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Abstract—In this paper, we propose a new approach for
reconstructing 3D curves from a sequence of 2D images taken
by uncalibrated cameras. A curve in 3D space is represented
by a sequence of 3D points sampled along the curve, and
the 3D points are reconstructed by minimizing the distances
from their projections to the measured 2D curves on different
images (i.e., 2D curve reprojection error). The minimization
problem is solved by an iterative algorithm which is guaranteed
to converge to a (local) minimum of the 2D reprojection
error. Without requiring calibrated cameras or additional
point features, our method can reconstruct multiple 3D curves
simultaneously from multiple images and it readily handles
images with missing and/or partially occluded curves.

Keywords-3D curve reconstruction; partial occlusion; uncal-
ibrated cameras

I. INTRODUCTION

The recovery of a 3D scene from a sequence of 2D images
is a central problem in computer vision. A large body of
existing research has been devoted to 3D reconstruction of
low-level features such as point features, where a 3D scene
is represented by a point cloud [1][2]. However, a wireframe
model is a more effective way of presenting a 3D scene than
a point cloud. A wireframe model is mainly made up of
lines, circles (or ellipse) and curves. There have been some
efforts on reconstruction of lines and ellipses from multiple
views [3][4][5][6], but very little work has been done on
general curve reconstruction.

This is because it is much harder to reconstruct general
curves than other features like points, line segments and
ellipses, due to the following difficulties: 1) the analytical
form of a general curve is not directly available; 2) the
point correspondences along curves are not known such that
standard point reconstruction methods are not applicable; 3)
missing (or partially occluded) curves in images are possible
due to failure of feature extraction or occlusion.

Attempts have been made by Kaminski et al. in recon-
structing general algebraic curves both for planar [7] and
non-planar cases [8]. They developed reconstruction algo-
rithms by extending Kruppa’s equation to general curves,
assuming known camera matrices. Berthilsson et al. ex-
tended the concept of affine shape in [9], and applied the
notion to develop an algorithm for reconstructing general 3D
curves [10]. The algorithm relies on aligning the parameter-
izations of matched curves so that the points traced on each

curve become corresponding points. Although this algorithm
works with any number of images taken by uncalibrated
cameras, it is not directly applicable for reconstruction of
multiple curves from multiple views with missing and/or
partially occluded curves. To avoid the difficulties in the
curve reconstruction problem, Wu and Yu [11] and Zheng
et al. [12] adopted fully interactive schemes to recover
3D scene from calibrated images. In the semi-automatic
curve reconstruction process, corner point (or marker) cor-
respondences and curve correspondences are required to
be input by users. Camera poses and epipolar geometry
are estimated using standard techniques in computer vision
[13]. Then point correspondences along curves are obtained
by imposing the epipolar constraint. Finally the 3D points
associated with the 2D point correspondences along curves
are reconstructed using bundle adjustment, and 3D curves
are represented by the lists of reconstructed 3D points.

In general, existing curve reconstruction methods suffer
from one or more of the following drawbacks:

(1) requiring calibrated cameras;
(2) a lack of provision for missing and/or partially oc-

cluded curves;
(3) relying on additional information like corner point

correspondences.

In this paper, we propose a point-based curve reconstruc-
tion method that addresses all of the above problems. In our
approach, a 2D (or 3D) curve is represented as a sequence
of 2D (or 3D) points, and the 3D curves are reconstructed
by minimizing the 2D curve reprojection error, which is
defined as the geometric distance from the reprojected 3D
points (along the 3D curves) to the measured 2D curves.
Given curve correspondences in images, our method does
not require any other additional information of the image
features or the cameras, and the problem of missing and/or
partially occluded curves is readily handled.

