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Abstract This paper investigates the stability problem of Markovian jump systems
with multiple delay components and polytopic uncertainties. A new Lyapunov—
Krasovskii functional is used for the stability analysis of Markovian jump systems
with or without polytopic uncertainties. Two numerical examples are provided to
demonstrate the applicability of the proposed approach.
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1 Introduction

Markovian jump linear systems are hybrid systems with many operation models and
each model corresponds to a deterministic dynamic system. The switching amongst
the system modes is governed by a Markov process. This class of systems is often
used to model systems whose structures are subject to abrupt changes and their exten-
sive applications have been applied to many physical systems such as manufacturing
systems, aircraft control, target tracking, robotics, solar receiver control, power sys-
tems, and so on [2, 18]. Considerable attention has recently been devoted to the study
of Markovian jump linear systems such as controllability [16, 17], stability [5, 10,
37], Hx control [2, 7, 19, 23, 28], H, control [9], H filtering [11, 22, 26, 36, 39],
guaranteed cost control [8], and model reduction [30, 42].

As time delay is very common in many physical, industrial and engineering sys-
tems [1, 24, 25], it is often introduced to model these systems; for example, multiple
delays are required to model the RLC circuits with delayed elements [29], networked
control systems [14, 20] and nonlinear stochastic systems [1]. However, since dy-
namic systems with time delays are of infinite dimensions, the control of these sys-
tems is fairly complicated and the desired performance of the closed-loop systems is
difficult to achieve. Therefore, the presence of time delays substantially complicates
the analytical and theoretical aspects of control system design. A survey of recent
results developed to analyze the stability of delay systems is given in [38], which
includes delay-independent and delay-dependent results. Recently, a new simplified
and more efficient stability criterion for linear continuous system with multiple com-
ponents has been used in [13] to improve the delay-dependent stability condition. As
a result, the study of Markovian jump linear systems with time delay has received
attention of many researchers in topics of stability [40], H, control [4, 31, 34], and
filtering [12, 32, 33].

To accurately characterize the physical systems, description of the uncertainty in
the system parameters is often needed. Two types of uncertainties, norm bounded un-
certainties and polytopic ones, are commonly used [6]. For jump systems with norm
bounded uncertainties, the stability and stabilization [5, 21, 35, 41], Hx control [15],
and robustness Hy, filtering [36] have been addressed. The robust stability and Hyo
control of Markovian jump systems with constant delay and polytopic uncertainties
is studied in [4].

In this paper, we are concerned with the robust stability of continuous-time Marko-
vian jump systems with mode-dependent multiple time delays and time-varying poly-
topic uncertainties. The rest of the paper is organized as follows. Section 2 describes
the continuous-time Markovian jump systems with mode-dependent multiple time
delays and polytopic uncertainties, and presents preliminary results. The main results
are given in Sect. 3, which includes the stability and robust stability of continuous-
time Markovian jump system with mode-dependent multiple time delays without
polytopic uncertainties or with polytopic uncertainties, respectively. Two numerical
examples are used to illustrate the main results in Sect. 4, which is followed by the
conclusion in Sect. 5.

Notation Throughout this paper, the notation X > Y for real symmetric matrices X
and Y means that the matrix X — Y is positive definite. R” is the set of all column
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vectors with 7 real entries. M represents the transpose of the matrix M. Identity ma-
trices are invariably denoted by I when their dimensions are obvious and otherwise
denoted by I, to represent an n x n identity matrix, while zero matrices are invari-
ably denoted by 0. The notation col{-} denotes a matrix column with blocks given by
the matrices in {-}. For a matrix M € R"*™ with rank r, the orthogonal complement
is defined as a (possibly non-unique) m x (m — r) matrix such that M M L =0and
MTMt > 0.

