the design alternatives must be assessed based on various criteria of network
users and the network authority. Here, two objective functions are considered for the
problem. One is the maximization of consumer surplus and the other is the maximi-
zation of the passenger demand share of the bus mode. The first objective function is
commonly used in UTNDPs and seeks to increase the benefit all users of the network
on average regardless of the mode they use. On the other hand, the second objective
function is incorporated in this paper to encourage more network travelers to use the
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bus mode. Indeed, encouraging the use of public transport is a common objective of
government authorities in many countries.

3 Mathematical models and notations

In this section, the mathematical model and its notations are described, and then the
specific functions used in problem formulation are presented. Let the directed graph
G(N , A) be the existing road network, where N is the set of intersection nodes, origin
nodes, and destination nodes, and A is the set of existing network arcs. This network
can be decomposed into an auto network and a basic bus network. The auto network
is equivalent the existing road network whereas the basic bus network is defined by
a set of binary variables stating whether bus lines pass through a road network link
or not. In order to model the assignment of passengers in the bus network, in this
study the concept of hyper-network modeling presented by Uchida et al. (2007) is
adopted. Using this approach, the basic bus network is transformed into a modified
bus network. The modified network Ĝ(N̂ , Â) has a subset of road network nodes N̂ to
represent bus stations, and a set of arcs Â to represent its route sections and walking
arcs. A route section is defined by a portion of a route between two consecutive trans-
fer nodes and it is associated with a set of attractive lines. The set of attractive lines
for each route section is obtained by solving the common line minimization problem
(De Cea and Fernández 1993; Uchida et al. 2007). The walking arcs are introduced in
the hyper-network to capture the walking time effect in the model and connect the bus
stops in the modified bus network to origin or destination nodes in the expanded auto
network where candidate new links are included. For ease of illustrating the concept,
this paper assumes that the bus stops are near the heads or tails of arcs. This assump-
tion is not far away from the reality as the bus stops in some cities like West Lafayette
are located very near intersections. Nevertheless, we can add more dummy nodes to
model the location of bus stops for other cases. Also, the walking distance related
to using the auto mode is assumed to be small. We can add more nodes and arcs to
capture walking time if it is not negligible. The following are the notations used in the
model formulation.

3.1 Sets

N : set of network nodes i, j, p, q, p′, q ′
N̂ : set of modified bus network nodes î, ĵ
A: set of existing network arcs (i, j)

A′: set of candidate new network arcs (i, j)
Â: set of modified bus network arcs (î, ĵ)

Ãî ĵ : set of road network arcs which affect the travel time on modified bus network

arc (î, ĵ)
L: set of existing network links l

L ′: set of candidate new network links l ′
Sl : set of arcs related to existing network link l

123



Bi-objective bimodal urban road network design 591

Sl ′ : set of arcs related to candidate new network link l ′
W : set of all OD pairs (p, q)
E : set of bus lines e

Êî ĵ : set of bus lines passing through modified bus network arc (î, ĵ)

Ēî ĵ : set of attractive bus lines passing through modified bus network arc (î, ĵ)
Rpq : set of auto routes r between OD pair (p, q)
R̂pq : set of bus routes r̂ between OD pair (p, q)

3.2 Decision variables

yl : number of lanes added to existing link l
ul ′ : binary variable, which equals 1 if link l ′ is built, and zero otherwise
zi j : binary variable, which equals 1 if arc (i, j) is built or present, and zero otherwise
ki j : number of auto or shared auto-bus lanes allocated to arc (i, j)
ωi j : binary variable, which equals 1 if there is an exclusive bus lane on arc (i, j),

and zero otherwise
X pq

r : auto traffic flow on route r ∈ Rpq (vehicles per hour)
X̂ pq

r̂ : bus passenger flow on route r̂ ∈ R̂pq (passengers per hour)

3.3 Parameters

d̄pq : total travel demand between OD pair (p, q)
B: budget limit for lane addition and link construction projects

ymax
l : maximum allowable number of lanes added to each side of existing link l
Kl : current number of lanes on existing link l
Kl ′ : number of lanes on candidate new link l ′
�i j : binary variable, which equals 1 if arc (i, j) belongs to a bimodal link, and zero

otherwise
δi jr : binary variable, which equals 1 if arc (i, j) is on route r , and zero otherwise
δ̂î ĵ r̂ : binary variable, which equals 1 if arc (î, ĵ) is on route r̂ , and zero otherwise
π : auto occupancy (average number of passengers in one auto)
M : a large positive number
ψ : bus-specific constant, ψ ≥ 0
θ : mode choice parameter, θ ≥ 0
ρi j : auto toll on arc (i, j)
ρ̂î ĵ : fixed bus fare for traveling between îand ĵ

3.4 Functions

xi j : auto traffic flow on arc (i, j) (vehicles per hour)
x̂î ĵ : bus passenger flow on arc (î, ĵ) (passengers per hour)
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x̃î ĵ : the sum of bus passenger flow boarding the lines passing through arc (î, ĵ)

before î and alighting after î and the bus passenger flow boarding at node î
and alighting after ĵ (passengers per hour)

χe
î ĵ

: bus passenger flow of line e on arc (î, ĵ) (passengers per hour)

χ̃e
î ĵ

: bus passenger flow competing line e with the bus passenger flow on arc

(î, ĵ) (passengers per hour)
Tp′q ′ : minimum travel time cost between node pair (p′, q ′) for the auto mode
dpq : auto demand between OD pair (p, q) (passengers per hour)
d̂pq : bus passenger demand between OD pair (p, q) (passengers per hour)

gl(yl): investment cost function for the expansion of existing link l, when yl lanes
are added to both sides of the link

g′
l ′(ul ′): investment cost function for the construction of candidate new link l ′

t1
i j : travel cost function of the auto mode on arc (i, j) in the absence of bus flow

t2
i j : travel cost function of the auto mode on arc (i, j) in the presence of bus flow

t3
i j : travel cost function of the bus mode on arc (i, j) in the absence of auto flow

t4
i j : travel cost function of the bus mode on arc (i, j) in the presence of auto flow

t̂î ĵ : in-vehicle travel cost function for bus passengers on arc (î, ĵ)

τ̂ e
î ĵ

: in-vehicle travel cost function for bus passengers of line e on arc (î, ĵ)

t̃î ĵ : access and waiting time cost function of bus passengers on arc (î, ĵ)
h pq : minimum generalized travel cost of bus passengers between OD pair (p, q)
ĥ pq : minimum generalized travel cost of auto between OD pair (p, q)
Z1: first objective function—consumer surplus or total user benefit
Z2: second objective function—the demand share of the bus mode

3.5 Mathematical model

The problem under study can be formulated as a Mathematical Programming model
with Equilibrium Constraints (MPEC). Although the problem is represented as a
single level model, by nature it is a bi-level model with the upper level problem
depicting the decision making problem of the network authority, and the lower
level problem depicting the network user behavior in choosing travel routes. The
upper level problem is formulated as a bi-objective mixed integer mathematical
model. The lower level problem includes equilibrium constraints expressed as Varia-
tional Inequality (VI) constraints. Mathematically, the problem can be formulated as
follows:

max Z1 = −1

θ

∑

(p,q)∈W

d̄pq ln
(

e−θ ĥ pq + e−θ(h pq−ψ)) (1)

max Z2 =
∑
(p,q)∈W d̂pq

∑
(p,q)∈W d̄pq

(2)
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subject to

∑

l∈L

gl(yl)+
∑

l ′∈L ′
g′

l ′(ul ′) ≤ B (3)

0 ≤ yl ≤ ymax
l ∀l ∈ L (4)

ωi j + ω j i + ki j + k ji = Kl + 2yl ∀l ∈ L , (i, j) ∈ Sl (5)

ki j + ω j i ≥ �i j ∀(i, j) ∈ A ∪ A′ (6)

ki j + ω j i ≥ � j i ∀( j, i) ∈ A ∪ A′ (7)

ωi j ≤ �i j ∀(i, j) ∈ A ∪ A′ (8)

ki j + k ji = Kl ′ul ′ ∀l ′ ∈ L ′, (i, j), ( j, i) ∈ Sl ′ (9)

zi j ≤ ki j ∀(i, j) ∈ A ∪ A′ (10)

ki j ≤ Mzi j ∀(i, j) ∈ A ∪ A′ (11)

ki j ≤ k ji + M(1 − z ji +� j i ) ∀(i, j) ∈ A ∪ A′ (12)

k ji ≤ ki j + M(1 − zi j +�i j ) ∀(i, j) ∈ A ∪ A′ (13)

zi j + z ji ≥ 1 ∀(i, j) ∈ A (14)

zi j + z ji ≥ ul ′ ∀l ′ ∈ L ′, (i, j), ( j, i) ∈ Sl ′ (15)

zi j + z ji ≤ Mul ′ ∀l ′ ∈ L ′, (i, j), ( j, i) ∈ Sl ′ (16)