The paper is organized as follows. In Section II, the curve
reconstruction problem is reformulated as a minimization
problem, and the proposed algorithm for solving this mini-
mization problem is presented in Section III. Experimental
results are given in Section IV to demonstrate the perfor-
mance of the proposed method. Concluding remarks are
given in Section V.
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Figure 1. The 3D curve reconstruction from 𝑚 images

II. PROBLEM FORMULATION

The basic idea of the proposed curve reconstruction
algorithm is to minimize the 2D reprojection error of the
curves. Therefore, a critical issue of the proposed curve
reconstruction method is how to measure the 2D reprojection
error of curves: the error between a measured curve and
its reprojected curve. In the proposed algorithm, a 3D
curve is represented by a sequence of 3D points, called
representative points, sampled along the 3D curve. We use
the distance from the reprojected representative points to its
corresponding measured 2D curve as the error measurement,
which is explained as follows.

As shown in Figure 1, suppose we are given 𝑚 views of
𝑛 3D curves. The 𝑗𝑡ℎ (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) 3D curve 𝐶𝑗 is to be
reconstructed using 𝑁𝑗 3D representative points along the
curve, denoted as 𝑋𝑗𝑘 = [𝑈𝑗𝑘 𝑉𝑗𝑘 𝑊𝑗𝑘 1]

𝑇 in homogeneous
coordinate (𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑗), and shown as black dots in
Figure 1.

Let the 2D images of the 𝑗𝑡ℎ 3D curve on the 𝑖𝑡ℎ

(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) view be measured as 𝑐𝑖𝑗 . Let 𝑁𝑗 points
𝑥𝑖𝑗𝑘 = [𝑢𝑖𝑗𝑘 𝑣𝑖𝑗𝑘 1]

𝑇 (black stars in Figure 1) on 𝑐𝑖𝑗 be
its 2D representative points, which are the corresponding
images of the 3D points 𝑋𝑗𝑘. Suppose the 3D point 𝑋𝑗𝑘

is projected onto the 𝑖𝑡ℎ view with projection matrices
𝑃𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) as 𝑥̂𝑖𝑗𝑘 (red dots in Figure 1), i.e.,

𝜆𝑖𝑗𝑘𝑥̂𝑖𝑗𝑘 = 𝑃𝑖𝑋𝑗𝑘 (1)

where 𝜆𝑖𝑗𝑘 represents the depth of 𝑋𝑗𝑘 measured along the
optical axis of the 𝑖𝑡ℎ camera. Ideally, 𝑋𝑗𝑘 should project to
a point lying on 𝑐𝑖𝑗 in the 𝑖𝑡ℎ view, in which case 𝑥𝑖𝑗𝑘 can
be taken to be 𝑥̂𝑖𝑗𝑘. In practice, 𝑥̂𝑖𝑗𝑘 will not lie exactly on
𝑐𝑖𝑗 due to noise or other measurement errors. In this case,
𝑥𝑖𝑗𝑘 will be taken to be the point lying on 𝑐𝑖𝑗 closest to 𝑥̂𝑖𝑗𝑘.
Hence, the idea of the proposed method to reconstructing 𝐶𝑗

is to reconstruct all its representative points 𝑋𝑗𝑘, together
with the projection matrix 𝑃𝑖 so that their projections 𝑥̂𝑖𝑗𝑘

on all the views are as close as possible in a geometric sense
to the corresponding measured curve 𝑐𝑖𝑗 in the 2D images.

Since it is possible that some curves are missing or par-
tially occluded in images due to failure of feature extraction
or occlusion, we define the the 2D curve reprojection error
with the observed curves (or partial curves) only. Let us
define an index set for the representative points on the
measured 2D curves (or partial curves) as:

A =
{
(𝑖, 𝑗, 𝑘)

∣∣the 𝑘𝑡ℎ representative point on

the 𝑗𝑡ℎ curve is observed in the 𝑖𝑡ℎ view
} (2)

Then the 2D reprojection error measured for the curves
can be defined as the summation of squared distances from
the reprojected point 𝑥̂𝑖𝑗𝑘 to the measured 2D curve 𝑐𝑖𝑗
(denoted as 𝑑𝑖𝑗𝑘), over all the observed 2D representative
points:

