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Introduction

.1 Lithography Process Check and Design Rule
Check

ithography hotspots found through lithography process
heck �LPC�1,2 and lithography design rule violations3 are
ousins, sharing some common characteristics while differ-
ng in other aspects. Both relate to the robustness of physi-
al designs; the existence of hotspots or violations indicates
propensity to yield loss. Despite yield being an inherently

ontinuous quantity, for design convenience and expedi-
ncy, hotspots and design rule violations have well-defined
ass-fail boundaries. A sharp demarcation is �artificially�
laced between violations and nonviolations, and between
otspots and non-hotspots.

Given a layout with a design rule error, it is usually
traightforward to understand the cause of the violation.
uch cannot be said for hotspots. Except for the simplest of
ases where guidelines and rules-of-thumb are applicable,
he subtleties of optical imaging and pattern transfer pre-
lude the use of intuition and elementary logic. In fact, the
omplexity of low-k1 lithography is the original motivation
or model-based verification.

The nonintuitive nature of LPC should not hamper its
tility. Numerical computation is increasingly complement-
ng instinctive reasoning in sub-100-nm integrated circuit
reation. Model accuracy is perhaps a cause of greater con-
ern. State-of-the-art lithography models still fall short in
ritical dimension �CD� prediction of 2-D patterns and of
on-nominal exposure conditions.4–6 Resist collapse is also
ifficult to simulate properly.2 Nevertheless, design rule
heck �DRC� is not immune to inaccuracies; design rules
nd their parameters are also defined with uncertainty and
ncertitude.

What truly distinguishes LPC from DRC is the former’s
mprecision. This is, at present, one of the two greatest
indrances to wholesale adoption of LPC in the design
ow. �The other obstacle is the general lack of evidence for
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or conviction in the necessity of LPC.� Imprecision in the
present context means the fluctuation of simulation results
caused by LPC algorithm imperfections or mismatches.
Two identical layout configurations may have inconsistent
hotspot classification, with one indicating a hotspot while
the other does not. Sources of variability may include pro-
cess model asymmetry, image interpolation, target layer de-
viation �due, for example, to hierarchical operations�, opti-
cal proximity correction �OPC� iteration, and contour
computation. Cutting-edge DRC algorithms do not exhibit
such impreciseness.

1.2 Analogy Between Algorithmic and Manufacturing
Variability

The nebulous hotspot is a manifestation of the more general
issue of variability in computational lithography algo-
rithms. It is instructive to refer to Fig. 1�a�, which shows
the measured across-wafer critical dimensions of nominally
identical isolated lines. The color shade at each point rep-
resents the electrical linewidth of the isolated line at that
wafer location. Through a series of analyses, the original
distribution �Fig. 1�a�� was decomposed into intrafield �Fig.
1�b�� and extrafield �Fig. 1�c�� components, which were
then further partitioned into photomask errors, scanning er-
rors of exposure systems, aberrations, and development
nonuniformity.7 As a result, the root causes of linewidth
fluctuation can be quantified separately and remedied indi-
vidually, thereby reducing the overall variability.

Such analysis and quantification also necessitate and en-
able the setting of proper design margins to ensure high-
yielding and robust circuits. The design margin, or indi-
rectly, the achievable circuit performance, is intimately tied
to the amount of linewidth variation. Higher degrees of
variability require larger margins, resulting in lower perfor-
mance, and vice versa. Circuits must be designed with mar-
gins commensurate with the level of variability. Forcing
circuit performance without proper regard for process fluc-
tuation is a path to a miserable end.