Tp′q ′ ≤ M ∀p′, q ′ ∈ N (17)

ki j , yl ≥ 0, are integers ∀(i, j) ∈ A ∪ A′, l ∈ L (18)

zi j , ωi j , ul ′ ∈ {0, 1} ∀ (i, j) ∈ A ∪ A′, l ′ ∈ L ′ (19)
∑

(i, j)∈A∪A′

[
(1 −�i j + ωi j )

(
t1
i j + ρi j

) (
xi j − x∗

i j

)

+(�i j − ωi j )
(

t2
i j + ρi j

)
(xi j − x∗

i j )
]

+
∑

(î, ĵ)∈ Â

(t̂î ĵ + t̃î ĵ + ρ̂î ĵ )(x̂î ĵ − x̂∗
î ĵ
)

−
∑

(p,q)∈Ŵ

(
1

θ
ln

d̂∗
pq

d̄pq − d̂∗
pq

+ ψ

)
· (d̂pq − d̂∗

pq) ≥ 0 ∀xi j , x̂î ĵ , d̂pq ∈ � (20)

�=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi j , x̂î ĵ , d̂pq |d̄pq = dpq + d̂pq ∀(p, q) ∈ W ; dpq = π
∑

r∈Rpq
X pq

r ∀(p, q) ∈ W ;
xi j = ∑

(p,q)∈W
∑

r∈Rpq
X pq

r δi jr ∀(i, j)∈ A ∪ A′; d̂pq =∑
r̂∈R̂pq

X̂ pq
r̂ ∀(p, q)∈ Ŵ ;

x̂î ĵ = ∑
(p,q)∈W

∑
r̂∈R̂pq

X̂ pq
r̂ δ̂î ĵ r̂ ∀(î, ĵ) ∈ Â; xi j ≤ Mzi j ∀(i, j) ∈ A ∪ A′;

d̂pq = 0 ∀(p, q) ∈ W\Ŵ ; 0 ≤ d̂pq ≤ d̄pq ∀(p, q)∈ Ŵ ; 0≤dpq ≤ d̄pq∀(p, q)∈W ;
X pq

r , X̂ pq
r̂ ≥ 0 ∀r ∈ Rpq , r̂ ∈ R̂pq ; Ŵ =

{
(p, q)|∃r̂ ∈ R̂pq , X̂ pq

r̂ > 0
}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

Expression (1) depicts the first objective of the problem, which is to maximize the
users’ benefit or the consumer surplus, assuming that the logit model is used for modal
split. The parameters of the expression are explained later in Sect. 3.6. Expression (2)
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depicts the second objective of the problem, which is to maximize the demand share
of the bus mode in the network.

Constraint (3) imposes a budget limit to the total cost of lane addition and link con-
struction. Constraint (4) limits the number of lanes added to existing network links.
Constraint (5) ensures that the total number of lanes on all arcs of an existing link
equals the number of lanes on that link. Constraints (6)–(7) assure the connectivity
of bus routes through the arcs of bimodal links; that is, for each arc, there must be
an exclusive bus lane or at least one shared auto-bus lane to guarantee that the bus
routes do not become disconnected. Note that an additional constraint could be used to
restrict some sequences of links (i.e., corridors) to have similar designs in terms of the
existence or non-existence of exclusive bus lanes, for example; but here, it is preferred
to consider the problem in the general form. Constraint (8) allows the allocation of
exclusive bus lanes only when the bus mode is present. Constraint (9) is similar to
constraint (5) but is for new links. Note that we assume that bus routes are fixed and
buses do not use new links. Constraints (10)–(11) assure that no capacity is assigned to
non-existing arcs. Constraints (12)–(13) imply that two-way auto links must be sym-
metric in terms of lane allocation for each arc of the link. In this paper, no restriction
is imposed on the lane allocation of bimodal links, in order to provide more flexibility
in designing links to achieve the two objectives. Constraint (14) assures that at least
one arc is present for each existing link. Constraints (15)–(16) ensure that at least one
arc is built for each new link. Constraint (17) requires that the minimum travel time
cost between each pair of nodes is less than a very large value. This constraint ensures
the strong connectivity of the network; i.e., the constraint ensures that a route exists
between every pair of nodes. Constraints (18)–(19) impose conditions to variables’
domains.

Constraints (20)–(21) present the variational inequality formulations of the com-
bined modal-split/assignment problem as the lower level problem, which determines
the deterministic user equilibrium auto flows x∗

i j , bus passenger flows x̂∗
î ĵ

, and travel

demands d∗
pq and d̂∗

pq for the auto and bus modes respectively through determining
path flows. Since the travel times of the auto and bus modes are interdependent and
the effect of one mode on another is not symmetric, the problem cannot be formulated
as an equivalent minimization program (e.g., Dafermos 1972; Abdulaal and LeBlanc
1979; Sheffi 1985). However, the problem can be stated as the finite-dimensional vari-
ational inequality (20) in terms of arc flows, subject to constraint set (21). Note that the
bus passenger demand of an OD pair can only have a non-negative value when at least
one bus route exists between that OD pair; i.e., only the travel demand between OD
pairs with bus routes can use the bus mode, and for other OD pairs, no bus passenger
demand exists. An additional OD pair set Ŵ is defined in (21) to consider the set of
OD pairs with at least one bus route between them. OD pairs not belonging to this set
are imposed to have zero bus demand values.

3.6 Modal split and travel cost functions

The travel demand for the bus and auto modes for each OD pair is defined by the
logit formula, which is widely used as a mode split function. The demand for the bus
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service is obtained by:

d̂pq = d pq
1

1 + eθ(h pq−ĥ pq−ψ) (22)

where h pq and ĥ pq are the minimum generalized travel costs of bus passengers and
autos for OD pair (p, q).ψ is the bus-specific constant, and θ is another parameter of
the logit modal split function. h pq and ĥ pq are obtained using the following relations:

h pq =
∑

(i, j)∈A∪A′
σpqi j

[
(1 −�i j + ωi j )t

1
i j + (�i j − ωi j )t

2
i j + ρi j

]
(23)

ĥ pq =
∑

(î, ĵ)∈ Â

σ̂pqî ĵ (t̂î ĵ + t̃î ĵ + ρ̂î ĵ ) (24)

where σpqi j and σ̂pqî ĵ are equal to 1 if arcs (i, j) and (î, ĵ) are respectively on the
shortest auto path and shortest hyperpath connecting OD pair (p, q) and are equal
to zeros otherwise. Since bus and auto flows are assumed to be interdependent to
each other, different travel cost functions for road network links under various cases
are formulated for each mode. As stated in the assumptions, only the travel costs of
passing the streets are modeled and the intersection crossing travel costs are ignored.
Note that the travel costs for autos are defined on a per auto basis and the travel costs
for buses are defined on a per passenger basis. The travel cost functions are described
below:

• The travel cost function for autos on arcs of auto links or bimodal links with exclu-
sive bus lanes is defined by the well-known BPR function (see Szeto and Lo 2005,
2006, 2008; Szeto et al. 2010) and the value of in-vehicle travel time V OTt . The
travel cost function for arc (i, j) is expressed as follows:

t1
i j = t0

i j

(
1 + α

(
xi j

ci j (ki j )

)β)
V OTt (25)

where α and β are parameters. ci j (ki j ) is the capacity of arc (i, j)which is assumed
to be dependent only on ki j , and t0

i j is the free flow travel time of automobiles on
arc (i, j) in minutes.

• The travel cost function of autos on bimodal links with shared auto-bus lanes
is defined by Eq. (24) (see Uchida et al. 2007 for the corresponding travel time
function):

t2
i j = t0

i j

⎛

⎝1 + α

(
μ f i j + xi j

ci j (ki j )

)β⎞

⎠ V OTt (26)

where μ is a parameter to convert bus flow into equivalent auto flow in terms of
their impact on road congestion. f̄i j is the total frequency of buses on arc (i, j).
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i.e., it is the number of buses passing through arc (i, j) per hour, which is computed
by f̄i j = ∑

e∈E λ
e
i j fe, where fe is the frequency of bus line e; λe

i j is the binary
variable, which equals 1 if bus line e passes through arc (i, j) and equals zero
otherwise. Unlike (25), the flow used in (26) consists of the auto flow xi j and a
fixed bus flow μ f i j . The bus flow is fixed as buses operate on fixed routes at fixed
frequencies.

• The travel cost function of bus passengers where the buses travel on exclusive lanes
is represented by Eq. (27):

t3
i j = t̂ 0

i j

⎛

⎝1 + α

(
μ f i j

ci j (1)

)β⎞

⎠ V OTt (27)

where t̂0
i j is the free flow travel time for buses traveling on arc (i, j), and ci j (1)

is the capacity of an exclusive bus lane, which is equal to the capacity of a single
lane on arc (i, j). Equation 27 is a special case of Eq. (26). Since the total bus
frequency is fixed, the travel cost function has a constant value.