𝑑 =
∑

(𝑖,𝑗,𝑘)∈A

𝑑2𝑖𝑗𝑘 =
∑

(𝑖,𝑗,𝑘)∈A

min
𝑥𝑖𝑗𝑘

∥𝑥𝑖𝑗𝑘 − 𝑥̂𝑖𝑗𝑘∥2

subject to 𝑥𝑖𝑗𝑘 ∈ 𝑐𝑖𝑗

(3)

Then the simultaneous reconstruction of the 3D curves
and the projection matrices can be formulated by means of
a minimization of the 2D curve reprojection error 𝑑 defined
in (3).

III. CURVE RECONSTRUCTION

In this section, we will show how the 2D curve reprojec-
tion error 𝑑 defined in (3) can be minimized by means of
an iterative procedure.

A. Setting reference curves

Our objective is to reconstruct the 3D curves by mini-
mizing the 2D reprojection error defined in (3). However, a
minimization problem formulated directly from (3) without
extra constraints on representative points will not provide a
reasonable solution. This is because it is always easier to
fit a single point than a sequence of representative points
on a curve to the projection model, and therefore the
representative points on a 3D curve will tend to converge
(if unconstrained) to one single point whose projections are
closest to the measured curves.

To avoid the above issue from happening, we make use
of the idea of a reference curve. For each curve 𝐶𝑗 in 3D
space, we take its projection on one of the images, say
𝑐𝑟𝑗 , on the 𝑟𝑡ℎ view as the reference curve (see Figure
1). Then, we select 𝑁𝑗 fixed representative points on it
𝑥̄𝑟𝑗𝑘 = [𝑢̄𝑟𝑗𝑘 𝑣𝑟𝑗𝑘 1]

𝑇
, (𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑗), called reference

representative points (blue dots on 𝑐𝑟𝑗 in Figure 1), which
are reasonably separated from each other along the curve.
The reconstructed 3D points 𝑋𝑗𝑘 corresponding to 𝑥̄𝑟𝑗𝑘 will
be taken as 3D representative points of 𝐶𝑗 . Let us define the
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index set for the representative points on the reference curve
as

R = {(𝑟, 𝑗, 𝑘) ∣𝑥̄𝑟𝑗𝑘 are sampled from the reference

curve 𝑐𝑟𝑗 as representative points} (4)

In the minimization process, we require the 𝑁𝑗 repro-
jected representative points 𝑥̂𝑟𝑗𝑘 of the 3D curve 𝐶𝑗 on
the reference curve to approach the fixed reference repre-
sentative points 𝑥̄𝑟𝑗𝑘, while the representative points 𝑥𝑖𝑗𝑘

on any non-reference curves are free to move along their
corresponding curve 𝑐𝑖𝑗(𝑖 ∕= 𝑟). The fixing of the reference
representative points can prevent the representative points
from converging into one single point.

B. Cost function for the curve reconstruction

To define the cost function for the curve reconstruction
that takes into account all the above considerations, we will
rewrite the expression (3) in the form of a cost function suit-
able for minimization. We will use the following notations.

∙ P =
[
𝑃𝑇
1 𝑃𝑇

2 ⋅ ⋅ ⋅ 𝑃𝑇
𝑚

] ∈ ℛ3𝑚×4 is the joint projec-
tion matrix.

∙ X = {𝑋𝑗𝑘} , (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛; 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑗) is the
set containing all the reconstructed 3D representative
points.

∙ 𝛽 = {𝛽𝑖𝑗𝑘} , ((𝑖, 𝑗, 𝑘) ∈ A is the set of inverse depth of
all 3D representative points from all the views where
they are visible.

∙ x = {𝑥𝑖𝑗𝑘} , ((𝑖, 𝑗, 𝑘) ∈ A∖R) is the set containing
all the representative 2D images on the non-reference
curves.