The relationship between computational lithography al-
gorithms, such as image calculation, and applications, such
Jul–Sep 2010/Vol. 9�3�1

47.8.21.59. Terms of Use:  http://spiedl.org/terms



a
a
A
o
�
f
a
m
g
a
u
s

1
C
t
i
l
h
r

Lam and Wong: Nebulous hotspot and algorithm variability in computation lithography

J

s lithography design-for-manufacturability �DFM�, is
nalogous to that between fabrication and circuit design.
lgorithms �semiconductor processing� are the foundation
n which applications �circuits� are built, and applications
circuit design� should be cognizant of algorithmic �manu-
acturing� variability. On the one hand, we need to analyze
nd decompose sources of variation in order to quantify,
onitor, and minimize such fluctuation. On the other hand,

iven a particular level of variability, we can devise reason-
ble specifications that are at once realistic, practical, and
seful, without imposing unrealistic requirements or delu-
ive expectations.

.3 Lithography Physical DFM
onsider lithography physical DFM as a vehicle for inves-

igation and exposition. This process, illustrated in Fig. 2,
ncludes hotspot analysis �LPC�—identifying regions of a
ayout that have relatively poor lithography latitude—and
otspot fixing—adjusting the layout to improve the process
obustness of the identified regions. For our present pur-

(a)

(b) intrafield

mask tool

Fig. 1 Measured across-w
raw data

(c) extrafield

scan asymmetry resist development

afer critical dimension variation.8
. Micro/Nanolith. MEMS MOEMS 033002-
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Layout Hotspot
analysis

HotspotsHotspot
fixing

Fixed
layout

Fig. 2 Lithography physical DFM comprising hotspot analysis and
hotspot fixing.
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oses, we are concerned with algorithmic variability during
otspot analysis, and given such fluctuation, sensible mea-
ures we can adopt for hotspot fixing.

LPC Variability
t is worthwhile, prior to examining sources of LPC vari-
bility, to delineate the concept of constancy. LPC behavior
hat falls outside the bounds of constancy is variability.

We expect that, within the confines of lithography mod-
ling, identical features with identical layout environments
ould have identical lithography characteristics. For prac-

ical purposes, “identical surroundings” means that the
eighborhood layouts are identical at least up to a distance
n the order of the optical interaction range8

optical_interaction �
1

�
�

�0

NA
,

here �0, NA, and � denote, respectively, the wavelength
n vacuum, the numerical aperture, and the partial coher-
nce factor of the exposure system. For a 193-nm system
ith a NA of 1.2, two features should have the same
otspot categorization if their environments within

�10� �
1

0.8
�

193

1.2
nm � 2,000 nm

re identical.
Such expectation is not always met in practice. In a typi-

al LPC flow, shown in Fig. 3, the original layout first
ndergoes retargeting that may include global and selective

Layout

Contour /
intensity

Retarget

OPC

Compute
image

Determine
robustness

Retargeted
layout

Mask
design

Fig. 3 Typical LPC flow.

case 1case 1
case 2case 2

truncation
points

long wire

(a)

casecase

dmi

ig. 4 Measures for improving computation throughput that may c
nces, and �c� retargeting differences.
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sizing. OPC is then applied on the retargeted layout, pro-
ducing a photomask design;9,10 images of the photomask
are computed using a model of the lithography process.
From the images are derived contours, critical dimensions,
and process latitude information, based on which hotspot
decisions are made. Any of these steps may be a source of
variability.

2.1 Simulator-to-Itself Variability
(Auto-Inconsistency)

It may seem peculiar that the same LPC software applied
on the same layout can give different results; random gen-
erators aside, software should be deterministic. Indeed it is,
provided the layout is in all respect identical. However, that
is rarely the case. Consider the situation in which the same
physical design �such as a standard cell� is instantiated
twice, once in the vertical position and once in the lateral
position, rotated by 90 degrees. Even assuming horizontal-
vertical symmetry in the illumination, the simulation results
of these two instantiations may still be different if the li-
thography model exhibits asymmetries.

Careful model building may eliminate such model-
induced fluctuation. Nevertheless, variability may remain if
the image is computed using the so-called dense
approach.11 This method can be implemented by computing
image intensities at a set of grid points. The intervening
values are determined by interpolation from the intensities
at these grid points. Imagine a scenario with a square image
grid of spacing � and two instantiations of the same physi-
cal design having a relative translation of ��x ,�y�. �A
square grid was chosen for exposition convenience here. In
general, the grid can be nonuniform and nonrectangular.� If
�x or �y is not an integral multiple of �, the images of the
two instantiations could be slightly different due to interpo-
lation. Such discrepancy leads to variability in both LPC
and OPC.