2 Problem Formulation

Given is a probability space (§2, F,P) where £2 is the sample space, F is the o-
algebra of subsets of the sample space and P is the probability measure defined on F.
On this probability space (§2, F, P), we consider the following class of continuous-
time Markovian jump systems with mode-dependent multiple time delays and poly-
topic uncertainties:

Dyt 50 = AC)x(0) + Aa(r)x (r - dem)), 0

k=1
x()=¢), te[—n,0]

where x(¢) € R” is the state, {r,} is a continuous-time homogeneous Markov process
with right-continuous trajectories and taking values in a finite set N = {1,..., N},

and stationary transition probability matrix I7 = [7;;]; jen 18 given by

wijh+o(h) i#j

Pr{riyn=jlrnn=i}=
{rian=Jjlr: } :l—i—niih—i-o(h) i=j

where & > 0, limy,9(o(h)/h) =0, and 7;; > 0, for i # j, is the transition rate from
mode i at time ¢ to mode j at time ¢ + k, and

N
Tij = — E Tij-

j=Li#

The di(r;), k =1, ..., r, denote the time delay components in the state and are as-
sumed to satisfy the following conditions:

0<di(ry) =diy <djx <00, ri=i€eN,
and
-
pw=max{y di t.
ieN k=1

In (1), ¢(¢) is a vector-valued initial continuous function defined on the interval
[—u, 0]. When system X is in mode r;, A(7;) and A4 (r;) are matrix functions of ;.
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For each possible value r; =i, i € N , the matrices associated with the ith mode are
unknown and assumed to belong to a convex compact set of polytopic type,

[AG) AuD)] € Up@),

where

q q
Up(i) & {Zaz(t)[f\il Agit] Y (1) = 0, > "ey(t) =1 @)

=1 =1
with A;; and Ag;; being given matrices with appropriate dimensions.
Definition 1 [4] System X}, is said to be robust stochastically stable if for any A(i)

and Ay(i) € Up(i), there exists a constant Up(¢(-), o), which is dependent on the
initial condition (¢(-), rg) and satisfies Uy (0, 0) = 0, such that

E[/Ooo”x(f, (), 10) szt] < Uo(p(), r0),

where E[-] denotes the expectation and x (¢, ¢(-), rg) denotes the solution of system
X, at time ¢ under the initial conditions ¢(-) and rg.

Lemma 1 [13] Let Y € R™™" and the bidiagonal upper triangular block matrix be

I, -Y 0 - 0
o I, -Y --- 0
JgX)y=1|... ... G]RKnXKn,
0 0 0 -Y
0 0 0 I,
Si
Sz
If Z=1[Jk(Y) S] € RKnX(Kner), where § = = RKV!XW! with S; € Rxn
Sk-1
Sk

(i=1,...,k), then

K K
Vi =col!—ZYi_lSi, —Zyi—Zsi,..., —SK,Im}.
i=1 =2

Lemma 2 [27] (Finsler’s Lemma) Consider real matrices B and M such that B has
full row rank and M = M" . The following statements are equivalent:

1. There exists a vector x such that xT Mx < 0 and Bx = 0;
2. There exists a scalar | € R such that

IB"B—M > 0;
3. The following condition holds:
B*TMB* <o.
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3 Main Results
3.1 Stability

If A(r;) and A4(r;) are known and do not have polytopic uncertainties, then system
X, becomes

T x(0)=AG)x(t) + Aalro)x (r - dem)), 3)

k=1
x(t):(p(t)7 le[_llyo], (4)

where for each possible value r, =i,i € N, hold A; = A(i) and Ay; = Ag;(i). Define

P P
n=max{|m;}, )\ipzzdika ):ipzzd_ika ieN,
ieN 1
with A;o = 0 and X;o = 0, which leads to
Mip <Aip<p, i€N,1=0,1,...,r o)
Then we have the following theorem by applying the methodology used in [13].