Let 𝑃 𝑙
𝑖 denote the 𝑙𝑡ℎ row of 𝑃𝑖 (𝑙 = 1, 2, 3). The 3D

curve reconstruction problem minimizing the cost function
defined in (3) can now be reformulated as (5):

min
P,X,𝜆,x

⎧⎨
⎩

∑
(𝑟,𝑗,𝑘)∈R

[(
𝑢̄𝑟𝑗𝑘 − 𝑃 1

𝑟 𝑋𝑗𝑘

𝜆𝑟𝑗𝑘

)2

+

(
𝑣𝑟𝑗𝑘 − 𝑃 2

𝑟 𝑋𝑗𝑘

𝜆𝑟𝑗𝑘

)2
]

∑
(𝑖,𝑗,𝑘)∈A∖R

[(
𝑢𝑖𝑗𝑘 − 𝑃 1

𝑖 𝑋𝑗𝑘

𝜆𝑖𝑗𝑘

)2

+

(
𝑣𝑖𝑗𝑘 − 𝑃 2

𝑖 𝑋𝑗𝑘

𝜆𝑖𝑗𝑘

)2
]⎫⎬
⎭

subject to

(𝑎) 𝑥𝑖𝑗𝑘 = [𝑢𝑖𝑗𝑘 𝑣𝑖𝑗𝑘 1]𝑇 ∈ 𝑐𝑖𝑗 , (𝑖, 𝑗, 𝑘) ∈ A∖R
(𝑏) 𝜆𝑖𝑗𝑘 = 𝑃 3

𝑖 𝑋𝑗𝑘, (𝑖, 𝑗, 𝑘) ∈ A
(5)

where the first term

[(
𝑢̄𝑟𝑗𝑘 − 𝑃 1

𝑟 𝑋𝑗𝑘

𝑃 3
𝑟 𝑋𝑗𝑘

)2

+
(
𝑣𝑟𝑗𝑘 − 𝑃 2

𝑟 𝑋𝑗𝑘

𝑃 3
𝑟 𝑋𝑗𝑘

)2
]

corresponds to the 2D reprojection error for
all the reference curves, and the second term[(

𝑢𝑖𝑗𝑘 − 𝑃 1
𝑖 𝑋𝑗𝑘

𝜆𝑖𝑗𝑘

)2

+
(
𝑣𝑖𝑗𝑘 − 𝑃 2

𝑖 𝑋𝑗𝑘

𝜆𝑖𝑗𝑘

)2
]

corresponds

to the 2D reprojection error for all the non-reference curves.
During the minimization process, 𝑥𝑖𝑗𝑘 will move along 𝑐𝑖𝑗
following the movement of 𝑥̂𝑖𝑗𝑘 due to the adjustment of 𝑃𝑖

and 𝑋𝑗𝑘, while 𝑥̄𝑟𝑗𝑘 will remain fixed on 𝑥𝑟𝑗𝑘. Therefore,
by fixing 𝑥̄𝑟𝑗𝑘 on curve 𝑐𝑟𝑗 , the first term measures the

point-to-point distances between the reprojected point 𝑥̂𝑟𝑗𝑘

and the measured representative point 𝑥̄𝑟𝑗𝑘; by allowing
𝑥𝑖𝑗𝑘 moving along curve 𝑐𝑖𝑗 , the second term measures the
point-to-curve distances between the reprojected point 𝑥̂𝑖𝑗𝑘

and the measured 2D curve 𝑐𝑖𝑗 .
To avoid the nonlinearity in the cost function, the above

minimization problem can be reformulated as (6) by intro-
ducing the inverse depth 𝛽𝑖𝑗𝑘 = 1/𝜆𝑖𝑗𝑘 [14] [6].