Measures for improving computation throughput may
also contribute to variability. Consider the situation shown
in Fig. 4�a�, where a long wire terminates at a region
densely populated with shapes, and our hotspot interest lies
within this dense region. During hierarchical operation or
parallel processing, the long wire may be truncated to limit
the area of computation. Suppose two instances of the lay-
out are truncated at different locations, indicated by the
labels “case 1” and “case 2” in the figure. We further sup-
pose the following rudimentary set of retargeting rules:

case 2case 2

dmax

case 1case 1
case 2case 2

retarget
protrusions

(c)

te to variability. �a� Layout with long wire, �b� segmentation differ-
11

n

(b)

ontribu
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1. Edges longer than 2�dmin are segmented uniformly;
2. Each segmented edge length lies between dmin and

dmax; and
3. The local bias that each segmented edge receives is a

function of spacing to its nearest neighbor.

The edges of the truncated long wire would then be
egmented differently between case 1 and case 2, as shown
n Fig. 4�b�. If the truncated original edge of case 1 is
egmented into five parts, as illustrated by the left edge of
he long wire in Fig. 4�b�, each segment is of length dmin.
t the same time, the shorter truncated original edge of

ase 2 would have an altogether distinct segmentation of,
ay, three parts of length dmax each �depicted by the right
dge of the long wire in Fig. 4�b��. Such variance in seg-
entation, which is a result of minor differences in how a

hape is truncated far away, directly translates into differing
etargeted layouts, as shown in Fig. 4�c�—which, in turn,
auses variability in the lithography image, and hence in
he OPC and LPC in the region of interest.

OPC iteration is another source of variability. Some
PC algorithms adjust edges sequentially such that de-

igned masks exhibit a dependency on the order in which
he edges are moved. It is possible to contrive a situation,
s shown in Fig. 5, in which starting the OPC iteration from
pposite corners of a 40 �m�40 �m 65-nm layout results
n a simulated critical dimension discrepancy of more than
5% at the center.

.2 Simulator-to-Simulator Variability
(Across-Simulator Mismatch)

uring the hotspot analysis stage in physical DFM, it is
ometimes impractical, for turnaround or accessibility rea-
ons, to apply the same algorithm as the one used for si-
noff verification. The use of different algorithms leads to
any more sources of inconsistency. Possible culprits in-

lude all aspects of hotspot computation, from model fitting
o image calculation, from retargeting to OPC, from con-
ouring to deriving process robustness. Even when two al-
orithms meet the same set of specifications, implementa-
ion differences may still result in variability.

As an example, consider image calculation with a given
et of coherently decomposed kernels.12 Assuming the ker-
el set is discretized, i.e., each kernel is specified as a col-
ection of values at discrete locations, any algorithm would
eed to interpolate these supplied values during image cal-
ulation. �This interpolation is distinct from the interpola-

region of
interest

start iteration here

start iteration here

40,000 nm

4
0
,0
0
0
n
m

ig. 5 Diagram showing how OPC result is dependent on the order
n which edges are moved. A critical dimension discrepancy as large
s 15% is possible.
. Micro/Nanolith. MEMS MOEMS 033002-
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tion for dense image computation discussed in Sec. 2.1.�
For accuracy considerations, such a feat is best performed
using the sinc sampling function.13 However, for through-
put concerns, a relatively local scheme such as cubic spline
may be expedient. Algorithms that make different
accuracy-throughput tradeoffs give discrepant images, even
from the same specified kernel set.