Theorem 1 IfthereexistPi>0,iel\7, On>0m=1,....r, X>0and Y >0

such that
Qm+l_Qm§0, m=1,...,r—1, 6)
I'ni+Ii 0 0
T+" 0 ri; 0 |T+<o, )
0 0 I

foreachi e N, then the system X is stochastically stable, where

— N -
Y TP+ X+ (14
Zj_lﬂlj Jj ; nw) 01 0 0 P Ay;
+PA; + AT P,
0 0,—01 - 0 0
I =
0 Or — 0,1 0
L Al P 0 0 -0
c ]R(r+l)n><(r—+-l)n7 (8)
A;
0
Tn=[AT 0 -~ 0 AL Jur| : [eROUFTDmxt+hn )
0
Agi
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—X 0 .. 0 0
0 —dj'v .- 0 0
Fiz=| : : : : :
0 0 o —dilY 0
L 0 0 0 —( = hig—1) 'Y
e]:R(V"l‘l)i’lX(}’-“l)l’l7 (10)
Fmidy Q1 0 0
Ty= : . _1: : e RN (1)
”iidi(r_l)Qr—l 0
- 0 miid;,' O,
r r
Ti:col{— Siv=Y Siv... =S, Ioriyn { € ROTFIm20+Dn (12)
i=1 i=2
Sl 0 _In 0 0 0
S 0 0 -1, 0 0
S, 0 0 0 1, 0
S, I, 0 0 0 —I,

Proof Note that {(x(¢),r;),t > 0} is not a Markov process. From [4], we define a
new process {(x;, r;),t > 0} by

xi(s)=x(t+s), t—pu=<s=t,

which leads to conclusion that {(x;, ), ¢ > 0} is a Markov process with initial state
(¢(+), ro). Define a new stochastic Lyapunov functional candidate of the system X' as

5
V) =y Vplx,r), (13)

p=1

where

t
Vi r) =xT @) P(r)x (1), Vz(xz,rz)=/ xT(s)Xx(s)ds,
1—p
0 t
V3(Xt”"t)=/ / )'CT(S)Y)'C(s)dsdQ,
—n Jt46
t—=Xil

r t=Aiq-1) -
Va(xi,rt) =Z/ x7 (s)Qix(s)ds,
=1

0 t
Vs(x¢, re) = n/ / xT(s)Q1x(s)ds db.
—n Jt4+0
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Let A denote the weak infinitesimal generator of the random process {x;, r; }. Then,
for each r; =i,i € N, it can be verified that

N
AV, )] =x"@) (Zﬂijpj>x(t) +2xT )P (Aix(t) + Aaqix (t — i),

j=1
A[Vaer, D] =xT O Xx(@0) =t = ) Xx(t — ).
By Jensen’s integral inequality and 0 < A;(.—1) <, i € N, we have

t

A[V3(xt,i)]:/L)'CT(t)Y)%(t)—/ T (s)Yx(s)ds

t—p
t=Rigr—1)
=puxT O)Yx(@1) —/ T (s)Yx(s)ds
r—p
=1 e
— Z/ i (5)Yi(s)ds
1=1 71

—Ai(r—1)

T
< ux" (OYEE) = (1= hig-1) " ( f fc(s)ds) Y
t

—u
t=Ai(r—1)
X (/ x(s) ds)
1—p
r—1 . 1=Xig-1) T t=Ai(-1)
Y d; (/ x(s)ds) Y(/ )'c(s)ds)
=1 t—Ail t—Ail

t=Ai(—1)

T
< ux" (OYE@) = (1= hig-1) " (f a‘c(s)ds) Y
t

—
t=Xi(—1)
X ([ x(s) ds)
r—p
r—1 . t=Ai(—1) T t—=Ai(l—1)
Y d; (f )&(S)ds) Y(/ )'c(s)ds).
=1 t—Ail t—Ai

From the proof of Theorem 3.1 in [3] and

r t

v4<xt,i)=z<f

=1 Ik

t

xT(s)0ix(s)ds — /

I=Ai(—1)

xT(s)szmds),

we have
E[V4(xt+A7 Fep )| (X, e = i)]
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t+A
_ZE[I(Vt+A n(Z(/ x"()Qix(s) ds

J#i
(-xl’ ry = l):|

t
+/ xT(s)le(s)ds>>
t+A—Aj;
r t+A r
+]E|:I(r,+A:i) (Z([+A-A[/x ($)Q1x(s) ds))

=1

t+A
—ZE[I(MA n(Z(/t x"(s)Qix(s)ds

JF#i
(X, 1 = i):|

t
+/ xT(s)le(s)ds>>
t-‘rA—)L_/'([_l)
r t+A .
—-E Irz+A=i f (s) ()d>
[ ( )(Z( I+A—)\i(l,1>-x s le g g )

