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Abstract

In quantum key distribution (QKD), a secret key is generated between two

distant parties by transmitting quantum states. Experimental measurements

on the quantum states are then transformed to a secret key by classical post-

processing. Here, we propose a construction framework in which QKD clas-

sical post-processing can be custom made. Though seemingly obvious, the

concept of concatenating classical blocks to form a whole procedure does not

automatically apply to the formation of a quantum cryptographic procedure

since the security of the entire QKD procedure rests on the laws of quan-

tum mechanics and classical blocks are originally designed and characterized

without regard to any properties of these laws. Nevertheless, we justify such
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concept of concatenating classical blocks in constructing QKD classical post-

processing procedures, along with a relation to the universal-composability

security parameter. Consequently, effects arising from an actual QKD ex-

periment, such as those due to the finiteness of the number of signals used,

can be dealt with by employing suitable post-processing blocks. Lastly, we

use our proposed customizable framework to build a comprehensive generic

recipe for classical post-processing that one can follow to derive a secret key

from the measurement outcomes in an actual experiment.
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1. Introduction

Quantum key distribution (QKD) (Bennett and Brassard (1984); Ekert

(1991)) allows two distant users to generate a secret key by wisely exploiting

properties of quantum mechanics. Initial work on QKD has been focused on

the investigation of its security and a few QKD protocols, such as the well-

known BB84 protocol (Bennett and Brassard (1984)), have been proven to

be secure in the last decade (Mayers (2001); Lo and Chau (1999); Shor and

Preskill (2000)). Meanwhile, many QKD experiments have been performed

(see, e.g., references in Gisin et al. (2002); Lo and Lütkenhaus (2007)).

In general, a QKD experiment involves a quantum state transmission step

(where quantum states are transmitted and measured) and a classical post-

processing step (where the measurement outcomes are processed classically

with the help of classical communication to generate a final secret key).
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Although standard security proofs (such as Shor and Preskill (2000)) imply

a procedure for distilling a final secret key from measurement outcomes,

such procedure cannot be directly carried out in an actual QKD experiment

because many of the security proofs (i) highlight only essential operations

that need to be done instead of explicitly listing every step in detail and

(ii) focus on the case that the key is arbitrarily long. In practice, we need

extra operations to support the basic ones, and different system designers

may choose different sets of operations to suit the needs of their systems

and situations. Also, due to the finite lengths of practical keys, all these

operations will only succeed probabilistically in carrying out their intended

functions.

Recently, significant efforts have been made to study the finite-length ef-

fect in QKD post-processing. Mayers (1996, 2001) first gave a security proof

for the finite-key case and provided a key rate lower bound. Hayashi (2006)

derived a bound on the eavesdropper’s information under the finite-key case

and gave a higher key rate lower bound compared to Mayers’. Scarani and

Renner (2008a,b) derived security bounds in an information-theoretic ap-

proach, and Cai and Scarani (2009) further analyzed the finite-key security

of the BB84 and BBM92 protocols with the same approach. Our work (Fung

et al. (2010)) provided a detailed finite-key analysis of a practical QKD post-

processing procedure for the BB84 protocol using a entanglement-distillation-

protocol-based approach. In all the previous works, the post-processing steps

of a given analysis are quite fixed, without much flexibility for change. In

this paper, we discuss the idea of a framework in which the post-processing

elements can be added or modified easily. We remark that a tailor-made
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post-processing procedure is highly desirable for an actual QKD experiment,

since various post-processing steps may be employed to deal with realistic

effects (such as the finite-length effect in realistic situations) and different

system designers may have different requirements.

We propose a framework for building customized classical post-processing

procedures for QKD and quantifying the associated security. While it is easy

to form any post-processing procedure (simply by concatenating operational

blocks), it may not be clear how to quantify the security of the resultant

procedure as a whole. It is obvious that adding up the failure probabilities of

the blocks gives us the overall failure probability of the whole post-processing

procedure. However, while this classical probability is a meaningful measure

for the post-procedure procedure, it is not clear whether it is also a mean-

ingful one for the final key generated by this QKD process. We emphasize

that a quantification for the post-processing procedure does not necessarily

become a quantification for the security of the key. In fact, a meaningful and

widely adopted security measure, the universal composability security (Ben-

Or et al. (2005); Renner and König (2005)), has no apparent connection with

the aforementioned quantification for the post-processing procedure. Never-

theless, as we discuss below, the classical failure probability of the procedure

can be related to the composability security of the key. This connection

justifies that the constituent blocks of a procedure in our framework can

be independently characterized by a failure probability through which each

block affects the composability security of the final key.