• The travel cost function of bus passengers on arcs of bimodal links without exclu-
sive bus lanes is defined as follows:

t4
i j = t̂ 0

i j

⎛

⎝1 + α

(
μ f i j + xi j

ci j (ki j )

)β⎞

⎠ V OTt (28)

The modified bus network requires specific cost functions for its arcs. Each arc is
associated with an in-vehicle travel cost, an access and waiting time cost, and fare. The
in-vehicle travel cost function determines the modified travel cost that captures the
effect of in-vehicle congestion. This is done by incorporating the in-vehicle congestion
effect into the in-vehicle travel cost on the modified bus network arcs. In this study, the
function proposed by Uchida et al. (2007) for in-vehicle travel time is adopted. This
function incorporates the values of in-vehicle travel time and waiting time to obtain
the modified in-vehicle travel cost:

τ e
î ĵ

=
⎡

⎢⎣
∑

(i, j)∈ Ãî ĵ

ωi j t
3
i j + (1 − ωi j )t

4
i j

⎤

⎥⎦

⎡

⎢⎣1 + α̂

(
χe

î ĵ
+ χ̃e

î ĵ

fene

)β̂
⎤

⎥⎦ (29)

where α̂ and β̂ are the parameters of the function, and ne is the passenger capacity
of buses of line e. The first squared bracket term is the in-vehicle travel cost on arc
(î, ĵ). The second squared bracket term is a BPR type function that considers the
effect of in-vehicle congestion due to the total number of passengers who compete for
the capacity of line e, χ̃e

î ĵ
with the bus passenger flow of that line on arc (î, ĵ), χe

î ĵ
.

The in-vehicle travel cost on arc (î, ĵ) is obtained by finding the average value of the
corresponding modified in-vehicle travel costs on bus lines using that arc as follows
(Uchida et al. 2007):
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t̂î ĵ =
∑

e∈Ēî ĵ
τ e

î ĵ
fe

∑
e∈Ēî ĵ

fe
(30)

The line passenger flow is obtained using the following relation (De Cea and Fernández
1993):

χe
î ĵ

= x̂î ĵ

fe∑
e∈Ēî ĵ

fe
(31)

The access and waiting time costs associated with arc (î, ĵ) is defined as:

t̃î ĵ = t̄î · V OTa + 60∑
e∈Ēî ĵ

fe
V OTw + α′

⎛

⎝
x̂î ĵ + x̃î ĵ∑
e∈Ēî ĵ

fene

⎞

⎠
β′

V OTw (32)

where α′ and β ′ are the parameters of the function. V OTa is the value of walking time,
and V OTw is the value of (extra) waiting time. The first term is the average walking
time cost to the bus station at node î . The second term denotes the expected waiting
time cost, assuming a uniform arrival distribution for passengers and an exponential
headway distribution for buses as in Uchida et al. (2007). Like De Cea and Fernández
(1993), Gao et al. (2004), Uchida et al. (2007), and Szeto et al. (2011), the last term
denotes the extra waiting time cost due to the insufficient capacity of bus lines pass-
ing through arc (î, ĵ) (or in-vehicle congestion). Because of the insufficient capacity,
passengers may not be able to board the first arriving bus and hence their waiting time
cost increases. This extra waiting time cost is modeled by a power function.

The set of attractive lines Ēî ĵ for each arc (î, ĵ) is obtained by the following math-
ematical model (De Cea and Fernández 1993):

min{υ î ĵ
e }

1 + ∑
e∈Êî ĵ

τ e
î ĵ

feυ
î ĵ
e

∑
e∈Êî ĵ

feυ
î ĵ
e

(33)

subject to

υ
î ĵ
e ∈ {1, 0} ,

∑

e∈Êî ĵ

υ
î ĵ
e ≥ 1 (34)

whereυ î ĵ
e is the binary variable which defines the set of selected lines as attractive lines.

4 Solution procedures for the problem

Bi-level programming problems are indeed NP-hard problems. Ben-Ayed et al. (1988)
showed that even a simple linear bi-level programming problem is still NP-hard. Many
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bi-level programming problems are non-convex, and even when both upper and lower
level problems are convex, there is no guarantee for the whole bi-level problems to
be convex. Although Branch and Bound algorithms can be applied to solve for global
optimal solutions to small-size bi-level problems, they are not able to solve real size
problems. In recent years, there has been an increasing interest in solving UTNDPs by
metaheuristic algorithms and especially their hybrid versions (e.g., Drezner and Salhi
2002; Poorzahedy and Rouhani 2007; Cantarella et al. 2006). The use of metaheuris-
tic algorithms for solving other types of transportation related problems has also been
among the subjects of interest (e.g., Reimann and Ulrich 2006; Sörensen 2006; Matis
and Koháni 2010).

In our previous work (Miandoabchi et al. 2010), three hybrid multi-objective meta-
heuristics were proposed: a hybrid of genetic algorithm and simulated annealing, an
evolutionary simulated annealing, and a hybrid of artificial bee colony algorithm and
simulated annealing. All these algorithms used the adaptive weight approach to cal-
culate the fitness values to solve the multi-objective single modal design problem.

In this paper, three hybrid multi-objective population-based metaheuristic algo-
rithms are proposed to solve the bimodal problem: A multi-objective Hybrid Genetic
Algorithm (mHGA), a new multi-objective Hybrid Particle Swarm Optimization
(mHPSO) algorithm, and a new multi-objective Hybrid Harmony Search (mHHS)
algorithm. All of them are hybridized with Simulated Annealing (SA), and adopted
a distance-based fitness value calculation method to deal with the multi-objectivity
of the problem. Indeed, mHHS and mHPSO have never been applied to solve urban
transportation network design problems before. In the following, we proceed with the
common attributes and the general characteristics of the algorithms and then describe
each algorithm in detail.

4.1 Similarities of the proposed algorithms

All proposed algorithms are similar in terms of solution encoding, Pareto-optimal set
generation, calculation of fitness values, checking for strong connectivity, and initial
population generation.

4.1.1 Pareto-optimal set generation

Like many multi-objective metaheuristics, a set of Pareto-optimal solutions is defined
to maintain the list of non-dominated solutions in the algorithms. A solution is added
to the set after being checked for non-dominance by other solutions in the set and the
dominated solutions are omitted from the set if necessary. The non-dominance of the
new solution O ′ is verified by checking whether no solution in the set dominates O ′,
where the solution Os in the set is said to dominate O ′ if Zi (Os) ≥ Zi (O ′), i = 1, 2
and Zi (Os) > Zi (O ′) for at least one objective. If no solution in the set is found
to dominate O ′, then O ′ is considered as a Pareto-optimal solution. As will be de-
scribed later, in the developed algorithms every newly generated solution is checked for
Pareto-optimality.
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4.1.2 Calculation of fitness values

As pointed out earlier, the fitness values are defined using the rankings obtained by
the distance-based fitness calculation method. This method was proposed by Osyczka
and Kundu (1995), and used by Chen et al. (2006) for a multi-objective CNDP. The
method works with the relative distance between a generated solution and the mem-
bers of the Pareto-optimal set. According to Chen et al. (2006), the basic idea is to
assign a fitness value to each solution according to the distance measure with refer-
ence to the existing non-dominated solutions obtained in the previous generation, and
a higher fitness value is assigned to a solution if it is farther away from the existing
non-dominated solution set.

Each solution is given a fitness value and an additional value called the potential
value. The latter is used for calculating fitness values of the new solutions, where the
fitness values are determined based on calculating the relative distances of the new
solutions to the nearest Pareto-optimal solutions obtained in the last generation, the
potential values of these Pareto-optimal solutions, and the maximum potential values
Pmax as shown later.

The first generated solution of the algorithm is taken as a solution of the Pareto-
optimal set with the potential value equal to the parameter d1 (where its proper value
is determined by tuning) and the fitness value of this solution equal to its potential
value.

For each new solution O ′, the following procedure is repeated to compute its fitness
value F and potential value:

• Calculate the relative distance to each existing member Os of the Pareto-optimal
set:

ds(O
′) =

√(
Z1(O ′)− Z1(Os)

Z1(O ′)

)2

+
(

Z2(O ′)− Z2(Os)

Z2(O ′)

)2

(35)

• Find the minimum value of all relative distances:

ds∗(O ′) = min
{
ds(O

′)
}

(36)

where s∗ is the nearest Pareto-optimal set member to the solution O ′.
• If O ′ is a new non-dominated solution which dominates at least one of the existing

Pareto-optimal set members, calculate the fitness value of O ′:

F = Pmax + ds∗(O ′) (37)

Update the Pareto-optimal set, set Pmax = F , and set the potential value of O ′ to
be F .

• If O ′ is a new non-dominated solution but does not dominate any existing member
in the Pareto-optimal set, calculate its fitness value of O ′:

F = Ps∗ + ds∗(O ′) (38)
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Add the new solution to the Pareto solution set with the potential value of O ′ equal
to F . If

F > Pmax then set Pmax = F.