3 Simulator Matching

3.1 Formulation
The existence of variability in computational lithography
algorithms means that the results from any application are
not be perfectly accurate or absolutely precise. Consider an
example hotspot analysis procedure that comprises the fol-
lowing three steps:14

1. identify candidate hotspots from the layout,
2. compute the critical dimension of each candidate, and
3. classify each candidate as a hotspot or non-hotspot

according to the calculated critical dimension.

By applying this three-step procedure, the critical di-
mensions of all candidates of a layout would form a distri-
bution. Let Pnoiseless�x� denote the true distribution, which
may resemble the solid curve in Fig. 6. Note that the x axis,
marked “critical dimension,” can be taken to refer to the
geometric dimension of the hotspot, but more generally it
can also represent the hotspot severity, score, or index. In
any case, we have no way of knowing the precise curve
unless we have a noiseless algorithm at our disposal. What
we observe instead is Pvariability�x�, a tainted version of
Pnoiseless�x� that may look like the dotted curve in Fig. 6. If
we assume the algorithm variability is random and that
such randomness can be represented by the noise distribu-
tion function fnoise�x�, we can then establish the following
expression:

Pvariability�x� = Pnoiseless�x� � fnoise�x� , �1�

where the symbol � denotes convolution.

critical dimension

p
ro
b
a
b
ili
ty

noiseless distribution
(solid)

distribution with variability
(dotted)

hotspot
criterion

hotspot

non−hotspot

Fig. 6 Example probability distribution of simulated critical dimen-
sion without noise �solid line� and with algorithm variability �dotted
line�.
Jul–Sep 2010/Vol. 9�3�4
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The use of a random model for algorithm variability
equires further justification here. It may be argued that
ince software is deterministic, all apparent variabilities
ust be due to immature or incorrect implementations that

hould be fixed. While it is true that the physical design is
xed �deterministic� and the LPC software is fixed �hence
lso deterministic�, the interaction between the two �e.g.,
ocation and orientation of an instantiation� is not. Using
he examples we gave in Sec. 2, a second instantiation of a
ayout being a rotation of the first one may affect where we
tart the OPC iteration, and a displacement that is not at
nteger multiples of the grid distance may cause different
runcations in hierarchical operations. Therefore, from the
PC software’s perspective, the data it works on contains

andom variability, and it is reasonable that its output does,
oo. In general, probability and statistics are ubiquitous
ools for analyzing software for the same reason: The input
ata vary, but we need a way to characterize the perfor-
ance of the software. Consequently, the observed critical

imension distribution exhibits effectively random variabil-
ty with the true distribution.

Of particular interest is the situation in which two analy-
es are performed that result two noisy distributions P1�x�
nd P2�x�. These two distributions are related to Pnoiseless�x�
ia an expression similar to Eq. �1� with noise functions

f1�x� and f2�x�, respectively. If the two analyses are per-
ormed using different algorithms, f1�x� and f2�x� are most
ikely different functions. As an example using real data,
ig. 7 shows P1�x� and P2�x� resulting from two simulators
n the same layout.15

Consequently, the two sets of hotspots from the two
nalyses are unlikely to be identical. Note that f1�x�
f2�x� implies P1�x�=P2�x�, but even this case does not
ean that the set of hotspots �with critical dimensions less

han the threshold T� in P1�x� and P2�x� are the same. For
ach candidate hotspot, taking into account the “truth” �we
ut “truth” in quotes here because “truth” is something of
hich we have no knowledge, but this does not prevent an

xamination of the correlation between the two noisy dis-
ributions, as derived below� as well as reported results

critical dimension

pr
ob

ab
ili

ty
noisy distribution P

1
(x)

noisy distribution P
2
(x)

ig. 7 Actual critical dimension distribution of a layout as deter-
ined by two simulators.15
. Micro/Nanolith. MEMS MOEMS 033002-
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from the two analyses, there are altogether eight possibili-
ties, as shown in Table 1. They are labeled from �A� to �H�
for ease of reference in subsequent discussions. For cases
�B�, �C�, and �D�, depending on whether the first or second
algorithm is used, a true hotspot will go undetected and
hence unremedied. On the other hand, extraneous fixing
may occur for cases �F�, �G�, and �H�. Even if we perform
LPC with two algorithms to safeguard against variability, in
case �H�, both analyses decide incorrectly that the same
candidate is a hotspot. Consequently, we may expend a
resource unnecessarily to rectify the extraneous hotspot. On
the other hand, in case �D�, both analyses decide incorrectly
that the same candidate is not a hotspot. We may be bliss-
fully unaware until we receive our wafers!