=1

(Xt,rtZi)j|

(Xt,i’t=l')i|

where

t+A
ZE|:I(”H—A =) (Z(/ x"()Qix(s)ds

JF#

t
+[ xT(s)le(s)ds>)
t+A—Aj;
r t+A -
+E Ly a=i / d )
[( )(Z( t+A_Mx (s)Qrx(s)ds )

=1

Wy = ZE|:I(H+A =) Z(/ xT(s)Qix(s)ds

J#

(xlvrt:i):|

(xt»VtZi):|,

(xt,rt=i):|

t
+[ xT(s)le(s) ds)

I+A=Aji-1)

4 A .
+E IrH—A:i y
[( >(Z</,+Mm”x (5)Q1x(s) S))

=1

(Xt,rt=i):|-

The first part can be expressed as

+A
ZE[I(r;+A J)(Z(/ x"(s)Qix(s)ds

JF#
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t
+/ xT(S)Q[x(s)ds>) Gy =i):|
+A—Aj
4 A
+E| I a=i f ) )
|:( )(;( t+A_Ai,x ()0;x(s)ds )

— F+FF+FFF,

(xr, 1 = i):|

(Xt,”t:i):|»
(tht:i)i|’
(Xt,rtZi):|-

where

F= ZE|:I("[+A /)(Z[ T(S)QzX(SMS)

JF#

FF= ZE[I(rtJrA ])(Z[+A . T(S)QIX(S)dS)
Jjl

J#
t+A
f xT(s)Q,x(s)ds))
t+A—Aj;

r

FFF=E [z(mﬁi) (Z(

=1

Note that
0<F< O(Az)
FF=Y Plrya=jlr —z12<f x (s)sz(s)ds)
j;él +A— )"jl
r t
=Z(7TijA+0(A))Z</ xT(s)le(s)ds>,
J#i =1 \itA—Aj
r t+A
FFF = Plreya =il =il x E[Z([ T (5)Qix(s) ds) (o1 = i)]

=1 t+A—Xj;

r t+A
= (1+miA+o(A))Z</ xT(s)le(s)ds>.
=1

t+A—Aj;
Similarly,
r t+A
Wa= ZE|:I(rI+A=j) <Z </ xT(s)Qx(s) ds>> (xp, 1 = i):|

J#i 1=1 1
r t

+Z(ﬂijA+0(A))Z</ xT(s)le(s)ds)

J#i 1=1 \WITA=Aja-1

r t+A
+ (1 +7TiiA+0(A))Z</ xT(S)sz(S)dS>.

=1 \WITA=Xju-1
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Thus we have

1
<X>{E[V4<x,+A, reea)| (e =) = Valx re =1)}

1 r 1+A ; > ; (/l . )
<A><Z(/I+A_Mx (5)Qix(s)ds ; t—A;/x (5)Qix(s)ds

=1

r +A
+”“Z(/t XT(S)QIX(S)dS>

1=1 t+A—Aj;
+ Tij f xT(s)01x(s) ds)
; ! ;( +A-Aj !

(1) i(/w ‘00 Ud) (f )0 <>d>
A = z+Afk,v,x S)Lix(s)as = [A”x $)Qix(s)ds

r t+A .
— Tii X (S)sz(S)dS)

=D Z(f xT<s)sz(s)ds>.

j#i =1 \WITA=Xju-1

Therefore, we obtain

A[Va(xr. )] ZA[/

—Ail

t=Ai(—1)

xT(S)sz(S)ds}

1
= Aliinox{]E[W(xHA, reea)| (e re =] = Valxy, e = i)

r t t
:Z(AU xT(s)le(s)ds] —AU xT(s)le(s)ds:D
=1 t—Ail t—=Ai(-1)

T (000 = xT (¢ = ) @ (t = hir)
+ Z;V=1 Tij ftt—)w xT(5)Qx(s)ds
- Z —xT @ Qux @) +xT(t — X1y Qrx(t — Aig—1))
- 27=1 Tij ftt—xi, xT(s)Qyx(s)ds

~

=D (T = 1) Qx(t = dig—1y) = xT (¢ = 2ip) Qux (= han))

1=hja-1
+Z””Z/ xT(s)Qx(s)ds.
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From (5) and (6) it can be further shown that