• If O ′ is not a new Pareto-optimal solution, calculate its fitness value as follows:

F = Ps∗ − ds∗(O ′) (39)

If F < 0, then set F = 0 (The fitness value must be non-negative).

The values for the objective functions Z1 and Z2 are respectively calculated from
the minimum generalized travel costs and the demand share to the bus mode for each
OD pair that are obtained by solving the lower level combined modal-split/assignment
problem (20)–(21) using the following procedure:

1. Set all the υ î ĵ
e values to 1.

2. Based on the values of υ î ĵ
e , solve VI (20)–(21) to obtain τ ∗e

î ĵ
, i.e., the optimal value

for τ e
î ĵ

.

3. Based on the values of τ ∗e
î ĵ

, solve problem (33)–(34) to find υ∗î ĵ
e .

4. If υ∗î ĵ
e = υ

î ĵ
e , stop. Otherwise, set υ î ĵ

e = υ
∗î ĵ
e . Go to step 2.

In step 2, the VI is solved using the “diagonalization algorithm” which is widely
used as the solution technique of traffic assignment problems (e.g., Sheffi 1985, p. 223).
The method consists of iteratively solving a series of equilibrium sub-problems. For
each iteration of the diagonalization algorithm, the sub-problem with the following
objective function to be solved subject to constraint set (21) (see Sheffi 1985, p. 239):

Min z =
∑

(i, j)∈A∪A′

xi j∫

0

[
(1 −�i j + ωi j )t

1
i j (w)+ (�i j − ωi j )t

2
i j (w)+ ρi j

]
dw

+
∑

(î, ĵ)∈ Â

x̂î ĵ∫

0

[
t̂î ĵ (w)+ t̃î ĵ (w)+ρ̂î ĵ

]
dw+

∑

(p,q)∈W

d̂pq∫

0

(
1

θ
ln

w

d̄pq −w+ψ
)

dw

(40)

4.1.3 Checking for strong connectivity

The strong connectivity of a road network is checked in two stages. At the first stage,
all nodes are checked to have at least one outgoing and one incoming lane which acts
as the necessary condition for the network strong connectivity. If the necessary con-
dition holds, it is attempted to find the shortest paths between all OD pairs. If at least
one OD pair is disconnected, i.e., no shortest path can be found between them, the
created network is rejected. If the necessary condition does not hold, then the network
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is rejected without the need of using any shortest path algorithm for checking. This
procedure helps to avoid the unnecessary use of time-consuming shortest path algo-
rithm especially for medium and large sized networks. Here, Dijkstra’s shortest path
algorithm is applied to find the shortest path between each node for the road network.
Another type of strong connectivity needs to be considered, which is the connectivity
of bus routes as stated earlier, to guarantee the back and forth movement of buses on
the same routes.

4.1.4 Initial population generation

Initial population members are constructed randomly based on a heuristic procedure.
First, the possible lane addition or link construction projects are randomly selected,
until the construction cost reaches the budget limit. Then, the added lanes and existing
lanes are randomly allocated to each arc taking into account two issues: (1) to generate
as fewer disconnected networks as possible, and (2) to maintain the connectivity of bus
routes. In order to reduce the possibility of generating disconnected networks, at the
beginning, lanes are allocated in such a way that each node has at least one outgoing
lane and one incoming lane. This is straightforward for auto links, but in the case of
bimodal links, we must decide whether to allocate exclusive bus lanes or not, taking
into account the connectivity of bus routes. For this purpose, exclusive bus lanes or
shared auto-bus lanes are checked and added to each arc of those links if necessary.
Depending on the number of remaining lanes to be allocated to a bimodal link and the
current lane configuration of its arcs, several alternatives may exist for this link (e.g.,
1 exclusive bus lane on each side, or 1 exclusive bus lane on one arc and 1 shared
auto-bus lane on the other arc, or 1 shared auto-bus lane on each side). Then, one
alternative is randomly chosen among all possible alternatives. Next, the remaining
lanes are randomly allocated to the network. Any disconnected network generated is
discarded and the procedure is repeated.

4.2 Comparison of the proposed algorithms

To provide an overall view to the developed algorithms, and to show their similarities
and differences between these algorithms clearly, their general structural characteris-
tics are compared in Table 1. The details will be described later.

4.3 Multi-objective hybrid genetic algorithm

Genetic algorithm is a population-based metaheuristic inspired by the genetic evolu-
tion process of species in the nature, which was first introduced by Holland (1975).
GA has been successfully applied in the network design problems (e.g., Yin 2000,
2002; Drezner and Salhi 2002; Drezner and Wesolowsky 2003; Cantarella et al. 2006;
Cantarella and Vitetta 2006; Chen et al. 2006, 2010a,b). The algorithm proposed here
is a multi-objective hybrid version of GA and SA adopted from our previous work
(Miandoabchi et al. 2010). This is adopted in this paper, since it outperformed the
other two algorithms in our previous work. The algorithm used here differs from the
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Table 1 Comparison of the developed algorithms

Algorithm Number of
iterations

Solution generation method Evolution strategy

mHGA G generations Selecting two parents, applying
crossover, and applying SA on some
of the offspring solutions

Replacing a number of
population solutions with
offspring solutions

mHPSO T iterations Iteratively selecting each population
solution, updating it using the PSO
solution update mechanism, and
applying SA

Replacing the selected
solution with its updated
and improved solution

mHHS T iterations Generating a new solution using either
elements of population solutions or
randomization, and applying SA

Replacing the worst
population solution with the
newly generated one

original version in some parts. For example, the proposed algorithm applies a different
fitness value calculation method, and includes additional considerations related to the
bus mode decisions. The whole procedure of the algorithm is presented below and the
details are described later.

Phase 1: Generate a population of P solutions, compute their fitness values, and
build the Pareto-optimal set from the initial population.

Phase 2: Repeat the following procedure for G generations:
– Select a pair of parent solutions:

◦ Select the first parent from the population applying the roulette wheel
rule.

◦ Select the second parent randomly from the Pareto-optimal set.
– Merge the selected parents through a merging process to produce an

offspring set.
– Check the connectivity of each offspring solution and discard the solu-

tion if the network is disconnected.
– Check the budget feasibility of each offspring solution and apply the

budget reduction sub-routine if needed. If the infeasible solution cannot
be repaired, then discard the offspring solution.

– Update the Pareto-optimal set and compute the fitness value for each
offspring solution.

– Replace the population solutions using the evolution mechanism:
◦ Select the population solutions to be eliminated and the offspring

solutions to be inserted into the population.
◦ Apply SA on the k best offspring solutions selected, where k is a

parameter, and update the population.

4.3.1 Solution encoding

The solutions are encoded as matrix chromosomes which represent the complete con-
figuration of lane allocations in the network. Chromosomes are denoted as 4-rows
matrices, in which columns correspond to network links and rows correspond to their
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Fig. 2 Representation of a typical network

1 2 3 4 5 6 7 8 9 10 11 12 13

k ij 2 1 0 1 1 1 2 3 1 2 2 0 0

k ji 0 2 2 1 1 1 1 0 1 2 0 0 0

ij 1 0 0 0 1 0 0 0 0 0 1 0 0

ji 1 1 0 0 1 0 1 1 0 0 1 0 0

ω
ω

Fig. 3 Lane allocations matrix

lane allocations. The length of each chromosome is equal to L + L ′, the total number
of existing and candidate links. The first two rows of the chromosome denote the
allocation of auto or shared auto-bus lanes to arcs (i, j) and (i, j) of link l or l ′, and
the last two rows denote the allocation of exclusive bus lanes.

Figure 2 illustrates a typical 8-node and 11-link network, and Fig. 3 depicts its
chromosome representation. The two dashed and dotted lines connecting nodes 3 and
7, and nodes 7 and 5 are the possible candidate links, which are not decided to be
constructed in this network design scenario. Thus the chromosome representation will
have 13 columns. All links consist of two or four lanes. Solid arrows represent the
auto or shared auto-bus lanes, and dashed arrows represent exclusive bus lanes. One-
head solid arrows denote one-way streets and two-head solid arrows denote two-way
streets. One-head dashed arrows indicate the presence of exclusive bus lanes in the
indicated direction, and two-head dashed arrows indicate the presence of two exclu-
sive bus lanes, one for each direction. Two bus lines operate on the network: bus line
1 which operates on links 1–2, 2–5, and 5–8, and bus line 2 which operates on links
1–3, 3–6, 6–7, 7–4, and 4–5.