The major point of this paper is that we advocate a construction method

for post-processing procedures for QKD experiments that is general and cus-
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tomizable. The experiment designers have the freedom to select the suitable

classical post-processing blocks and use them directly in a QKD procedure

— hence, customizable post-processing. While such a concept of concatena-

tion is not new, especially in the classical processing domain, what is new

is that we show that such concatenation of classical blocks can also be di-

rectly applied in the quantum setting in the same sense as in the classical

setting. Such carrying over to the quantum domain is not automatic since it

is possible that it can break the security of the whole QKD procedure as the

security is now related to the purity of quantum states (which are completely

out of the scope of any classical processing). In spite of this, we show that

the security characteristic of the QKD procedure can still be preserved, and

furthermore we can even quantify the security of the final key in the univer-

sal composability sense. We note that the concatenation of classical blocks

referred here is not about classical cryptographic composability since these

classical blocks (e.g., error correction) can be unrelated to cryptography at

all.

In the following, we discuss our framework and use it to construct a

post-processing procedure. This comprehensive procedure is designed to be

directly used as a recipe in practical QKD systems with single- or entangled-

photon sources, taking into account the finiteness of the number of signals

used. This procedure also serves as a stepping stone for a QKD standard.

2. Security measure

Due to the finite-size effect, a secret key generated by a QKD system may

not be perfect in the sense that Alice and Bob do not share the same key
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and/or, Eve, an eavesdropper, possesses some information about the key.

Nevertheless, the fact that the key is imperfect does not preclude it from

being used in a subsequent task requiring a perfect key. In fact, if one can

assign a probability that the key can be regarded as an ideal one, the use of

the nonideal key as an ideal one can be justified. Indeed, this notion of secu-

rity is captured by the widely adopted notion of the composability-security

definition of QKD (Ben-Or et al. (2005); Renner and König (2005)). A secu-

rity definition of QKD is composable in the sense that the final key generated

is statistically indistinguishable from an ideal secret key except with a small

probability (quantified by a security parameter). Thus, the secret key gen-

erated in one round of QKD can be used in another cryptographic function

(including another round of QKD) where an ideal key is expected. Each

function composed in this manner contributes its own security parameter to

the overall one linearly. This linear dependence is an important feature of

the composability security definition.

We adopt the following definition of composable security.

Definition 1 (König et al. (2007); Renner and König (2005); Renner (2005)).

A classical random variable K (representing the key) drawn from the set K

is said to be ζ-secure with respect to an eavesdropper holding a quantum

system E if

1

2
Tr |ρKE − ρU ⊗ ρE| ≤ ζ (1)

where ρKE =
∑

k∈K PK(k)|k〉〈k|⊗ρE|K=k is the state of the systems K and E,

PK(k) is the probability of having K = k, ρU =
∑

k∈K |k〉〈k|/|K| represents

an ideal key taking values uniformly over K, and |K| is the size of K. Here,

Tr |A| =
∑

i |λi| where λi’s are the eigenvalues of A.
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This definition has the operational meaning that the real situation using

the real key K is the same as the ideal situation using the ideal key U except

with probability ζ.

The composable security parameter ζ in the above definition is an im-

portant value for the final secret key at the end of the distillation and thus

it is important to link the classical post-processing steps to this value. One

difficulty in doing so is that composability deals with the quantum picture

of the key and environment, which is in stark contrast to the pure classical

nature of post-processing. Another difficulty stems from the flexibility of the

classical post-processing procedure. QKD systems may differ and system de-

signers may customize the procedure according to the system’s need or their

own taste. Thus, a framework for building procedures with great flexibility

is proposed here.

3. Customizable framework

The entire post-processing procedure is composed of blocks, which are

freely chosen by the system designer. Minimal classical post-processing as

suggested by QKD security proofs (e.g. Lo and Chau (1999); Shor and

Preskill (2000)) performs two basic functions: error correction and privacy

amplification. However, in practice, more functions need to be performed to

support these basic functions (e.g., authentication on the classical channel

for assisting error correction). Consequently, systems designers may select

various functional blocks to form their own post-processing procedure. For

example, an error correction block that is based on convolutional codes can

be substituted by another one based on low density parity check codes.
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In order to facilitate an easy linkage with the final composable security

parameter in Definition 1, we propose a universal language for describing

the classical functional blocks. The universal language we advocate is the

probability that a classical functional block fails to perform its intended

function. We call this the failure probability of the block, and an example of

a failure event is when an error correction block fails to detect or correct bit

errors.

