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Abstract: Level-set based inverse lithography technology (ILT) treats
photomask design for microlithography as an inverse mathematical prob-
lem, interpreted with a time-dependent model, and then solved as a partial
differential equation with finite difference schemes. This paper focuses on
developing level-set based ILT for partially coherent systems, and upon
that an expectation-orient optimization framework weighting the cost
function by random process condition variables. These include defocus
and aberration to enhance robustness of layout patterns against process
variations. Results demonstrating the benefits of defocus-aberration-aware
level-set based ILT are presented.
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1. Introduction

Optical projection lithography remains the predominant microlithography technology until the
foreseeable future as shrinkage of integrated circuit device dimension outpaces introduction
of shorter-exposure wavelengths and higher-numerical-aperture lenses extending to sub-0.35
k1 regime and minimum design pitches to sub-100nm. Due to the wave nature of light, as di-
mensions approach sizes comparable to or smaller than the wavelength of the light used in the
photolithography process, the bandlimited imaging system introduces undesirable distortions
and artifacts. Along the way, resolution enhancement techniques (RET) [1, 2] are essential in
optical lithography, which include modified illumination schemes and optical proximity cor-
rection (OPC). The latter predistorts the mask patterns such that printed patterns are as close to
the desired shapes as possible. Rule-based OPC [3, 4], in which various geometries are treated
by different empirical rules, and model-based OPC, which is more complex and involves the
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computation of a weighted sum of pre-simulated results for simple edges and corners that are
stored in a library, are two main approaches to OPC. Moving beyond model-based OPC, in-
verse lithography technology (ILT) is becoming a strong candidate for 32nm and below low-k1

regime.
Inverse model-based techniques invert the imaging model and attempt to directly synthesize

the optimized mask pattern, and are not constrained by the topology of the original design [5].
Early works include branch and bound algorithm [6] and the “bacteria” algorithm [7] with very
limited applicability due to their high computation complexity. Since the mid-1990s, iterative
methods have been applied to generate binary masks [8] and phase shifting masks (PSMs) [9,
10, 11], treating the problem as an inverse problem and solving it by an optimization process.
Meanwhile, Poonawala and Milanfar designed a model-based OPC system and developed a
faster optimization algorithm using steepest-descent [12, 13], which has been further improved
by Chan et al. using an active set method and conjugate gradient [11, 14]. Applications of
ILT are also reported in pixelated mask technology [15], double exposure lithography [16],
manufacturability enhancement [17] and designs specifically taking into account robustness to
variations, such as focal length [18].

Level-set method [19] offers a feasible alternative to inverse lithography. It has been ap-
plied in “forward” optical lithography [20] and inverse imaging problems [21] involving obsta-
cles [22, 23], and in nonlinear deblurring and noise removal [24]. Level set approaches for ILT
has been explored in [5, 25], and in [26], Shen et al. presented systematic level-set formulations
and developed finite-difference schemes to solve them with high fidelity and robustness for a
coherent imaging system. It should also be noted while the above-mentioned algorithms enrich
the weaponry for solving inverse lithography problems, the current performance still falls short,
and is not yet fully applicable to real-world manufacturing [27, 28]. One such concern is that
they are mostly applied to calculate solutions under nominal conditions, without taking process
variation into account. Consequently, various efforts have been made to incorporate process
conditions such as defocus and aberration variations into OPC algorithms for robust design of
printed patterns [29, 30].

This paper focuses on the development of algorithms for photomask synthesis using level-
set based inverse lithography problem in partially coherent systems. A statistical method is
proposed to incorporate process variations into the optimization framework, which treats de-
focus and aberrations as random variables, taking their statistical properties into account, and
develops an optimization framework which aims to minimize the pattern difference between the
printed wafer upon various defocus and aberration conditions and the target pattern. A complete
set of level-set formulations of the optimization problem is provided with computationally effi-
cient solutions.