min
P,X,𝛽,x

⎧⎨
⎩

∑
(𝑟,𝑗,𝑘)∈R

[(
𝑢̄𝑟𝑗𝑘 − 𝛽𝑟𝑗𝑘𝑃

1
𝑟 𝑋𝑗𝑘

)2

+
(
𝑣𝑟𝑗𝑘 − 𝛽𝑟𝑗𝑘𝑃

2
𝑟 𝑋𝑗𝑘

)2]
∑

(𝑖,𝑗,𝑘)∈A∖R

[(
𝑢𝑖𝑗𝑘 − 𝛽𝑖𝑗𝑘𝑃

1
𝑖 𝑋𝑗𝑘

)2

+
(
𝑣𝑖𝑗𝑘 − 𝛽𝑖𝑗𝑘𝑃

2
𝑖 𝑋𝑗𝑘

)2]}
subject to

(𝑎) 𝑥𝑖𝑗𝑘 = [𝑢𝑖𝑗𝑘 𝑣𝑖𝑗𝑘 1]
𝑇 ∈ 𝑐𝑖𝑗 , (𝑖, 𝑗, 𝑘) ∈ A∖R

(𝑏) 𝛽𝑖𝑗𝑘𝑃
3
𝑖 𝑋𝑗𝑘 = 1, (𝑖, 𝑗, 𝑘) ∈ A

(6)
By imposing a penalty 𝛾, we incorporate the constraints

(6 (b)) into the cost function given in (6). By letting
the penalty 𝛾 approach ∞ in a controlled manner, the
constrained minimization problem (6) can be transformed
into a sequence of minimization sub-problems defined as (7).
The solutions of the minimization sub-problems are proved
to converge to the original minimization problem (6) when
the penalty approaches infinity [14] [6].

min
P,X,𝛽,x

𝐹 (P,X, 𝛽,x; 𝛾)

=
∑

(𝑟,𝑗,𝑘)∈R

∥𝛾𝑟𝑗𝑘 ∘ (𝑥̄𝑟𝑗𝑘 − 𝛽𝑟𝑗𝑘𝑃𝑟𝑋𝑗𝑘)∥2

+
∑

(𝑖,𝑗,𝑘)∈A∖R
∥𝛾𝑖𝑗𝑘 ∘ (𝑥𝑖𝑗𝑘 − 𝛽𝑖𝑗𝑘𝑃𝑖𝑋𝑗𝑘)∥2

subject to

𝑥𝑖𝑗𝑘 ∈ 𝑐𝑖𝑗 , (𝑖, 𝑗, 𝑘) ∈ A∖R

(7)

where ∘ denotes the Hadamard product (given matrices
𝐴 = [𝑎𝑖𝑗 ] and 𝐵 = [𝑏𝑖𝑗 ] of the same size, 𝐴∘𝐵 = [𝑎𝑖𝑗𝑏𝑖𝑗 ]).
𝛾𝑖𝑗𝑘 = [1 1 𝛾𝜂𝑖𝑗𝑘]

𝑇 , and the weighting factor 𝜂𝑖𝑗𝑘 is used
to balance the magnitude of the pixel coordinates with
the last element (i.e., unit magnitude) of the homogeneous
coordinates. We choose 𝜂𝑖𝑗𝑘 as suggested in [14] and [6]:

𝜂𝑖𝑗𝑘 = max (∣𝑢𝑖𝑗𝑘∣ , ∣𝑣𝑖𝑗𝑘∣) , ∀(𝑖, 𝑗, 𝑘) ∈ A (8)

C. Point-based curve reconstruction algorithm

Given a sequence of 𝑚 images with 𝑛 curve correspon-
dences 𝑐𝑖𝑗 detected in images, we first select the reference
curves 𝑐𝑟𝑗 , and sample representative points 𝑥̄𝑟𝑗𝑘 on 𝑐𝑟𝑗 .
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An iterative procedure is developed to estimate the unknown
parameters: P,X, 𝛽,x.