Given a simulated critical dimension x, let us define our
hotspot criterion as

x ��T classified as hotspot,

�T classified as non-hotspot,
�

where T is the hotspot threshold. We can then derive the
occurrence probability of the eight cases tabulated in Table
1 �denoted as PA to PH, respectively� as follows:

PA = 	
−	

T

Pnoiseless�x�g1�T − x�g2�T − x�dx ,

PB = 	
−	

T

Pnoiseless�x�g1�T − x��1 − g2�T − x��dx ,

PC = 	
−	

T

Pnoiseless�x��1 − g1�T − x��g2�T − x�dx ,

PD = 	
−	

T

Pnoiseless�x��1 − g1�T − x���1 − g2�T − x��dx ,

Table 1 Eight cases of hotspot determination from two analyses
with variability. A 3 means a particular hotspot classification agrees
with the truth; � means the reverse.

Label Truth Simulator 1 Simulator 2

�A� Hotspot 3 3

�B� Hotspot 3 �

�C� Hotspot � 3

�D� Hotspot � �

�E� Non-hotspot 3 3

�F� Non-hotspot 3 �

�G� Non-hotspot � 3

�H� Non-hotspot � �
Jul–Sep 2010/Vol. 9�3�5
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E = 	
T

	

Pnoiseless�x��1 − g1�T − x���1 − g2�T − x��dx ,

F = 	
T

	

Pnoiseless�x��1 − g1�T − x��g2�T − x�dx ,

G = 	
T

	

Pnoiseless�x�g1�T − x��1 − g2�T − x��dx ,

H = 	
T

	

Pnoiseless�x�g1�T − x�g2�T − x�dx ,

here


1,2��x� = 	
−	

x

f 
1,2��x��dx�

s the cumulative noise distribution function, and

A + PB + PC + PD + PE + PF + PG + PH = 1.

he sum �PA+PH� accounts for the fraction of hotspots
ommon to both analyses, �PB+PG� is proportional to the
umber of hotspots found in the first analysis but not in the
econd, and �PC+PF� denotes the probability of a candi-
ate determined to be a hotspot in analysis 2 but not in
nalysis 1.

If we call the first analysis reference and the second
rial, we can define the hotspot matching rate as

matching =
number of common hotspots

number of hotspots in reference

=
PA + PH

PA + PB + PG + PH
,

nd the extra hotspot rate as

extra =
number of trial hotspots not in reference

number of hotspots in reference

=
PC + PF

PA + PB + PG + PH
.

he missing hotspot probability is then

missing = 1 − Pmatching.

.2 Ramifications
onsider a few examples from the 65-nm technology that

llustrate the consequence of algorithm variability in
otspot analysis. Assume a unitless hotspot threshold T
100, and that the hotspot distribution Pnoiseless�x� around

he threshold is a linearly increasing function of the critical
imension x, such as that shown in Fig. 6, with a slope of
/7,200 and an x intercept of 80. This leads to a maximum
ritical dimension at x=200, since the total probabilities
ust sum to unity. Further suppose that variability is char-
. Micro/Nanolith. MEMS MOEMS 033002-
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acterized by a Gaussian distribution, i.e., the noise func-
tions f1�x� and f2�x� can be described by the standard de-
viations �1 and �2, respectively. The matching and extra
rates of five case scenarios are evaluated below using nu-
merical integration.