2. The Constrained level set time-dependent model formulation

2.1. Mathematical model for partially coherent systems

The projection lithography imaging process can be described as a forward model

I(x) = T {U(x)}, (1)

where the boldface x denotes spatial coordinates (x,y), and T {·} maps the input intensity
function U(x) to the output intensity function I(x). Due to the lowpass nature of the optical
lithography imaging system, I(x) is typically a blurred version of U(x). Suppose the desired
circuit pattern is I0(x). The objective of inverse lithography is to find a predistorted input inten-
sity function Û(x) which minimizes its distance with the desired output, i.e.,

Û(x) = argmin
U(x)

d(I0(x),T {U(x)}), (2)
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(a) (b) (c)

Fig. 1. Common illumination sources: (a) conventional, (b) annular, and (c) dipole.

in which d(·, ·) is an appropriately defined distance metric, such as the �2 norm.
The lithography process T {·} in Eq. (1) can be divided into two functional blocks, namely

the projection optics effects (aerial image formation) and resist effects. The resist effects can be
approximated using a logarithmic sigmoid function [13]

sig(U(x)) =
1

1+ e−a(U(x)−tr)
, (3)

with a being the steepness of the sigmoid and tr being the threshold.
The nonlinear nature of aerial image formation in partially coherent systems has been un-

derstood since the early development of optical coherence theory [31, 32], but the complexity
of the calculations involved has limited use of the theory for actual optical design. In partially
coherent imaging, the mask is illuminated by light traveling in various directions. In [33], the
concept of effective source is developed to help understand the mechanism of partially coherent
imaging. Radiation of partially coherent light has been shown to be an expansion of coherent
modes added incoherently in the image plane. The expansion uses a basis of orthogonal func-
tions which are eigenfunctions of the mutual coherence function [34], however, computation
of the eigenfunctions is a difficult process which leads to complicated functions and expen-
sive computation complexity in terms of both speed and memory requirement. Alternatively,
the Fourier expansion model [35, 36] is applied to decompose the partially coherent imaging
systems as the sum of coherent systems.

According to the Hopkins diffraction model, the light intensity distribution exposed on the
wafer in partially coherent imaging is bilinear and can be described as

Iaerial(x) =
∫ ∫ ∞

−∞
U∗(x1)U(x2)γ(x1 −x2)H

∗(x−x1)H(x−x2) dx1 dx2, (4)

where x = (x,y), x1 = (x1,y1) and x2 = (x2,y2). U(x) is the mask pattern, γ(x1 − x2) is the
complex degree of coherence and H(x) represents the amplitude impulse response of the op-
tical system, namely point spread function (PSF). The term γ(x1 − x2) is generally a complex
number, whose magnitude represents the extent of optical interaction between two spatial lo-
cations x1 = (x1,y1) and x2 = (x2,y2) of the light source. It is the inverse Fourier transform of
the image of the illumination shape Γ(x) in the lens pupil. Common illumination sources are
shown in Fig. 1, which include conventional circular, annular, and dipole, all introducing partial
coherence into illumination.

If the object intensity vanishes outside a square area A defined by x ∈ [−G
2 ,

G
2 ], for computa-

tions involved in (4), the only values of γ(x) needed are those inside the square area Aγ defined
by x ∈ [−G,G]. We can expand γ(x) as a 2-D Fourier series of periodicity 2G in both the x and
y directions, and therefore, γ(x) can be rewritten as

γ(x) = ∑
m

Γme jω0m·x, (5)
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and also

Γm =
1

G2

∫
Aγ

γ(x)e jω0m·x dx, (6)

where j =
√−1, ω0 = π/G, m = (mx,my), mx and my being integers within the range of

[−D,D], and m · x = mxx+myy. Substituting (5) into (4), the light intensity on the wafer is
given by

Iaerial(x) = ∑
m

Γm|U(x)∗Hm(x)|2, (7)

where
Hm(x) = H(x)e jω0m·x. (8)

Combining the aerial image formation in (7) and the logarithmic sigmoid function in (3) de-
scribing resist effects, we have the image formation equation for a partially coherent imaging
system as

I(x) = sig(∑
m

Γm|U(x)∗Hm(x)|2). (9)

It is observed from (7) that the partially coherent image is equal to the superposition of coherent
systems. In what follows, we will drop the arguments x whenever there is no ambiguity.