AlVa, D] = x"T (0 Q1x(0) = x" (¢ = hip) Qrx(t — hir)
r—1

= o xT =2 (Q1 = Quy)x(t — hir)

=1

1=2ji-1

N ,
+ ij/ xT(s)Qix(s)ds

j=lj#i I=1717A

t—Aj

r t—Ai(—1) r
—|mil ) f <" (5)Qix(s) ds
=1

<xT()Q1x(t) — xT(t = Xir) Qrx(t — Miy)
r—1

= x Tt = i) (Qr = QuD)x(t — hip)

=1

1=Aji-1

N
+ > n,-,-Zf xT(s)Q1x(s)ds

,
j=li#i =17

t=Xi—1) t=XAi(—1)

xT(s)ds Q[/ x(s)ds

t—Xil

~ il Y |

1=1 =it

<xT®)Q1x(t) —xT(t — hir) Qrx(t — Air)
r—1

= o xT =2 (Q1 = Quy)x(t — hir)

I=1
1=2ji-1)

N r
+ ij/ xT(s)Q1x(s)ds

j=lj#i =171

.
-1

~ il Y [

=1 !

—Ail

t—Xig—1) I—=Ai(-1)

xT(s)ds Q,f x(s)ds

t—Aj;

<xT()Q1x(t) — xT(t — Xir) Qrx(t — Miy)

r—1
= x Tt = i)(Qr = QrD)x(t — hip)
=1
N t
+ > n,-,-/ xT(s)Q1x(s)ds
j=vj#io TR
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r ) t—=Ai(—1) r t=Ai(—1)
—|7r,-,~|Zdil / xT(s)ds Q,f x(s)ds
=1 !

—Ail t—2Ail

=xT)Q1x(t) — xT(t = Xir) Qrx(t — Air)

r—1
= xT (= i) (Qr = QuD)x(t — hip)

=1

t
—n,-i/ 7 (5)01x(s) ds
t

—

| t=Xig—1) T t=Ai(—1)
+miid;; / x' (s)ds Ql/ x(s)ds
t

—Ail t—Aj;

<xT()Q1x(t) — xT(t = Xir) Qrx(t — Miy)

r—1
= x Tt = )@ = QuD)x(t = hip)

=1

t
+ n/ xT(s)01x(s)ds
t—p

,
+ i Zd;l /
=1 !

—Ail

t=Ai(—1)

xT(s)ds QI/ x(s)ds,

t=Ai(—1)
i 1—=Ajl

and

t
A[Vs(xr. )] = nux” (1) Q1x (1) — n/ x"(s)Q1x(s)ds.
t—p

Then we have

5
AV @ D] =Y AV )]

p=1
N
<xT(0) (Zﬂijpj>x(t) +2xT (1) Pi (Aix (1) + Agix(t — Xir))
j=1

+xT(OXx(t) —xT(t — W Xx(t — )

1=Ri(r—1)

+uiT YR — (1 = hig—1) " (/
t

-
t=Rigr—1)
X </ x(s) ds)
-
r—1 t=Xig—1) r o . t=Xi(-1)
_Z</ )'c(s)ds) (d; Y)(/ x(s)cls)
=1 \WJi—hi =Xl

T
x(s) ds) Y
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+xT()Q1x(1) — xT(t = Xip) Qrx(t — Niy)

r—1
+ux () Qux(t) = > x"(t = i) (Q1 — Quy)x(t = hin)

=1

r t=Xig—1) t—=Ai(—1)
+T(,~,~Zdi71(/ xT(s)ds>Q1</ x(s)ds),
=1 t—Aj t—Aj

which equals

In+riz 0 O
AV (x, )] < cT(n[ 0 riz 0 }:(r),
0 0 T4

where I}j,i € N, j =1,2,3, are defined in (8)~(11) and

((t):l:x(t) x(@t—ip) - x(t—Ajy)
t t—Ri(r—2) 1=2i(r—1)
x(t— ) / x(s)ds - / x(s)ds / x(s)ds
t—Xi t=Ai(r—1) I—p
t t—=Ai(r—2) 1=Ri(r—1) r
f x(s)ds --- / x(s)ds / x(s) ds] . (14)
=it t=Ai¢r—1) =i