4.3.2 Crossover operator

The crossover operator used here is taken from Miandoabchi et al. (2010), which is
similar to the version used in Drezner and Wesolowsky (1997, 2003) that can exploit
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the structure of the problem. The crossover operator combines solutions in a way that
the set of links taken from each network forms a connected set. Such a connected set
is built using a “pivot” node. For a pivot node, a count is calculated for each link of
the network. Count 1 is given to the links that are directly connected to the pivot node.
Count 2 is given to the links which are connected to the links with count 1 and so on.
Next, the median of all links is computed. Links with their counts below (above) the
median are selected from the first (second) parent, and links with their counts equal to
the median are taken randomly from one parent. Note that in the original version of
the crossover operator in Drezner and Wesolowsky (1997, 2003), a link with its count
equal to the median can be taken independently from either parents, but in this paper
the whole set of such links are randomly taken from only one parent. The reason of
using this new rule is to decrease the possibility of having disconnected solutions by
limiting such links to be chosen from a single parent. After producing an offspring
solution using the above method, the directions of one-way links with counts above
the median are reversed to obtain a second offspring solution.

Each obtained offspring solution is examined for feasibility. If the solution is infea-
sible in terms of the connectivity of the network or the connectivity of the bus routes,
the solution is discarded. Then the solution is checked for total construction cost and
if the solution violates the budget limit, a budget reduction sub-routine is applied to
repair the infeasible solution with main steps similar to the one used in Miandoabchi
et al. (2010):

• Check every possible swap of lane addition or link construction projects; i.e.,
omission of an existing project and inclusion of another project.

• If there is at least one feasible swap after considering the budget limit and the
network connectivity, select and apply a random swap.

• If there is no feasible swap, then check whether there are feasible omissions of the
current projects in the solution.

• If there is at least one feasible omission in terms of network connectivity, then repeat
the following step until the budget limit is not violated or the network becomes
disconnected:
◦ Select the maximum cost project and omit it.
◦ If the omitted project belongs to an existing link, reallocate the lanes to main-

tain the previous arc directions, and in case of bimodal links, maintain the bus
route connectivity too.

◦ If the network becomes disconnected, then stop and report infeasibility.

4.3.3 Embedded SA algorithm

A short version of Simulated Annealing (SA) algorithm is applied on some of offspring
solutions as is used in Miandoabchi et al. (2010) with some differences in defining
random changes in lane allocation. This approach offers two advantages: First, it can
substitute a mutation operator since it provides a series of random perturbations to
the selected offspring solution. Second, it explores the neighborhood of the produced
offspring solution in the hope of finding better solutions in the unexplored solution
space. Because of the high computational requirements for large or even medium sized
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problems, the SA algorithm is applied on a proportion of offspring solutions rather
than all of them. The algorithm has the following characteristics:

• One iteration is performed per temperature.
• A random solution is generated by iteratively selecting each link and randomly

deciding whether to apply a random change on its lane allocation or not.
Changing the allocation of lanes may lead to a disconnected network in two ways:
First, a link has zero outgoing lanes from or incoming lanes to the nodes. Second,
no path connects between some pairs of nodes even when the first case does not
occur. The second case is not easily predictable, but the first case can be avoided
using special feasibility constraints. These constraints are used to find the best pos-
sible alternatives for lane allocation. Moreover, for bimodal links, the connectivity
of bus routes must be taken into account.

• The feasibility constraints for an auto link is defined as follows:

ki j +
∑

p∈Φi ,p �= j

k′
i p ≥ 1 (41)

k ji +
∑

p∈Φi ,p �= j

k′
pi ≥ 1 (42)

ki j +
∑

p∈Φ j ,p �=i

k′
pj ≥ 1 (43)

k ji +
∑

p∈Φ j ,p �=i

k′
j p ≥ 1 (44)

ki j + k ji = k′
i j + k′

j i (45)

where k′
i j , k′

j i , k′
i p, k′

pi , k′
j p, and k′

pi are the current values of the related lane allo-
cation, and ki j and k ji are the lane allocation variables for link (i, j) (i.e., for arcs
(i, j) and ( j, i), respectively). Φi and Φ j are correspondingly the sets of adjacent
nodes to nodes i and j . The second terms in (40) and (43) calculate the total num-
ber of outgoing lanes to nodes i and j except the lanes of arcs (i, j) and ( j, i),
respectively. Similarly, the second terms in (41) and (42) calculate the total number
of incoming lanes to nodes i and j except the lanes of arcs (i, j) or ( j, i), respec-
tively. The inequality pair (40)–(41) ensures that there are at least one outgoing
lane from and one incoming lane to node i whereas the inequality pair (42)–(43)
ensure that there are at least one outgoing lane from and one incoming lane to node
j . Equation (44) is the lane allocation constraint, which ensures that the numbers
of lanes before and after alteration are the same. Indeed, there are two alternatives
for changing the lane allocation of each auto link. For a two-way auto link, the
two alternatives are: (1) ki j = 0, k ji = k′

i j + k′
j i and (2) ki j = k′

i j + k′
j i , k ji = 0.

For a one-way auto link, one alternative is to change the direction of traffic flow
completely (i.e., ki j = 0, k ji = k′

i j + k′
j i ) and the second alternative is to change

the one-way link to a two-way link (i.e., ki j = k ji = (k′
i j + k′

j i )/2). For each alter-
native, the feasibility is checked via the constraint set (40)–(43) and any infeasible
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alternative is omitted. Next, if more than one alternative remains, one alternative
is chosen randomly; otherwise the remaining single alternative is chosen.

• In order to take into account the connectivity of bus routes on a bimodal link, the
feasibility constraints (40)–(44) are modified through replacing ki j by k1i j + k2i j ,
where the first term is the binary variable called “minimum required lanes” which
indicates the minimum number of lanes required to maintain the connectivity of
bus routes passing through, and the second term denotes the remaining number of
lanes on arc (i, j). The value of k1i j depends on the presence or absence of exclu-
sive bus lanes on the arc; k1i j equals 0 if an exclusive bus lane is allocated, and
equals 1 otherwise. Constraints (51)–(52) are added to consider this relation. In
fact, they adopt the same concept as in constraints (6)–(7). The revised feasibility
constraints for a bimodal link are formulated as follows:

k1i j + k2i j +
∑

p∈Φi ,p �= j

k′
i p ≥ 1 (46)

k1 j i + k2 j i +
∑

p∈Φi ,p �= j

k′
pi ≥ 1 (47)

k1i j + k2i j +
∑

p∈Φ j ,p �=i

k′
pj ≥ 1 (48)

k1 j i + k2 j i +
∑

p∈Φ j ,p �=i

k′
j p ≥ 1 (49)

k1i j + k2i j + k1 j i + k2 j i + ωi j + ω j i = k′
i j + k′

j i + ω′
i j + ω′

j i (50)

k1i j + ωi j = 1 (51)

k1 j i + ω j i = 1 (52)

where ω′
i j and ω′

j i are the current values of the decision variables for exclusive
bus lanes, and ωi j and ω j i are the exclusive lane allocation variables. Constraints
(51)–(52) indicate the relation between minimum required lanes and exclusive bus
lanes. Since k1i j , k1 j i , ωi j and ω j i are binary, one can easily select random binary
values satisfying constraints (51) and (52) for these variables. For bimodal links
with only two lanes, random lane allocation ends at this point. For other bimodal
links, there may be several possible alternatives for k2i j and k2 j i . A feasibility
interval for k2i j can be defined by using the remaining reduced set of constraints.
The lower bound L Bi j and the upper bound U Bi j of the feasibility interval for k2i j

are as follows:

L Bi j = max

⎧
⎪⎨

⎪⎩
0,max

⎧
⎪⎨

⎪⎩
1 −

∑

p∈Φ j ,p �=i

k′
pj − k1i j , 1 −

∑

p∈Φi ,p �= j

k′
i p − k1i j

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
(53)

U Bi j =min

⎧
⎪⎨

⎪⎩
k′

i j +k′
j i +ω′

i j +ω′
j i − 2,min

⎧
⎪⎨

⎪⎩

k′
i j +k′

j i +ω′
i j +ω′

j i − 3 + ∑
p∈Φ j ,p �=i

k′
j p +k1 j i ,

k′
i j +k′

j i +ω′
i j +ω′

j i − 3+ ∑
p∈Φi ,p �= j

k′
pi −k1 j i

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

(54)
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It suffices to choose a random non-negative integer value for k2i j from the interval,
and then to obtain the value of k2 j i by solving Eq. (50).

The new solution generation procedure can be summarized as below. The following
steps are repeated for each link (i, j) in the solution:

• Randomly decide to change the lane allocation of the link.
• If the link is an “auto link”:

◦ Define the lane allocation alternatives of the link using Eq. (44).
◦ Check the feasibility of defined alternatives using conditions (40)–(43).
◦ Choose one of the possible alternatives randomly.

• If the link is a “bimodal link”:
◦ Choose random binary values for k1i j and k1 j i , and then obtain ωi j and ω j i

using conditions (51)–(52).
◦ Define the lower bound and upper bound for k2i j using conditions (53)–(54).
◦ Choose a random value for k2i j from the feasibility interval, and then assign

the number of remaining lanes to k2 j i .

Any solution resulting in a disconnected network is discarded and the procedure
is repeated again. The Pareto-optimal set is updated whenever a random solution is
generated.