2.2. Time-dependent model formulation in partially coherent imaging

Development of the time-dependent scheme in partially coherent imaging is in principle similar
to that in coherent imaging [26]. The inverse lithography problem can be treated as an obstacle
reconstruction problem [22, 23], which is an inverse problem involving obstacles where the
desired unknown is a region consisting of several subregions. We give U a level set description
by introducing an unknown function φ(x), which is related to U by defining

U(x) =

{
Uint for {x : φ(x)< 0}
Uext for {x : φ(x)> 0} , (10)

where Uint = 1 and Uext = 0 if we are dealing with binary masks. Now we can define the inverse
lithography problem as finding φ(x) such that T (U)≈ I0. Solving this with a least squares fit
to the approximation is equivalent to seeking the minimizer of

F(U) =
1
2
|T (U)− I0|2. (11)

The boundary of the subregions in U where U = Uint is governed by the zero level set of φ ,
namely, φ(x) = 0. If φ depends on both x and time t such that the evolution of the subregions in
U is associated with φ(x, t), following the steps in [26], we arrive at the time-dependent model

∂φ
∂ t

=−|∇φ |α(x, t), (12)

with α(x, t) being defined as

α(x, t) =−J(U)T(T (U)− I0)

=
1
2

∂
∂U

(I− I0)
2

=
1
2

∂
∂U

(
sig(∑

m
Γm|U ∗Hm|2)− I0

)2

= a

{
∑
m

ΓmHm ∗ [(I0 − I)� I� (1− I)� (Hm ∗U)]

}
, (13)
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where J(U) is the Jacobian of T (U) at U and � denotes element-by-element multiplication.
Eq. (12) is a partial differential equation (PDE). Once φ and α are defined at every grid point
on the Cartesian grid, Eq. (12) can be solved using finite-difference methods with first-order
temporal and second-order spatial accuracy as suggested in [26]. It should be noted the inverse
lithography problem is non-convex with multiple local minima. Since we use finite-difference
schemes to solve the PDE, there is no guarantee of reaching the global minimum. However, ILT
is an ill-posed problem and it is often not necessary to arrive at the global minimum. Any good
local minimum (where goodness is defined using data-fidelity and user-defined properties) can
suffice as an acceptable solution.

2.3. Aberration-aware statistical model

We have thus far assumed nominal conditions where the image always lies on the focal plane
and the image wavefronts is spherical. However, in optical lithography, the emerging wavefronts
from the pupil are in general aspherical [34], even if the lens surfaces are spherical. Deviation of
wavefronts, also known as aberration, is studied extensively in the Nijboer-Zernike theory [37,
38, 39]. Aberration function Φ can be represented as Zernike polynomials [39],

Φ(ρ ,θ) = ∑
n,m

cm
n Rm

n (ρ)cosmθ , (14)

where ρ ,θ are the polar coordinates in the exit pupil function, and cm
n Rm

n (ρ)cosmθ is a poly-
nomial of the Zernike set with cm

n being aberration coefficient. For example, one of the most
widely studied aberrations, defocus [34], or the focus error f between the image plane and focal
plane, can be expressed as f = c0

2ρ2 where c0
2 is the aberration coefficient for defocus. As a rea-

sonable assumption, the coefficients are modeled as independent, normally distributed random
variables with zero mean and identical non-zero variance. PSF in an ideal case where there ex-
ists no defocus and aberrations is taken as the inverse Fourier transform of a disc function [34],
denoted as H0 in this paper. Aberration terms are incorporated into the PSF by multiplying an
exponential term with aberration function as power in the frequency domain, i.e. [37]

F (H) = F (H0)× e jΦ, (15)

where F denotes Fourier transform.
To enable the computation of optimum mask patterns minimizing deviation of images from

their targets not only at nominal but also over a range of aberrations, the objective function
takes expectations of the difference under various aberration conditions to optimize the average
performance of layouts. The optimization problem we aim to solve becomes

Uoptimal = min
U

E
{‖I− I0‖2

2

}
, (16)

where ‖ · ‖2
2 denotes the square of the �2 norm and E denotes expectation. One should note this

expectation-orient minimizing problem practically weights the cost function ‖I − I0‖2
2 by the

statistical probability of aberration terms appearing over a range. Previous efforts in [18, 29, 30]
developed various algorithms to solve the inverse lithography problem in Eq.(16). Yet in the
framework of level-set-based ILT in partially coherent systems, a stable explicit time-dependent
model can be applied,