From the Newton—Leibniz formula we have

t

x(t)—x(t—kil)—f x(s)ds =0,

t—Ai1
1—Aj1
x(t—kil)—x(t—kiz)—/ x(s)ds =0,
t—Aip
1—Ai(r—2) .
x(t_)\i(er))_x(t_ki(rfl))_/ x(s)ds =0,
t=Xig—1)
1=Xigr—1)
X(t—/\i<r_1>)—x(t—u)—/ x(s)ds =0,
1=

which is equivalent to

In I 0 -~ 0 0 0 0O -l 0 - 0 0 000 --000
0 Iy I - 0 0 0| 0 0 —Ip - 0 01000 --000
Te@=1 0 e e ) =0,
0 0 0 - Iy —In 0| 0O 0 0O - - 0000 --000
0o 0 0O 0 0 In O0O!'=Ip O o -+ 0 —-I/000--000
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Therefore, from Lemma 2, A[V (x;,i)] < 0 if
I+l 0 0
o't - 0 Iz 0 [|¢@=>o0,
0 0o I

which is equivalent to (7) from Lemma 2, where T can be computed from Lemma 1
and given in (12). This completes the proof of Theorem 1. g

Remark 1 Sufficient condition with reduced conservatism is obtained for the stability
analysis of Markovian jump system X with mode-dependent multiple time delays.
The conservatism can be reduced further by introducing more delay components as
shown in Remarks 4, 5 and 6 in [13] at the expense of more matrix variables and
LMIs in larger dimension in Theorem 1.

3.2 Robust Stability

Now we consider the robust stochastic stability of system X,.

Theorem 2 [f there exist P; >O,ieN, On>0m=1,....,r,X>0and Y >0
such that

Omi1 — Om <0, m=1,...,r—1, (15)
Iyn+rj, 0 0

T+ 0 s 0 |[Tt<o, (16)
0 0 I

for each i € 1\7, 1=1,2,...,q, then the system X, is robust stochastically stable,
where

ijzlﬂi_/f’j +X+1+n1)01

0 0 P Agil
+PiAil+Al'TlPi ! !
, 0 0,—01 - 0 0
i = : : . : : ’
0 00,1 0
AL P; 0 0 —0r
Ajj
0
I _ [ AT T .
Filz_[Ail 0 - 0 Adu]“Y :
0
Agil

Proof From the proof of Theorem 1, it is easy to show that A[V (x;, i)] in (13) satis-
fies

N
A[V(x, )] < xT(t)<ij Pi+X+(1+ an)Ql)x(t)

j=1
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+2xT (1) P (AG)x (1) + Aa(D)x(t — Air))

—xT(t — ) Xx(t — ) — xT(t = 2iy) Qrx(t — Aiy)

1=Xi(r—1) T
+m‘cT(r)Yx(t)—<u—Ai(rm*(/ a‘c(s)ds) Y
t—p
t=hir—1)
X (/ )'c(s)ds>
1—p
=1 ' t—=Ai(-1) r t—=Ai(—1)
> d; (/ x(s)ds> Y(/ )'c(s)ds>
=1 t—Ai t—Aij
r—1
= xT =2 (Q1 = Quy)x(t — hir)
=1
r t=Xig-1 t=Ai-1)
+71,-,'Zdﬁ]/ xT(s)ds Q[/ x(s)ds
=1 t—Ajl t—Xi;
L+, 0 0
=) 0 Iz 0 |¢), (17)
0 0 I
where
N
D=1 7ijPj +XT+(1 +n) Q1 0 0 Py G)
+ P AG) + AT () P;
- 0 02—-01 - 0 0
L= : : - : X ’
0 ' 0 -0 0
AL @P; 0 0 —0,
A(D)
0
o=[AT@0 0 - 0 AT ey | |,
0
Aq(@)

and ¢(¢) is defined in (14), ;3 and [j4 are given in (10)—(11), and A(i) and Ay (i)
are defined in (2). From the proof of Theorem 1,
l+Tn 0 0
(o0 Ly 0 [¢()<0

0 0 I
if and only if
i+l 00
T+ 0 s 0 |[Tt<o,
0 0 T4
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which, by Schur complement equivalence, is equivalent to

| nY[[AT@)0---0AF@]00] T+

A(D)
0

Aa(i)

ny <0.