Case 1: �1=�2=15
A variation that amounts to 15% of the hotspot threshold

results in a substantial mismatch between the results from
the two analyses. The matching rate is 43.9%, while the
extra rate is 56.1%. Note that in this case,

Pmissing = �1 − Pmatching� = Pextra

because of the symmetry between the two analyses. The
missing rate �PB+PF� and the extra probability �PC+PG�
are equal because the two analyses have the same variabil-
ity function.

Case 2: �1=�2=5
Compared with case 1, a smaller variability leads to bet-

ter matching �73.4%� and less extra �26.6%�. Nevertheless,
at a variability level of 5% of the hotspot threshold, as
many as one out of four hotspots are still mismatched. Note
that we again have Pmissing=Pextra due to the symmetry of
the two analyses.

Case 3: �1=�2=5; increased trial threshold
If it is desirable to increase the matching rate given a

fixed level of variability, we can increase the hotspot
threshold of the trial analysis. �Note that in practice, it is
very difficult to change the threshold of the reference be-
cause the value of T is often calibrated and determined by
actual patterning results.� Using the same variabilities as
those in case 2, we increase the hotspot threshold of the
trial analysis to 105, i.e., T1=100 and T2=105, and modify
the calculations of PA to PH accordingly. With these modi-
fications, it is possible to increase the matching rate to close
to 90% at a significantly higher extra percentage of over
60%. If we desire a matching rate above 99%, we need to
increase T2 to 114. Consequently, the extra rate is as large
as 178.8%!

Case 4: �1=5; �2=15
For the case in which variability of one analysis—say,

the reference—is less than that of the second �the trial�, the
missing and extra rates are no longer the same. The results
for �1=5 and �2=15 are tabulated in Table 2. The missing
rate is less than the extra rate because the extra hotspots
found by the first analysis �PB+PG� are fewer than their
counterparts in the second, which is a consequence of our
assumption that distribution function Pnoiseless�x� increases
around the threshold. In other words, under the assumption,
which is often true in practice, of an increasing distribution
function Pnoiseless�x� around the hotspot threshold, the
matching and extra rates can be used to determine the rela-
tive noise levels of algorithms. If Pmissing�Pextra, we can
infer that the reference is closer to the truth. The trial has
less variability if the inequality is reversed.

Case 5: �1=0; �2=5
Finally, consider the hypothetical case where the refer-

ence is identical to the “truth” and has no variability in the
Jul–Sep 2010/Vol. 9�3�6

47.8.21.59. Terms of Use:  http://spiedl.org/terms



h
t
T
8
s
a

3

T
S
m
w
v
a
b
w
v
H
v
t

=
3
e
T
a
T
T

a
I
i
i

Lam and Wong: Nebulous hotspot and algorithm variability in computation lithography

J

otspot analysis, i.e., �1=0. This is a way to characterize
he “absolute” matching rate of a simulator. As shown in
able 2, where �2=5 and T=100, the matching rate is only
1.5% while the extra rate is 19.6%. This further under-
cores the challenge of demanding a high matching rate and
low extra rate simultaneously in the face of variability.

.3 Experimental Results

able 2 was computed using the analytic formulas given in
ec. 3.1. These numbers were verified by calculating the
issing and extra rates using emulated data. In each trial,
e generated thousands of CDs to examine where their
alues followed a linear distribution from x=80 to x=200,
s discussed above. In passing these CDs to be examined
y the simulators, we added a zero-mean Gaussian noise
ith standard deviations �1 and �2, respectively, to the CD
alues, to reflect the variability in the two simulators.
otspot detection was simulated by thresholding the CD
alues with T. This process was repeated many times, and
he missing and extra rates were recorded for each one.

Figure 8 shows a record of 500 trials for the case �1
�2=5 and T=100, which corresponds to case 2 in Sec.
.2. The blue curve on top denotes the matching rate for
ach trial; its average, marked by the red line, is at 73.5%.
he blue curve below denotes the extra rate for each trial
nd its average, marked by another red line, is at 26.7%.
hese two numbers are very close to those computed in
able 2.