4.3.4 Evolution mechanism

The evolution process is undertaken by replacing some of the population solutions
with the generated offspring solutions with higher fitness values as in Miandoabchi
et al. (2010). The process is as follows:

– Find the set of population solutions that are worse than at least one offspring
solution and denote the set by S′.

– If |S′| ≥ |S0|, where S0 is the set of offspring solutions, then apply SA on a pro-
portion of solutions in S0, update S0, and replace |S0| worst population solutions
with all members of S0.

– If |S′| < |S0|, then apply SA on a proportion of |S′| best offspring solutions and
replace |S′| worst population solutions with |S′| best offspring solutions.

4.4 Multi-objective hybrid particle swarm optimization

Particle Swarm Optimization is a nature inspired evolutionary metaheuristic that sim-
ulates the social behavior of bird flocking and fish schooling. The term swarm in
the algorithm stands for the population of birds or fishes searching for food sources
and particle represents each individual bird or fish. Particles explore the environment
by following the most successful particle in finding food sources, and by using their
own previous experiences. Thus, PSO is a population-based metaheuristic in which
the particles (i.e., solutions) in a swarm (i.e., population of solutions) are constantly
updated during the solution process. Each element of a particle has a constantly updated
velocity value which defines the direction and the extent of change in the value of the
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corresponding decision variable (see Kennedy and Eberhart 2001; Clerc 2006). Veloc-
ity is the summation of three terms: “inertia” based on the current velocity value of
the element, “personal influence” based on the solution element of particle’s own best
experienced solution so far called local best (pbest), and “social influence” based on
the solution element of the best particle found in the population during the search
process called global best (gbest).

PSO was first developed by Kennedy and Eberhart (1995), and since then it has
been used in solving various problems. The algorithm was originally designed for prob-
lems with continuous variables and thus the continuous version is mostly applied in
researches, while the discrete version has recently been under focus in some researches.
A continuous version of PSO for the CNDP has been previously developed in Zhang
and Gao (2007). In this paper, a multi-objective discrete version of PSO hybridized
with SA is proposed, in which SA is applied on each particle after the update phase. The
overall procedure of the algorithm is presented below and the details are explained later.

Phase 1: Generate a population of P solutions, compute their fitness values, and
build the Pareto-optimal set from the initial population.

Phase 2: Repeat the following procedure for T iterations:
– For each solution in population, repeat the following:

◦ Update the solution using the particle update mechanism.
◦ Check the connectivity of the solution and discard the solution if the

network is disconnected.
◦ Check the budget feasibility of the solution and apply the budget

reduction sub-routine if needed. If the infeasible solution cannot be
repaired, then discard the solution.

◦ Update the Pareto-optimal set and compute the fitness value.
◦ Apply SA on the updated solution.
◦ Decrease the inertia weight, and update pbest and gbest if required.

The solution encoding, fitness value calculation and initial population generation
procedures are the same as those in mHGA. Here, a short version of SA is applied
on the updated solution in order to explore the problem space in the vicinity of the
generated solution, in the hope of finding better solutions. The embedded SA is similar
to the one used in mHGA.

4.4.1 Particle update mechanism

As described earlier, the particle update mechanism consecutively updates each ele-
ment of the solution until all solution elements are updated. Here the solution elements
are the network links (not arcs), in which their update can be characterized by say,
changing the number of lanes added to the existing links, changing lane allocation
on the existing links, omitting the construction of the new links, and so on. Thus, a
network link is updated by changing the values of multiple decision variables rather
than a single variable for that link, and therefore a specific velocity type needs to be
defined for each variable of the link.

The following types of velocities are defined for each bimodal link l:

V0l : velocity for the lane addition project on link l (if a project exists), and
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V1i j and V1 j i : velocities for exclusive bus lanes on arcs (i, j) and ( j, i), respectively.
No velocity is defined for the remaining lanes on arcs, since they depend much
on the values of the above mentioned variables.

For auto links, the following types of velocities are defined:

V0l : velocity for the lane addition or link construction project of link l (if a project
exists), and

V2i j : velocity for lane allocation on arc (i, j).

A velocity function uses three weights to update each of the velocities stated above:
w0 for the inertia, C1 R for the personal influence, and C2 R for the social influence,
where R is a random value between 0 and 1, and C1 and C2 are, respectively, the
weight parameters for personal and social influence terms. Since the values provided
for velocities may not be integers, integer solutions are not guaranteed to obtain.
A transformation is performed to convert the resulting non-integer solutions to integer
ones by rounding the values to the nearest integer values in the variable’s domain.

Various forms of velocity functions have been proposed in the literature, but here
the version of Eberhart and Shi (2000) is adopted in which w0 is slightly decreased in
each iteration using a coefficient less than 1 called C0, in order to control an unaccept-
able increase of velocities over time. wτ0 is the value of inertia weight in τ th iteration
that is equal to C0w

τ−1
0 . Since the start value w1

0 and the stop value wT
0 are given for

the inertia weight, C0 must be equal to (wT
0 /w

1
0)

1/T . The procedure of particle update
in the τ th iteration for an existing link l or a new link l ′ consisting of arcs (i, j) and
( j, i) is as follows:

– Update the link addition variable: If the link is widened, then:
• Set V0l = wτ0 V0l + C1 R(y pbest

l − yl)+ C2 R(ygbest
l − yl).

• Set yl = yl + V0l , and round yl to the nearest integer in its domain.
Otherwise if the link is new, then:
• Set V0l ′ = wτ0 V0l ′ + C1 R(u pbest

l ′ − ul ′)+ C2 R(ugbest
l ′ − u′

l ′).• Set ul ′ = ul ′ + V0l ′ , and round ul ′ to the nearest binary value.
– Update lane allocation: If the link is bimodal then:

• Update the allocation of exclusive bus lanes and minimum required lanes on
arcs (i, j) and ( j, i):
◦ Set V1i j = wτ0 V1i j + C1 R(ωpbest

i j − ωi j )+ C2 R(ωgbest
i j − ωi j ).

◦ Set ωi j = ωi j + V1i j , and round ωi j to the nearest binary value.
◦ Set k′

1i j = 1 − ωi j .
◦ Repeat the above steps for arc ( j, i).

• Define a random allocation for the remaining lanes using the feasibility interval
defined by (47) and (48).
Otherwise, if the link is an existing auto link or a new auto link with ul ′ = 1,
then update the allocation of lanes:

• Set V2i j = wτ0 V2i j + C1 R(k pbest
i j − ki j )+ C2 R(kgbest

i j − ki j ).
• Set ki j = ki j + V2i j , and round ki j to the nearest value in its domain.
• For an existing link, set k ji = Kl + 2yl − ki j , and for a new link, set k ji =

Kl ′ − ki j .
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4.5 Multi-objective hybrid harmony search

Harmony Search (HS) is a population-based metaheuristic that simulates the music
improvising behavior of music composers (especially in jazz). HS has been recently
proposed by Geem et al. (2001) as a novel metaheuristic solution procedure. A musi-
cian composes a new music piece by gradually adjusting a set of notes until he/she
is satisfied by the harmony. The process can be imitated by a problem solution pro-
cedure in which the values of the variables (notes) are changed step by step, until the
best solution (harmony) in terms of the objective function or fitness value is achieved.
Musicians often use three ways to choose and include a note in their new harmony:
(1) selecting a note from their memories and previous experiences which is called
“Harmony Memory” selection, (2) slightly changing the pitch of the selected note
which is called “Pitch Adjustment”, and (3) making a random note which is called
“Randomization”. Harmony memory selection is analogous to choosing the popula-
tion of solutions; pitch adjustment is analogous to applying a small change in the
value of a variable in its neighborhood, and randomization is analogous to selecting
a random value for a variable. These three ways of making a new harmony simulates
random choices to set values to variables of solutions as will be described later (see
Geem 2009 also for the details).

HS as a solution procedure has been recently used in a number of researches, but it
has not been used to solve UTNDPs before. In this paper, a new multi-objective hybrid
version of HS and SA is developed to solve the proposed problem. SA is applied to
improve the solutions produced at each iteration of the main algorithm. The SA used is
similar to the one in mHGA. Here is the outline of the multi-objective hybrid version
of HS and SA:

Phase 1: Generate a population of P solutions, compute their fitness values, and
build the Pareto-optimal set from the initial population.

Phase 2: Repeat the following procedure for T iterations:
– Make a new solution using the new harmony generating mechanism.
– Check the connectivity of the solution and discard the solution if the

network is disconnected.
– Check the budget feasibility of the solution and apply the budget reduc-

tion sub-routine if needed. If the infeasible solution cannot be repaired,
then discard the solution.

– Update the Pareto-optimal set and compute the fitness value.
– Apply SA on the updated solution.
– If the new solution is better than the worst solution in the population,

replace the latter with the new solution.