In the proposed iterative procedure, the minimization
problem (6) is solved as a sequence of minimization sub-
problems (7) corresponding to increasing values of 𝛾. For
any fixed 𝛾, we can solve for one of the four variables
P,X, 𝛽 and x as a free parameter while fixing the other
three variables, alternately and iteratively until convergence.
Note that the constraints in (7) are only related to the variable
x and independent of the other three variables P,X, 𝛽.
Therefore, 𝐹 (P,X, 𝛽,x; 𝛾) is trilinear in P,X, 𝛽, and the
minimization sub-problem (7) with respect to each of the
three variables is a weighted linear least-squares problem
solvable by standard techniques. As for the variable x, when
all the other three variables are fixed, the minimization with
respect to x amounts to finding a point lying on a given
(non-reference) curve 𝑥𝑖𝑗𝑘 ∈ 𝑐𝑖𝑗 , (𝑖, 𝑗, 𝑘) ∈ A∖R, which is
as close as possible to a given point 𝑥̂𝑖𝑗𝑘.

The following Algorithm 1 gives details about the iterative
procedure for solving (6).

The above algorithm is guaranteed to converge to a (local)
minimum of the cost function with a geometric meaning
given in (6), and a detailed proof is given in [14] [6].
Furthermore, the minimization problem is formulated on the
observed data only, and therefore the proposed algorithm
is capable of handling the missing and/or occluded curve
problem.

D. Initialization

In the proposed algorithm, which solves the minimization
problem iteratively, a good initial guess is important. Here
we apply the method for affine-invariant shape matching [15]
to get the initial point correspondences x(0) on the non-
reference curves. An overview of the affine-invariant shape
matching method is given as follows, and the details can be
found in [15].

Since a perspective transformation between two images of
an object can be approximated by an affine transformation
if the object is planar and far away from the image plane.
The proposed method in [15] measures the similarity (up
to an affine transformation), and estimates the affine trans-
formation between a pair of corresponding curves. Given a
pair of curves, the matching process consists of four steps
as follows.

(1) Affine-invariant points (along each curve) detection.
The affine-invariant points, which are preserved un-
der affine transformations, are detected based on the
properties of curvature scale space (CSS) shape de-
scriptor [16]. Every two consecutive affine-invariant
points determine an affine-invariant segment along the
curve, and thus a sequence of ordered affine-invariant
segments are created for each curve.

(2) Affine-invariant segments matching. The two se-
quences of affine-invariant segments are aligned by

Algorithm 1 3D curve reconstruction
GIVEN 𝑚 images with 𝑛 curve correspondences 𝑐𝑖𝑗

(I) Select the reference curves 𝑐𝑟𝑗 and set 2D representa-
tive points 𝑥̄𝑟𝑗𝑘 ∈ 𝑐𝑟𝑗 , (𝑟, 𝑗, 𝑘) ∈ R on it.

(II) Initialization for P(0),X(0), 𝛽(0) (A method for ini-
tialization is given in Section III-D).

(III) Iterative minimization process.

(a) Set intial parameters: 𝛾(0) = 1, 𝑠 = 0, 𝑟 =
0, 𝑒(0) = 𝜖(0) = ∞.

(b) Put 𝑠 = 𝑠+ 1.
(c) Fix P(𝑠−1),X(𝑠−1), 𝛽(𝑠−1), and determine x(𝑠)

by solving

min
x(𝑠)

𝐹
(
P(𝑠−1),X(𝑠−1), 𝛽(𝑠−1),x(𝑠); 𝛾(𝑟)

)

subject to 𝑥𝑖𝑗𝑘 ∈ 𝑐𝑖𝑗 .
(d) Fix P(𝑠−1),X(𝑠−1),x(𝑠), and determine 𝛽(𝑠) by

solving

min
𝛽(𝑠)

𝐹
(
P(𝑠−1),X(𝑠−1), 𝛽(𝑠),x(𝑠); 𝛾(𝑟)

)
.

(e) Fix P(𝑠−1), 𝛽(𝑠),x(𝑠), and determine X(𝑠) by
solving

min
X(𝑠)

𝐹
(
P(𝑠−1),X(𝑠), 𝛽(𝑠),x(𝑠); 𝛾(𝑟)

)
.