We are concerned with the failure probability of the whole post-processing

procedure. This probability is upper bounded by the summation of the failure

probabilities of individual blocks (via the union bound). The important

feature is that each block can function independently of the others and also its

failure probability can be characterized individually. Therefore, we can select

a block from existing literature and employ it directly in a post-processing

procedure.

We have been talking about characterizing the entire post-processing pro-

cedure with a failure probability, which is a classical measure. On the other

hand, the ultimate concern is the security parameter (ζ in Definition 1) of the

final key generated in the QKD process. We have shown that the connection

between these two quantities with the following simple relation (Fung et al.

(2010)):

Lemma 1. When the failure probability of the post-processing procedure

is ε, the final key is secure with respect to universal composability with a

security parameter
√

ε(2− ε).

This means that the key generated by a post-processing procedure that

fails with probability ε is
√

ε(2− ε) secure in accordance with Definition 1.
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The reason that the post-processing procedure with failure probability ε does

not give rise to an ε secure key is because the security definition in Definition 1

is concerned with the whole quantum picture consisting of the key and the

eavesdropper’s quantum system while the failure probability is concerned

with the post-processing procedure which is completely classical.

4. A practical post-processing recipe

To demonstrate the concept of our customizable framework, we construct

a practical post-processing procedure assembled from blocks, some of which

are taken from existing literature. Specifically, we assemble a post-processing

procedure using an authentication scheme by Krawczyk (1994), privacy am-

plification based on universal hashing (Wegman and Carter (1979, 1981)),

standard forward error correction (see, e.g., Cover and Thomas (2006)),

and our own analysis on random sampling (Fung et al. (2010)). This post-

processing procedure is directly applicable to realistic experiments for the

BB84 protocol with a single or entangled photon source.

Let us start by examining the underlying assumptions used here. We

emphasize that in order to apply the scheme to a QKD system, one needs

to compare these assumptions with the real setup. The assumptions used in

the paper are listed as follows:

1. Alice and Bob perform the BB84 protocol with a perfect single photon

source or a basis-independent (entangled) photon source (Koashi and

Preskill (2003); Ma et al. (2007)).

2. The detection system is compatible with the squashing model (Tsu-

rumaru and Tamaki (2008); Beaudry et al. (2008); see also, Koashi
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(2006a)). For example, detection efficiency mismatch is not considered

here (Fung et al. (2009)).

3. Alice and Bob use perfect random number generators and perfect key

management. They share a certain amount of secure key prior to run-

ning their QKD system.

The post-processing scheme is based on a modified Shor-Prekill’s security

proof (Shor and Preskill (2000)), which is essentially Koashi’s complimentary

argument (Koashi (2006b)). In this approach, the secure key generation is

equivalent to an entanglement distillation protocol, which involves bit and

phase error corrections. In the post-processing, the bit error correction be-

comes classical error correction and the phase error correction becomes pri-

vacy amplification. We remark that our framework is applicable to any phys-

ical QKD implementations that comply with the above assumptions, and it

does not depend on the implementation details.

The procedure serves as a guideline for QKD data post-processing. We

start from raw data from measurements and some pre-shared secure key

bits, and produce a composable secret key. The details of the procedure are

presented in Fung et al. (2010).

The secure key used in the post-processing comes from a pre-shared secure

key between Alice and Bob. For each step, we investigate the secure-key cost,

kxx, and the failure probability, εxx, where xx denotes the name of a step.

The post-processing procedure is listed as follows. Note that none of

following classical communication is encrypted unless otherwise stated.

1. Key sift [not authenticated]: Bob discards no-click events and obtains

10



n-bit raw key by randomly assigning (Lütkenhaus (1999)) the double

clicks 1. Note that other key sift procedures might be applied as well,

see for example, Ma et al. (2008).

2. Basis sift [authenticated]: Alice and Bob send each other n-bit basis

information. Due to the symmetry, we can assume they pick up the

same failure probability for this procedure (Krawczyk (1994))

εbs = n2−kbs+1 (2)

Here, Alice and Bob use a 2kbs-bit secure key to construct a Toeplitz

matrix with a size of (n × kbs) by a LFSR. The authenticated tag

is generated by multiplying the matrix and the message. Then they

encrypt the two tags by two kbs-bit secure keys. Since the tags are

encrypted by a one-time pad, the 2kbs-bit key used for the Toeplitz

matrix construction is still private. Hence, the total secure-key cost in

this step is 2kbs and the corresponding failure probability is 2εbs. Note

that when Alice and Bob use a biased basis choice (Lo et al. (2005)),

they can exchange less than n-bit classical information for basis sift

by data compression. Since the secure-key cost only logarithmically

depends on the length of the message, we simply use n for the following

discussion. In the end of this step, Alice and Bob obtain nx (nz)-bit

sifted key in X (Z) basis. Define the bias ratio to be qx ≡ nx/(nx +nz).