∂φ
∂ t

=−|∇φ |α(x, t), (17)
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in which α(x, t) is computed as

α(x, t) =
1
2

∂
∂U

E
{
(I− I0)

2}

=
1
2

∂
∂U

E

{(
sig(∑

m
Γm|U ∗Hm|2)− I0

)2
}

= a×E

{
∑
m

ΓmHm ∗ [(I0 − I)� I� (1− I)� (Hm ∗U)]

}
. (18)

One should notice that Eq. (17) takes the same form as Eq. (12) with a different computation of
α(x, t), therefore Eq. (17) is also a PDE which could be solved by the proposed finite difference
schemes in [26]. The computation stops after a certain number of iterations or when the value
of the cost function has decreased below a certain threshold value.

3. Numerical results

We apply the inverse lithography technique outlined above to designing various circuit patterns
for partially coherent systems. We use the same imaging system parameters: λ = 193nm, NA =
1.35, resolution Δx = 10nm/pixel, steepness of the sigmoid function a = 85, threshold tr = 0.3,
and therefore the same PSF H0(x) with the same size as that of the target pattern which is
101× 101 for various experiments. The optimization stops after 50 iterations. In this paper,
we apply the proposed algorithms on binary masks. However, it should be noted the same
framework can be readily applied to phase-shifting masks (PSMs) by applying different levels
sets to corresponding phases in the PSMs. Figure. 2(a) shows the target pattern, and (b), (c) and
(d) are the output patterns under circular, annular, and dipole source illuminations in Fig. 1(a),
(b) and (c), respectively. Respective pattern errors are also given.

In Fig. 3, input pattern derived using the proposed level-set based ILT in partially coherent
imaging under nominal condition with circular, annular and dipole illumination are presented.
The first column denotes the input pattern, the second column aerial image and the third column
the output pattern. Combining the data in Fig. 2 and Fig. 3, we can see that the input pattern
developed using the proposed level-set based ILT greatly improves pattern quality in partially
coherent imaging systems under commonly used illumination sources.

Another set of simulation is given in Fig. 4 applying the proposed statistical method to target
pattern in Fig. 2(a) with circular source in Fig. 1(a) as an example to test its effectiveness
against aberrations. It should be noted that the optimal input mask pattern is computed by
averaging the output patterns under different aberration conditions weighted by the statistical
probability of the aberration coefficient. Consequently, for any specific aberration, PSF H(x)
should be computed by degrading H0(x) with aberrations as in Eq. (15). For defocus aberration,
conventionally, the relationship between the defocus coefficient c0

2 and the real image space
coordinate z by paraxial approximation can be described as [39]

c0
2 = 2

π
λ

z

(
1−

√
(1−NA2)

)
≈ z

πNA2

λ
, (19)

therefore, defocus term is incorporated into the amplitude spread function H(x) by multiplying
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(a) (b) (c) (d)

Fig. 2. (a) Target pattern of size 101× 101. (b) Output pattern under circular source, re-
sulting in a pattern error of 45 pixels. (c) Output pattern under annular source, resulting in
a pattern error of 116 pixels. (d) Output pattern under dipole source, resulting in a pattern
error of 144 pixels.

U(x) Iaerial(x) I(x)

(a)

(b)

(c)

Fig. 3. Simulation of lithographic imaging with different mask patterns computed using
level-set based ILT. The first column denotes the input U(x), the second column Iaerial(x),
and the third column I(x). Rows (a), (b) and (c) use the derived pattern under circular
illumination, annular illumination, and dipole illumination as input, resulting in pattern
errors of 5, 24, and 45 pixels respectively.

an exponential term with power,

jc0
2ρ2 ≈ jπz

NA2

λ
ρ2 = jπz

NA2

λ

[(
u

λ
NA

)2

+

(
v

λ
NA

)2
]

= jπλ z(u2 + v2)