According to (16) and by Schur complement equivalence again, we have

which further leads to

q
> )
=1

Birkhauser

TJ_T

TLT

r;, 00
0 I's 0
0 0 I

TJ_

ry 0 o
0 I3 0
0 0 Iis

L nY [[A70--04g,]00]T+

TL

TJ_T

TLT

_“Y[[AiTIO"'OAgﬂ]OO]Tl

Ajj
0
0 nyY <0,
Agil
0
O —
—uY ]
S E R
0
0 | |rY
Agil
0
- O -
—uY ]
A(i) ]
0
0 YL o as)
Aq(i)
0
— 0 -
—uY ]

L wY[[AT@0---0AL@)]o0] T+
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By Schur complement equivalence again, it is easy to obtain that (18) holds if and
only if (16) is satisfied, which implies

I+l 0 0
A[V(Xz,i)]SCT(t)[ 0 Iz 0 :|C(t)<0~
0 0 T4

This completes the proof of Theorem 2. g

4 Numerical Examples

Next, two numerical examples will be given to illustrate the effectiveness of the pro-
posed approach.

Example 1 The following matrices,
22 0 -2 0 2.1 0
A“_[ 0 0.1]’ Alz_[o.z —1.6] A21_|:—O.1 0.9]’
~-14 0.1 —-0.1 0 0.1 0
A”—[O.z —1.9] A‘“l_[—o.z —0.1}’ A‘“z_[ 0 0.2]’

0.2 0.1 01 0
A‘m_[o.z 0]’ A”m‘[o.z 0.1}’

are the system matrices of a Markovian jump system X', with mode-dependent delays
and polytopic uncertainties in the form of (1). The delays are given by

di1 =0.8, di2 =0.26, dr1 =0.26, drpn =0.8,

and the transition probability matrix is

M=|:_21 _12]

The solutions of (15) and (16) are given by

¥ — 114.2080 0.0058 0 Y — 655.4847 0.4929 =0
| 0.0058 0.0043 ’ | 04929 0.0207 ’

1.9823 0.0274

103
Pr=10"x [0.0274 0.1872

] -0, Py =10° x |:2.0173 0.0246] -0,

0.0246 0.0836

s [1.3046 0.0179 o [1.2973 0.0179
Q1=10 ><[0.0179 00104 | % Q=100 56179 0.0104 |0

So the overall stability bound on delay is the sum of all parts, i.e. 1.06.
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Example 2 The system matrices of a Markovian jump system X, with mode-
dependent delays and polytopic uncertainties in the form of (1) are given by

-3 0 -3 -0.1 -2 0
A11—|:0 _3}, A12—|:_0.1 _4], AZI—[O _4]
-4 0.1 -1 0 —-0.8 0.1
Azz=|:0.l _3i|, Ad11=|:_1 _1], Ad12=|: 09 0 }
—-09 0 1 0
A1 =[ 0 0.7] Aan = [0.9 0.6:|’

with
dip =1.22, dip =0.5, dy1 =1.21, dyy =0.51.

The transition probability matrix is

The solutions of (15) and (16) are given by

X — 0.0306 —0.0165 -0 Y — 0.3397 0.0958 =0
— | —0.0165 0.0658 ’ 1 0.0958 0.0306 ’

p _[173223 0.08787 _ p,_ [ 227518 —0.08397
=1 0.0878 0.5715 ’ 27 —0.0839 0.4851 ’

0 = 7.9497  —0.0401 =0 0, = 7.9479  —0.0380 -0
=1 -0.0401 0.3088 ’ 271 -0.0380  0.3019 )

So the overall stability bound on delay is the sum of all parts, i.e. 1.72. By the method
in [4] without partitioning the delay, the upper bound of the time delay is 0.57, which
shows that our method has improved the result in [4].

5 Conclusion

We have presented solutions to the stability analysis for Markovian jump sys-
tems with multiple delay components and possible polytopic uncertainties. A delay-
dependent sufficient condition in terms of the LMI framework has been obtained by
using a new form of stochastic Lyapunov functionals. Two examples have been given
to demonstrate the effectiveness of the proposed result.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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