The simulation also allowed us to explore relaxing the
ssumption of Gaussianity on the variability distribution.
nstead of using a zero-mean Gaussian distribution, we can
ncorporate various distribution shapes by using a general-
zed Gaussian, i.e.,

Table 2 Numerical calculation of

Case 1 Case 2

PA 0.0128 0.0201

PB 0.0062 0.0035

PC 0.0062 0.0035

PD 0.0038 0.0018

PE 0.9299 0.9612

PF 0.0176 0.0042

PG 0.0176 0.0042

PH 0.0059 0.0014

matching rate 43.9% 73.4%

extra rate 56.1% 26.6%
. Micro/Nanolith. MEMS MOEMS 033002-
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fnoise�x� =



2���1/
�
exp�− � x

�
�
� , �2�

where 
0 controls the shape of the distribution, and �
controls the spread.16,17 The generalized Gaussian distribu-
tion includes several special cases: when 
=2, it is the
standard Gaussian distribution; when 
=1, it becomes a
Laplacian distribution; and when 
→	, it converges to the
uniform distribution. Together they represent both fat-tail
�leptokurtic� and thin-tail �platykurtic� distributions. We se-
lected the three special cases, namely, Laplacian, Gaussian,
and uniform distributions, for the distribution of simulator
variability, then computed several cases that are tabulated
in Table 3. While the Laplacian distributions generally gave
a higher matching rate and a lower extra rate compared to

cases of algorithm variability.

3a Case 3b Case 4 Case 5

28 0.0236 0.0160 0.0236

08 0.0000 0.0076 0.0053

49 0.0053 0.0030 0.0000

05 0.0000 0.0023 0.0000

17 0.9184 0.9441 0.9654

37 0.0470 0.0213 0.0057

23 0.0002 0.0034 0.0000

34 0.0055 0.0023 0.0000

% 99.2% 62.3% 81.5%

% 178.8% 82.9% 19.6%
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Fig. 8 Computation of the matching rate �curve on top� and the
extra rate �curve on bottom� using emulated data.
various

Case

0.02

0.00

0.00

0.00
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0.01

0.00

0.00

89.4

63.5
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he Gaussian distribution, and a still lower matching rate
nd a higher extra rate were obtained for the uniform dis-
ribution, the results of the three distributions are similar.
hese results suggest that our analysis above is not very
ensitive to the shape of the simulator variability distribu-
ions.

.4 Further Considerations
n the preceding analyses, we assumed a linearly increasing
otspot distribution Pnoiseless�x� at a particular slope and a
hreshold at T=100. It is natural to ask whether changing
he slope or the threshold would affect the matching and
xtra rates. If so, the next question to ask is if there is an
ptimal distribution �not necessarily a linear function� that
imultaneously maximizes the former and minimizes the
atter.

The answer to the first question is affirmative. Suppose
noiseless�x� has an x intercept of 90 and a maximum critical
imension at x=150. The resulting slope is then
/1,800—a four-fold increase from the earlier simulation.
sing the equations for PA to PH in Sec. 3.1, for �1=�2
5 �similar to case 2 above�, we find that the matching rate
rops substantially to 54.6%, while the extra rate increases
o 45.4%. Simulations of the other cases for other slopes
evealed that an increase in slope led to a decrease in the
atching rate and an increase in the extra rate.
We also investigated the cases where the slope was

gain 1 /7,200, and �1=�2=5, but the threshold was a vari-
ble. Again, the benchmark was case 2 in Table 2. When
=95, the matching rate was 66.1%; when T=105, the
atching rate was 78.3%. �The extra rate is 1 minus the

Table 3 Numerical simulation of several variability distributions.