4.5.1 New harmony generating mechanism

The new harmony generating mechanism generates a value for each element of the
solution (i.e., a design for each network link) using the three described rules. The
value of a variable is chosen from Harmony Memory with the probability Raccept , and
from a completely random value with the probability 1 − Raccept . Pitch adjustment

123



Bi-objective bimodal urban road network design 611

is applied to the selected variable with the probability Rpa , Pitch adjustment includes
applying a small change in the lane allocation of the selected link and is defined as
follows:

• Bimodal links with more than two lanes: One of the following decisions is ran-
domly made for one of the randomly chosen arcs of the link:
◦ If an exclusive bus lane is present, turn it into a shared auto-bus lane, and

otherwise allocate one of the lanes as an exclusive bus lane.
◦ Randomly delete one auto lane on one arc, and add one auto lane on the other

arc of the same bimodal links.
• Bimodal links with two lanes: For one of the arcs (which is randomly chosen), if

an exclusive bus lane is present, turn it into a shared auto-bus lane, and otherwise
allocate one of the lanes as an exclusive bus lane.

• Auto links: Randomly change the link into a two-way or one-way link.

The new harmony generation procedure repeats the following steps for each link l
or l ′ of the network to obtain a new solution.

– If R < Raccept , where R is a random value between 0 and 1,
◦ Select the design of link l randomly from one of the population solutions.
◦ If R < Rpa , then apply pitch adjustment on link l or l ′.
Otherwise, apply randomization: randomly select the lane addition or link con-
struction project for link l or l ′ and then randomly allocate the lanes, taking into
account the connectivity of the bus routes in the case of bimodal links.

5 Computational results

5.1 Test instances and data

Because of the novelty of the problem, there is no existing benchmark instance. Hence,
a number of used test examples in NDPs, TNDPs, and multi-modal traffic assignment
references were selected, and modified to test the performance of the algorithms. Three
types of test examples were generated based on three small networks, three medium
networks, and one large network.

All the scenario information provided in the references given in Table 2 were used
and reasonable values were chosen for the additional required data such as lane addi-
tion and link construction projects, the number of lanes in each street, bus lines and
their frequencies, walking times for the bus mode, bus passenger capacities, and so on.
Construction costs are considered as linear functions of the number of lanes. Table 2
also gives the main characteristics of the test examples. The values in the parentheses
are the data provided to the test instances by the authors.

The following values or ranges were used for the required parameters: π = 2;
μ = 3; ψ = 0.2 min; α = 0.15; β = 4; α′ = 0.1; β ′ = 2; α̂ = 0.1; β̂ = 2;
θ = 0.45 min−1; t̄î = (5, 10)min; ne = 40; fe = (3, 12) buses per hour; ρi j = 0.4t0

i j
monetary unit; ρ̂î ĵ = 0.25 monetary unit; V OTt = 0.333; V OTa = 0.333 and;

V OTw = 0.667. The units of all values of times are in monetary units per minute.

123



612 E. Miandoabchi et al.

Table 2 Testing networks

Network
size

Network
adopted

Notation
no.

Nodes
no.

Links no. OD pairs
no.

Bus lines
no.

Bimodal
lines no.

Small The Abdulaal and
LeBlanc (1979) network

AL 9 12 (16) (2) 8

The Nguyen and Dupuis
(1984) network used in
Kov et al. (2010)

ND 13 19 4 3 12

A reduced version of
Sioux Falls network
used in LeBlanc et al.
(1975)

SF1 14 19 176 (4) (17)

Medium The Nagurney (1984)
network

NA1 20 28 8 (5) (21)

The basic Sioux Falls
network of LeBlanc
et al. (1975) used in
Abdulaal and LeBlanc
(1979)

SF2 24 37 528 5 23

The Nagurney (1984)
network

NA2 25 37 6 (4) (18)

Large The Nagurney (1984)
network

NA3 40 66 6 (5) (30)

The monetary unit used in this paper is 1,000 Rials (Currency in Iran). Note that the
values of the logit parameters ψ and θ used here are for illustrative purposes and
their actual values should be calibrated from the available data. In general, the larger
is the value of θ , the smaller is the variance of the perceived generalized travel cost
incurred by travelers between the same OD pairs. Moreover, the larger is the value of
ψ , the more people travel by bus. To avoid computational complexity, all bus lines
are considered as attractive lines and only connectivity between OD pairs is only
considered.

5.2 Parameter setting

The parameters of the three algorithms were set by using series of experiments, by
searching for parameter ranges in similar algorithms from related papers to find some
initial ranges, by considering the number of solutions generated from the three algo-
rithms, and by adopting the used parameter settings in the previous work of the authors
(Miandoabchi et al. 2010). Table 3 depicts the parameter settings.

The maximum number of the solutions generated by each algorithm which indi-
cates the approximate total computational effort can be used as a guideline for setting
the parameters of the algorithms. For mHGA, the number can be shown as G ×(2/3×
N × i tr +2× N ), where N is the number of nodes and itr the number of solutions gen-
erated by SA, since 2× N solutions are generated using the crossover operator, and itr
solutions are generated in the SA iterations from each of 1/3 of the 2×N solutions. The
proportion 1/3 is chosen to deal with the trade-off between high computational effort
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Table 3 Parameter settings for the algorithms

Algorithm Main parameters SA parameters

mHGA P = 60 Start temperature: 5

G = 300 Reduction rate for small problems: 0.9

k = 1/3 of the selected offspring
solutions to be inserted in the
population

Reduction rate for
medium and large
problems: 0.8

Stop temperature: 1

mHPSO P = 30 Start temperature: 5

T for small problems=8×N Reduction rate: 0.9

T for medium and large problems=4×N Stop temperature: 1

wo= start at 0.95 and stop in 0.2

C1 = C2 = 1.25

mHHS P = 50 Start temperature: 5

T for small problems=225×N Reduction rate: 0.9

T for medium and large problems=125×N Stop temperature: 1

Raccept = 0.9

Rpa = 0.3

and the solution quality. For mHPSO, the number can be shown as P × T × (i tr + 1),
since for each of the T iterations, each of P solutions is updated and evaluated once,
and then itr SA iterations is applied on each of the solutions. Finally, for mHHS, the
number is T × (i tr + 1) since for each of the T iterations a solution is generated,
evaluated, and then SA is applied on the solution.

The parameter values for mHGA were chosen to be as the values used in
Miandoabchi et al. (2010). In order to make the algorithms results comparable to
each other for each test example, the number of solution evaluations must be equal
for all algorithms. This requires that the parameters of the other two algorithms (i.e.,
mHPSO and mHHS) must be changed with the size of the problem. Since the general
structure of the three algorithms are somewhat similar to each other, we chose to vary
the number of iterations T based on the problem size, and keep the other parame-
ter values fixed. To do this, at first, experimental tests were carried out for mHPSO
and mHHS using the test example ND for various combinations of the parameters.
Then, by keeping all the parameters’ values fixed, the number of iterations T was
made dependent on N to keep the total number of solution evaluations equal to that
of mHGA for each test example.

Again, for the reason of the similarity of the algorithm structures, the SA param-
eters of mHGA for the small test example ND were used for both mHPSO and
mHHS. In addition, the SA parameters for small problems were chosen for all prob-
lem sizes. The SA parameters for mHGA are different for small and medium-large
text examples because the computational effort for mHGA which depends on N ,
grows rapidly with the increase of the problem size, and makes the runtimes signif-
icantly high. Thus, different SA parameter settings were set to deal with the high
runtimes.
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Finally, the starting parameter of the distance-based fitness evaluation d1 was set
to 2 after performing experimental runs with a fixed set of algorithm parameters for
mHHS.

5.3 Software and hardware

All algorithms were coded by Matlab R2007a and the tests were carried out on a laptop
with a Core2Duo T7500 2.2 GHz CPU, and a 2 GB RAM. Each algorithm was run 5
times.

5.4 Performance comparison

Since the algorithms are multi-objective ones, special effectiveness measures are
required to assess the quality of the solutions obtained. Meanwhile, the algorithms
can be compared by investigating the best values of objective functions they have
obtained in Pareto-optimal solutions. This can help to identify the extent of the ideal
Pareto-optimal solution space that has been explored by the algorithms.

Here, two types of measures are used to investigate the quality of the Pareto-optimal
sets generated by the algorithms. The first measure M1 gives the size of the Pareto-
optimal set and the second measure M2 is defined to identify how the algorithm
performs in overall, in comparison to the other algorithms. M2 is a new measure pro-
posed in Miandoabchi et al. (2010) which is adopted in this paper. It is based on a
set coverage measure proposed in Zitzler et al. (2000), which is used for a pair-wise
comparison of algorithms in terms of the fraction of Pareto-optimal solutions obtained
by one algorithm that dominates the solutions obtained from another algorithm. The
measure M2 is defined as follows:

M2(Xi ) =
∑

j �=i

C(Xi , X j )−
∑

j �=i

C(X j , Xi ) (55)

where C(Xi , X j ) is the measure proposed in Zitzler et al. (2000) and is calculated as
follows:

C(Xi , X j ) =
∣∣{a j ∈ Xi ; ∃ai �= a j

}∣∣
∣∣X j

∣∣ (56)

where ai �= a j means that solution ai dominates or equals solution a j , and C(Xi , X j )

is not necessarily equal to 1- C(X j , Xi ). The formula calculates the fraction of solu-
tions in set X j is dominated by or equal to at least one solution in Xi .