3. Error correction [not authenticated but encrypted2]: the secure-key

1In the case of a passive-basis-selection setup, Bob also randomly assigns basis value

X or Z for double clicks (Beaudry et al. (2008)).
2The error correction step may be done without encryption using other security proof
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cost is given by

kec = nxf(ebx)H(ebx) + nzf(ebz)H(ebz) (3)

where f(x) is the error correction efficiency and H(x) = −x log2(x) −

(1−x) log2(1−x) is the binary entropy function. In practice, Alice and

Bob only need to count the amount of classical communication used in

the error correction. That is, the value of kec can be directly obtained

from the post-processing. After the error correction, Alice and Bob

count the number of errors in X (Z) basis: ebxnx (ebznz).

4. Error verification: Alice and Bob want to make sure (with a high prob-

ability) that their keys after the error correction step are identical.

Note that the idea of using error verification to replace error testing is

proposed by Lütkenhaus (1999).

In this procedure, Alice sends an encrypted tag of an authentication

scheme to Bob. Here, the message to the authentication is the key

after error correction. If the tag passes Bob’s verification, Alice and

Bob share the same key except for a small failure probability,

εev = (nx + nz)2
−kev+1, (4)

where kev is the secure key cost in this step. We remark that when error

verification fails, Alice and Bob can go back to the error correction step.

5. Phase error rate estimation [no communication]: Alice and Bob can

estimate the phase error rates in X and Z bases, epx and epz separately.

techniques. In this case, there may be some restriction on the error correction procedure

and more privacy amplification may be required.
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Take the qubits measured in the Z-basis as an example. Since their

phase error rate corresponds to the X-basis measurements, we apply

a random sampling argument to infer it from the qubits measured in

the X-basis. According to our random sampling argument (Fung et al.

(2010)), the probability of epz > ebx + θx denoted by Pθx is bounded by

Pθx <

√
nx + nz√

nxnzebx(1− ebx)
2−(nx+nz)ξx(θx), (5)

where ξx(θx) is defined by ξx(θx) ≡ H(ebx + θx − qxθx) − qxH(ebx) −

(1− qx)H(ebx + θx) with qx = nx/(nx + nz). A similar formula for Pθz

can also be derived. Then the total failure probability of phase error

rate estimation, εph, is given by

εph ≤ Pθx + Pθz. (6)

In the case when ebx = 0 (ebz = 0), one can replace it by nxebx = 1

(nzebz = 1) to get around the singularity (Fung et al. (2010)). One can

see that ξx(θx) is positive when θx > 0 and 0 ≤ ebx, ebx + θx ≤ 1, due to

concavity of the binary entropy function H(x). Note that in the limit

of a large n, θ can be chosen small. In this case, (6) yields a similar

result used in the literature, such as Shor and Preskill (2000); Ma et al.

(2007).

6. Privacy amplification [authenticated]: Alice generates an (nx +nz + l−

1)-bit random bit string and sends it to Bob through an authenticated

channel. They use this random bit string to generate a Toeplitz matrix.

The final key (with a size of l) will be the product of this matrix (with

a size of (nx + nz)× l) and the key string (with a size of nx + nz). The
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failure probability of the privacy amplification is given by

εpa = (nx + nz + l − 1)2−kpa+1 + 2−toe , (7)

where kpa is the secure-key cost for the authentication and toe is defined

by

l = nx[1−H(ebz + θz)] + nz[1−H(ebx + θx)]− toe, (8)

The first term in (7) gives the failure probability of the authentication

for the (nx +nz + l−1)-bit random bit string transmission. The second

term in (7) gives the failure probability of the privacy amplification3.

7. The final secure key length (net growth4) is given by

NR ≥ l − 2kbs − kec − kev − kpa (9)

with a failure probability of

ε ≤ 2εbs + εev + εph + εpa, (10)

where l is given by (8).

5. Parameter optimization

In order to maximize the final secure key length in the post-processing,

Alice and Bob need to consider the failure probabilities from all steps and the

3In the equivalent entanglement distillation protocol used for the security proof (Shor

and Preskill (2000); Koashi (2006b)), the second term in (7) gives the failure probability

of the phase error correction.
4Since QKD is a key expansion process, it requires some pre-shared secret bits to start

with and thus they have to be accounted for when calculating the final key length.
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corresponding secure-key costs. That is, they need to optimize the key rate,

equation (9), subject to (10). The parameters to be optimized are: bias ratio

qx, various secure-key costs (kbs, kec, kev, kpa, toe) and security parameters

(εbs, εev, εph, εpa).