(f) Fix X(𝑠), 𝛽(𝑠),x(𝑠), and determine P(𝑠) by solv-
ing

𝜖(𝑠) = min
P(𝑠)

𝐹
(
P(𝑠),X(𝑠), 𝛽(𝑠),x(𝑠); 𝛾(𝑟)

)
.

(g) Repeat (b)-(f) until 𝜖(𝑠) converges.
(h) Put 𝑟 = 𝑟 + 1, 𝑒(𝑟) = 𝜖(𝑠),(

P(0),X(0), 𝛽(0),x(0)
)

=(
P(𝑠),X(𝑠), 𝛽(𝑠),x(𝑠)

)
,

𝛾(𝑟) = 1.1𝛾(𝑟−1). Set 𝑠 = 0.
(i) Repeat (b)-(h) until 𝑒(𝑟) converges.

(IV) Output the solution (P∗,X∗, 𝛽∗,x∗) =(
P(𝑠),X(𝑠), 𝛽(𝑠),x(𝑠)

)
.

the Smith-Waterman algorithm [17], and thus an initial
matched part is obtained.

(3) Matching section extension. If at least one curve is
partially visible, the initial matched section is extended
using the affine invariant affine-length, such that the
maximum matched section is obtained. Accordingly,
the point correspondences are obtained and the affine
transformation is estimated.

(4) Similarity score computation. Transform the first curve
by the estimated affine transformation, and the simi-
larity score between the second curve and the trans-
formed first curve is computed by the standard cross-
correlation technique.
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The above matching method makes use of the global
information of the curves, as well as the local information.
Therefore, it is capable of matching curves under partial
occlusion. The point correspondences obtained from the
matching method will provide us a reasonable guess of x(0).
Then the projective point reconstruction algorithm [6], which
relies on the initial point correspondences only, is applied
to get the initial projection matrices P(0), 3D representative
points X(0), and inverse depth 𝛽(0).

IV. EXPERIMENTAL RESULTS

We have tested our proposed algorithm for curve re-
construction on real images. One example is given in this
section. Three images (shown in Figure 2) of a 3D scene are
taken by a Canon EOS D30 digital camera, with different
focal lengths. Two curves in each image are extracted, each
in the form of a sequence of connected edge points, using
a level set based method [18]. In this image sequence, the
curves on the first and third images are partially occluded.
For every two adjacent images, we apply the affine-invariant
curve matching method [15] on the curves in a pair-wise
manner to create a matching table containing the similarity
scores of all the curve pairs. Then curve correspondences
are obtained by applying the winner-takes-all technique to
the matching table. After that, we select the curves on
the second image as the reference curves, and sample the
representative points along the reference curves with an
interval of 10 points (see Figure 2), resulting in 127 and
173 representative points on the two curves. Finally we
run Algorithm 1 on the measured curves correspondences.
Figure 3 gives the reconstructed 3D curves (and the position
of the cameras), which is a reasonable representation of
the real 3D curves. Due to space limitation, we only show
the reprojected representative poins on the third image in
Figure 4 for visual evaluation. The reprojected representative
points are almost lying on the measured curves, which means
the 2D curve reprojection error is small. For numerical
evaluation, the mean 2D curve reprojection error (averaged
over all reprojected representative points) is 1.78 pixel (with
respect to the image size of 1440× 2160).

V. CONCLUSIONS

In this paper, we propose a new approach for recon-
structing 3D curves from a sequence of images taken by
uncalibrated cameras. We reconstruct a 3D curve by mini-
mizing the distance of reprojected representative points from
the measured 2D curves on different images. By solving
a sequence of minimization sub-problems, the proposed
iterative algorithm is guaranteed to converge to a (local)
minimum of the 2D curve reprojection error. The proposed
method does not require prior calibration of the cameras
or additional information of feature points, and it readily
handles cases where not all curves are visible or some curves
are partially occluded.

Figure 2. The sequence of images. The extracted curves are shown in red.
The curves in the second image are selected as reference curves and the
green dots are the representative points.
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