The measure M2 indicates the overall strength of an algorithm with respect to other
algorithms, in terms of the quality of the Pareto-optimal set (Miandoabchi et al. 2010).
The idea is to sum up all C values that indicate the fraction of solutions which dom-
inate the solutions of other algorithms, and to subtract all C values that indicate the
fraction of solutions which are dominated by solutions of other algorithms. In other
words, fractions of non-dominated solutions of the algorithm contribute to increase the
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Table 4 Summary of computational results

Problem code mHGA mHPSO mHHS

M1 M2 Runtimea M1 M2 Runtimea M1 M2 Runtimea

AL 2 2.00 701 3 −1.16 888 4 −0.84 789

ND 33 −1.82 765 28 1.44 524 19 0.38 277

SF1 15 −1.94 1,958 5 1.81 1,970 6 0.13 889

NA1 57 −1.71 6,131 25 1.77 1,314 19 −0.06 953

SF2 35 0.13 11,004 12 1.48 3,485 7 −1.61 1,784

NA2 45 −1.20 10,262 15 0.88 1,740 11 0.33 1,656

NA3 28 −0.45 40,071 10 0.93 11,153 10 −0.48 9,104
a Average runtime (in seconds)

measure value and fractions of non-dominated solutions of the algorithm contribute
to decrease the measure value.

The summary of the average values of the measures and the average runtimes are
given in Table 4. Regarding to the values of the measure M1 in Table 4, mHGA has
6 highest values. The second ranking belongs to mHPSO generated 5 second highest
values, and finally mHHS has 1 highest and 2 second highest values. With respect to
the values of the measure M2 for the algorithms, mHPSO obtains 6 highest values.
mHHS has the second ranking obtaining 6 second highest values, and mHGA gains
the third ranking producing 1 highest and 2 second highest values. It can be seen that
mHGA outperforms both algorithms in terms of the size of the Pareto-optimal set and
mHPSO performs the best in terms of the quality of the Pareto-optimal set.

To evaluate the capability of the algorithms in achieving the Pareto optimal solu-
tions, a branch and bound (B&B) method was applied to solve the problem. The
particular branch and bound method used here deals with multiple objectives rather
than a single one, and it does not apply lower bound calculation. Each time a feasible
solution is constructed, it is checked to be added to the set of Pareto-optimal set and
thus the output of the method is a set of Pareto-optimal solutions. The method was
solved only for the smallest example AL, since the run time of the method is very high
even for the smallest network. The method was stopped after running for more than
40 h, and the obtained 9 members in the Pareto-optimal set, which was considered
as the best solution set found so far. Then the union of Pareto-optimal sets of all 5
runs was obtained for each algorithm, and the pair-wise comparison was performed
between the method and the three algorithms using measure (56). The results of the
comparison are given in Table 5. It can be observed that the three algorithms dominate
all the solutions of the branch and bound method.

Another comparison can be made for the algorithms runtimes. mHHS has the first
rank with 6 lowest and 1 second lowest runtimes. mHPSO has the second ranking with
5 second lowest runtimes. mHGA have 1 lowest and 1 second lowest runtimes.

Figure 4 illustrates the average runtimes of the algorithms. Although the maxi-
mum number of solution evaluations was set to be equal for the algorithms in all test
examples, it is observed that the runtime of mHGA rapidly grows with the increase
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Table 5 Pair-wise comparison
between B&B and the
algorithms

Algorithm C(X∗, XB&B) C(XB&B, X∗)

mHGA 1.00 0

mHPSO 1.00 0

mHHS 1.00 0
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Fig. 4 Average runtimes comparison

Table 6 The best objective function values

Example mHGA mHPSO mHHS

Z1 Z2 Z2 Z1 Z2 Z2

AL 139,400 0.49897 96,088 0.35536 98,308 0.35608

ND 451,310 0.78329 916,740 0.77241 886,490 0.77077

SF1 427,400 0.67800 461,710 0.74095 452,950 0.69701

NA1 462,480 0.88442 768,920 0.90268 638,570 0.86908

SF2 14,010,000 0.62190 14,788,000 0.64528 7,671,500 0.60222

NA2 464,660 0.84487 686,220 0.83849 623,920 0.82531

NA3 199,992 0.82971 355,724 0.69828 324,288 0.65582

of the problem size. This may be explained by the fact that the numbers of infeasible
solution generated in terms of network disconnectedness (not the budget feasibility)
in mHPSO and mHHS are higher than that of mHGA, since mHGA can obtain more
feasible solutions by using the crossover operator depicted in Sect. 4.3.

A performance comparison can be made by assessing the best values for each of
the objective functions in the Pareto-optimal set obtained by each algorithm. Table 6
depicts the best objective function values obtained. The values presented in the table
are the best values among all 5 runs.

A comparison of values of the two objective functions in all 7 examples (i.e., 14
values of objective functions) for each algorithm reveals that mHPSO obtained 9 best
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and 3 second best values; mHGA produced 5 best and 3 second best values, and mHHS
generated 8 second best values. To illustrate their relative performance more clearly, a
comparison was performed by ranking the algorithms for each test example in terms
of the values of Z1 and Z2, and then the total number of times that each algorithm
gained the first or second ranking was counted.

A quick summary for the algorithms’ ranking under each measure is shown as
follows:

• M1: mHGA>mHPSO>mHHS
• M2: mHPSO>mHHS>mHGA
• Best Pareto-optimal objective values: mHPSO>mHGA>mHHS
• Runtime: mHHS>mHPSO>mHGA

The rankings suggest that mHPSO outperforms others in terms of M2 and the best
values for individual objective functions. mHGA outperforms others in terms of the
size of the solution set, and finally mHHS has the lowest runtime. Overall, mHPSO
can be considered as the most desirable solution procedure for this problem, since it is
capable of obtaining much higher solution set quality M2 with a much lower runtime
compared to mHGA for medium and large networks (see Fig. 4), and mHPSO can
obtain higher solution set quality in terms of M1 and M2 with a similar computation
time compared to mHHS.

6 Conclusions and future research

In this paper, a bi-objective bimodal network design problem including the automo-
bile and bus modes is investigated. Five types of decisions are included the problem:
constructing new streets, adding lanes to the existing streets where it is possible,
determining the directions of one-way streets, determining lane allocation in two-way
streets with bus routes, and finally determining where to allocate exclusive bus lanes
and where to use street lanes for shared use of automobiles and buses. The main con-
tribution of the paper lies on proposing a new road network design problem with the
inclusion of the decisions for bus network, by taking into account the restrictions of
the street lane allocation on the existing bus routes, the effects of the automobile and
bus flows on each other, and the elasticity of the travel demands. The problem is mod-
eled as a mathematical problem with equilibrium constraints, which is intrinsically
a bi-level problem. The upper level problem corresponds to the decision making for
the main decision variables, and the lower level problem corresponds to the modal-
split/assignment problem. Because of the intrinsic complexity and non-convexity of
the model, three hybrid multi-objective population-based metaheuristic algorithms
are developed to solve for good rather than exact solutions. The proposed algorithms
are the hybrid genetic algorithm, particle swarm optimization, and harmony search in
which they incorporate simulated annealing. These algorithms use a distance-based
fitness evaluation method to capture the multi-objectivity of the problem and generate
a set of Pareto-optimal solutions.

The algorithms are evaluated by solving test networks taken from the literature and
customizing them for the problem on hand, and their performances are compared to
each other using various performance measures. The computational tests indicate that
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the proposed multi-objective particle swarm optimization algorithm outperforms the
other two algorithms in terms of the quality of the Pareto-optimal sets with reasonable
runtimes.

This paper opens a new line of research about the simultaneous design of urban
road and transit networks. Various forms of problems can be considered by combining
different RNDPs and bus network design problems. For example, one extension to the
problem which is currently under study by the authors can be including the redesign
of the bus routes in RNDPs. The street directions and network expansion projects can
be determined by concurrently redesigning or modifying the routes and frequencies
of existing bus lines, without changing their terminal nodes. Another research sub-
ject is to combine the design of the bus network including bus routes, terminals and
frequencies with the decisions of RNDPs. Besides, the current formulation cannot be
applied to some historical urban centers in Europe and some densely populated cities
in Asia, where there is no way to ensure that both forth and back routes of bus lines
pass through the same link (e.g., the one-way one-lane street has high bus demand
but there is no extra space for widening the street). In the future, the requirement of
passing through the same link for both forth and back routes can be relaxed to handle
this case. Finally, including signal timings and travel times for crossing intersections
lead to a more realistic but a higher complexity network design problem to solve.
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