In practice, Alice and Bob can calibrate the QKD system to get an esti-

mate of the transmittance η, the error rates ebx and ebz. Through some rough

calculation of the target length of the final key, they decide the acceptable

confidence interval 1−ε and fix the length of the experiment, N , the number

pulses sent by Alice. Then roughly, the length of the raw key is n = Nη.

Thus, in the optimization procedure, the given values (constraints) are ε, n,

ebx and ebz.

The failure probability ε is chosen by Alice and Bob according to the later

practical use of the final key. The relation between this failure probability to

the universal composability security definition (Ben-Or et al. (2005); Renner

and König (2005)) is given by Lemma 1 (see also Fung et al. (2010)), i.e.,

the key is
√

ε(2− ε) secure in accordance with Definition 1. For instance,

suppose Alice and Bob plan to use a QKD system for a million times in the

manner that the secret key output of one round is fed as input to the next,

and set the target failure probability to be ε for each round. Then the security

parameter for the key from the last round is 106
√

ε(2− ε), which should be

below some threshold depending on the message security level. From here,

one can see that the choice of ε is not strictly pre-determined. That is, the

final security parameter, ε, can slightly deviate from the pre-determined one.

Denote the probability for Alice and Bob to choose X basis to be px.

After the basis sift, Alice and Bob share an nx-bit (nz-bit) key in X (Z)

15



basis, where roughly (due to fluctuations) nx ≈ p2
xn and nz ≈ (1 − px)

2n.

Thus the bias ratio is given by qx ≈ p2
x/[p

2
x + (1 − px)

2]. In a realistic case,

Alice and Bob can optimize px first, and then optimize other parameters

after the error verification part when the real values of nx, nz ebx and ebz are

fixed (and known to them).

The error correction and phase error rate estimation mainly depend on

the bias ratio. Thus, Alice and Bob can group the failure probabilities and

secure key costs into two parts by defining ε3 ≡ 2εbs + εev + εpa and k3 ≡

2kbs + kev + kpa + toe, see (8), (9) and (10). The final secure key length can

be rewritten as

NR ≥ nx[1−f(ebx)H(ebx)−H(ebz+θz)]+nz[1−f(ebz)H(ebz)−H(ebx+θx)]−k3.

(11)

We remark that if the contribution from one basis is negative in (11), Alice

and Bob should use the detections from this basis for the parameter estima-

tion only, but not the key generation.

The optimized secure-key cost for each step is given by the following (see

Fung et al. (2010)):

toe = k3

5
− 4

5
− 1

5
log2 A (12)

kbs = toe + 1 + log2 n (13)

kev = toe + 1 + log2(nx + nz) (14)

kpa = toe + 1 + log2(nx + nz + l − 1), (15)

where A = n2(nx +nz)(nx +nz + l−1). The corresponding failure probability

is

ε3 = 5A1/52−(k3−4)/5. (16)
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When the final key length is much larger than 37 bits, Alice and Bob can

set

k3 = −5 log2 ε + 4 log2 n + 50 (17)

and the corresponding failure probability is ε3 < 10−2ε. Since Alice and Bob

will recalculate the failure probability in the end and allow the final ε to

have a small deviation from the pre-determined value, they can safely use

εph = ε in the optimization. Thus, the simplified optimization problem only

has three parameters to optimize: qx, θx and θz, given εph = ε− ε3 ≈ ε.

Observation. The main effect of the finite key analysis for the QKD post-

processing stems from the phase error rate estimation. Inefficiencies due

to authentication, error verification, and privacy amplification are relatively

insignificant.

This can be easily seen from (16) and (17). Even in an extreme case

that ε = 10−30 and n = 1030, the secure key cost of all the parts other than

the phase error rate estimation, given by (17), is 947 bits (� n) and its

corresponding failure probability ε3 < 10−32.

6. Conclusion

We present a framework for building customizable post-processing schemes

and use it to form a practical scheme with some of its constituent blocks bor-

rowed from existing literature. The power of our framework lies in that fact

that it facilitates a modular design of post-processing procedures and quan-

tifies the final key with a composability-security parameter. We apply an

authentication scheme for the error verification and derive a strict bound
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for the phase error estimation. Furthermore, we investigate the efficiency of

privacy amplification. Finally, we also study parameter optimization.
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