= jπλ z

[(
m

1
NΔx

)2

+

(
n

1
NΔx

)2
]

= jπλ z
m2 +n2

(NΔx)2 , (20)

in which N is the image size and (u,v) and (m,n) are the frequency coordinates and normal-
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Fig. 4. Performances of the proposed level-set based statistical method with aberration
variations. (a) focus-aware input mask pattern computed using the statistical method. (b)
coma-aware input mask pattern computed using the statistical method. (c) Comparison of
pixel errors under different focus errors. (d) Comparison of pixel errors under different
coma.
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ized frequency coordinates corresponding to spatial coordinates (x,y) respectively, in the fre-
quency domain of the nominal PSF H0(x). We first construct the optimal input mask pattern
with defocus variation using the statistical method described in Section 2.3 and then compare
the generated results with that of the optimal input mask pattern constructed under nominal con-
ditions presented in U(x) of Fig. 3(a). The optimal input mask pattern with defocus variation
is presented in Fig. 4(a). It should be noted that since we are not introducing large aberration
parameters and small weights accompany large aberration parameters, big difference in mask
patterns obtained under nominal condition and using the statistical method in Fig. 4(a) is not
expected. Figure. 4(c) plots the performance of the statistical method versus optimization only
under nominal conditions with a defocus range of (-90nm, 90nm). It is observed that while un-
der nominal conditions, the optimal input mask pattern under nominal condition outperforms
the input mask computed using the statistical method, which is not a surprise since the former
is intended specifically for nominal conditions and the latter is not, the input mask computed
with statistical variability accounted for improves pattern fidelity with focus variation, obtaining
fewer pattern errors than the optimal input mask pattern computed under the nominal condi-
tion. This is because the expectation operation tends to compensate the distortion brought by
different defocus conditions on the input pattern mask. In Fig. 4(b), the input mask computed
with statistical identity of coma variation accounted for is presented. The Zernike polynomial
for coma is given as c1

3(3ρ3 −2ρ)cosθ , and coma term can be incorporated into the PSF H(x)
by multiplying nominal PSF H0(x) with an exponential term with power,

jc1
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jc1
3

⎡
⎢⎣3

⎛
⎝
√(

u
λ

NA

)2

+

(
v

λ
NA

)2
⎞
⎠

3

−2

√(
u

λ
NA

)2

+

(
v

λ
NA

)2

⎤
⎥⎦cosθ

= jc1
3

[
3

λ 3

NA3

(
u2 + v2) 3

2 −2
λ

NA

(
u2 + v2) 1

2

]
cosθ

= jc1
3

[
3

λ 3

(NΔxNA)3

(
m2 +n2) 3

2 −2
λ

N�xNA

(
m2 +n2) 1

2

]
cosθ . (21)

Figure. 4(d) plots the performance of the statistical method versus optimization only under
nominal conditions with a coma range c1

3 of (-0.08, 0.08). Likewise, we observe similar results
in Fig. 4(d) as that in Fig. 4(c). These observations justify the proposed statistical algorithm in
producing aberration-aware input mask pattern for critical structures.

It should be noted that when two or more aberrations are present, the root mean square de-

formation of the combined aberration ΔΦrms =
√

∑n,m cm
n

2 becomes a chi-square distributed

random variable with degree of freedom equal to the number of Zernike polynomials in the
combined aberration. Incorporating aberration terms in the ASF similarly as in Eq. (20) and
Eq. (21), the proposed algorithm can produce aberration-aware input masks against this com-
bined aberration using the proposed level-set-based statistical method.

4. Conclusion

In this paper, we investigate level-set formulations for photomask design in optical microlithog-
raphy for partially coherent systems with computationally efficient solutions. The inverse
lithography problem is described as a constrained time-dependent model with the form of a par-
tial differential equation which is solved by available finite-difference schemes. The proposed
level-set-based ILT enables computation of optimum mask patterns to minimize deviations of
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images from their targets not only at nominal but also over a range of aberrations. The statisti-
cal optimization framework proposed in this paper offers algorithmic insights of how the cost
functions are weighted by statistical probability of aberration coefficients to optimize average
layout performance which shows great robustness against aberrations.
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