Laplacian Gaussian Uniform

�1=�2=15:

matching rate 45.0% 44.0% 44.0%

extra rate 55.1% 56.5% 56.1%

�1=�2=5:

matching rate 74.9% 73.5% 72.6%

extra rate 24.8% 26.7% 27.3%

�1=5, �2=15:

matching rate 65.3% 62.2% 29.8%

extra rate 77.6% 83.5% 87.3%

�1=0, �2=5:

matching rate 85.2% 83.1% 81.4%

extra rate 21.0% 22.9% 24.7%
. Micro/Nanolith. MEMS MOEMS 033002-
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matching rate, as discussed earlier.� Therefore, we can ar-
gue that an increase in threshold leads to a better matching
rate and a lower extra rate.

Closer examinations revealed that, there is a direct ex-
planation for the above results. What contributed to the
mismatch in the simulator results was mainly the propor-
tion of critical dimensions around the threshold. The case
for increasing the slope is shown in Fig. 9. The shaded area
indicates the increase in the number of critical dimensions
near the threshold, i.e., the likely candidates causing the
mismatch. Note that in calculating the matching and extra
rates, the number of hotspots in the reference must be nor-
malized. In this case, this value did not change much as we
increased the slope, so the extra critical dimensions contrib-
uted to the decrease in the matching rate �and correspond-
ingly, the increase in the extra rate�.

Likewise, we analyzed the effect of increasing the
threshold, depicted in Fig. 10. The area shaded in light gray
indicates the neighborhood of the original hotspot criterion,
while the area shaded in dark gray is the neighborhood of
the new criterion. Certainly the latter is larger. However, we
had to normalize it with the proportion of hotspots to cal-

critical dimension

p
ro
b
a
b
ili
ty

slope at 1 / 7,200

hotspot
criterion

hotspot

non−hotspot

slope at 1 / 1,800

Fig. 9 Example showing the effect of increasing the slope of the
distribution.

critical dimension

p
ro
b
a
b
ili
ty

hotspot criterion

hotspot

non−hotspot

new hotspot criterion

Fig. 10 Example showing the effect of increasing the hotspot crite-
rion of the distribution.
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ulate the matching and extra rates. Note that while the
haded area increases linearly with the hotspot criterion, the
roportion of hotspots �the area bounded by the threshold�
ises quadratically. Hence, the proportion of critical dimen-
ions around the threshold actually decreased, leading to a
ecrease in the mismatch and therefore a better matching
ate.

We also pinpointed the optimal distribution that maxi-
ized the matching rate and minimized the extra rate. This

istribution should have as small an area in the neighbor-
ood of the hotspot criterion as possible. In other words, to
ave two simulators delivering identical results, we want
ritical dimensions that are either clearly a hotspot or
learly not a hotspot! In hindsight this may sound trivial,
ut it helps to put our analysis into perspective since this
cenario is clearly too idealistic in practice.

In Face of Variability
ariability should be addressed on both the algorithm and

he application levels. For the former, we must improve
lgorithmic precision via examination and control of the
oot causes of variability. This is essentially an effort to
hape the noise function fnoise�x� in Sec. 3.1 closer to a
elta function, i.e.,

fnoise�x� → ��x� .

At the same time, for each application we must set
pecifications that are at once commensurate with the limi-
ations of the underlying algorithms and the goals of the
articular application. For example, in a physical DFM ap-
lication in which the hotspot analysis algorithm is distinct
rom the signoff verification engine, it is impractical to ex-
ect to fix all hotspots since, according to Sec. 3.2, unless
e are willing to tolerate a large number of erroneous
otspots, 100% hotspot matching is highly unlikely.

Remarks
omputation lithography owes its current prevalence to al-
orithm innovations18 and improvement in computer pro-
essing performance over the last few decades. In this vir-
ual world, “realities” are tools that perform useful service
or integrated circuit development. They are characterized
y

1. specifications that make engineering sense, and
2. performance that meets the specification targets.19

“Virtuality” includes applications that fall short of one
r both of the above two criteria. Thus, whether physical
FM—in particular, the hotspot analysis discussed in this
aper—can be a reality depends on proper specifications in
ine with the algorithm variabilities, and efforts that reduce
ariability can help position this goal deeper in the realm of
eality.
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