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Summary. This paper addresses the problem of calibrating a pinhole camera from images
of a surface of revolution. Camera calibration is the process of determining the intrinsic or
internal parameters (i.e. aspect ratio, focal length and principal point) of a camera, and is
important for both motion estimation and metric reconstruction of 3D models. In this paper,
a novel and simple calibration technique has been introduced which is based on the symme-
try of images of surfaces of revolution. Traditional techniques for camera calibration involve
taking images of some precisely machined calibration pattern (such as a calibration grid).
The use of surfaces of revolution, which are commonly found in daily life (e.g. bowls and
vases), makes the process easier as a result of the reduced cost and increased accessibility
of the calibration objects. In this paper, it is shown that 2 images of surface of revolution
will provide enough information for determining the aspect ratio, focal length and principal
point of a camera. An analytical error model is developed, providing variances and confi-
dence intervals of the parameters estimated. The techniques presented in this paper have been
implemented and tested with both synthetic and real data. Experiment results show that the
camera calibration method presented here is both practical and accurate.

1 Introduction

An essential step for motion estimation and 3D Euclidean reconstruction, two im-
portant tasks in computer vision, is the determination of the intrinsic parameters of
cameras. This process, known ascamera calibration, usually involves taking im-
ages of some special patterns with known geometry (see [15,10,8] and [6, Chapter
3]). Such methods do not require direct mechanical measurements on the cameras,
and often produce very good results. Nevertheless, they involve the design and use
of highly accurate tailor-made calibration patterns, which are both difficult and ex-
pensive to manufacture.

In this paper a novel technique for camera calibration is introduced. It relates the
ideas from [2,11] for calibration from vanishing points to symmetry properties of
images of surfaces of revolution [16,13,17,5,12]. The method presented here allows
the camera to be calibrated from two or more images of surfaces of revolution,
which are commonly found in daily life (bowls, vases etc.). The use of such objects
has the advantage of easy accessibility and low cost, in contrast to the traditional
calibration pattern.

Section 2 shows how the symmetry that appears in the images of surfaces of rev-
olution provides information about vanishing points related to a set of three mutually
orthogonal directions. By extending the techniques for calibration from vanishing
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points, such information can be used in the development of practical algorithms for
camera calibration. These algorithms, detailed in Section 3, are capable of dealing
with both known and unknown aspect ratio, whereas previous techniques for cali-
bration based on vanishing points can only handle the former case. The error model
is described in Section 4. Section 5 first presents results of experiments conducted
on synthetic data, which are used to perform an evaluation of the robustness of the
algorithm in the presence of noise. Experiments on real data show the usefulness of
the proposed method. Finally, conclusions are presented in Section 6.

2 Theoretical Background

The major contributions of [2] and [17] are briefly reviewed in this section, which
provides the mathematical background for the algorithms developed in this paper.

In [17] it has been shown that the perspective image of a surface of revolution
exhibits a special symmetry which can be expressed in terms of a transformation
known as aharmonic homology (see details in [14, Chapter IX]). Consider a surface
of revolutionS. The image ofS taken by a pinhole cameraP is a curveε. Let ls
be the image of the axis of revolution ofSr in the cameraP. The optical center of
P and the axis of revolution define a planeΠ, whose normal direction isnx. The
image of the point at infinity in the directionnx is the vanishing pointvx.

If vx andls are represented in homogeneous coordinates asvx = [u v 1]T and
ls = [cos θ sin θ − d]T, the 2D collineationW given by

W = I − 2
vxlTs
vT

x ls
(1)

is a harmonic homology. The profileε will be invariant to this transformation, which
simply maps one side of the profile (with respect to the image of the axis of rotation)
to the other

Consider now any two vectorsny andnz parallel toΠ and orthogonal to each
other, which together withnx form a set of three mutually orthogonal directions.
By construction, the vanishing points corresponding to the directions ofny andnz

will lie on ls (hereafter, referred to asaxis of revolution).
These three vanishing points can be used to determine the focal length and the

principal point of the cameraP assuming that it has zero skew and aspect ratio 1,
as shown in [2,3]. In that paper it is proved that the principal point will coincide
with the orthocenter of the triangle with vertices given by the vanishing points, and
it follows that the square root of the product of the distances from the orthocenter
to any vertex and to the opposite side will give the focal length (see Fig. 1(a)). As
a result, given a harmonic homologyW defined by the vanishing pointvx and the
axis of revolutionls, the principal point of the cameraP will lie on a line lx passing
throughvx and perpendicular tols. The product of the distances from the principal
point tovx and tols will give the square of the focal length (see Fig. 1(b)).
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Fig. 1. (a) The principal pointu0 of the camera coincides with the orthocenter of the triangle
with vertices given by the vanishing pointsvx, vy andvz, and the product of the distances
d1 andd2 is equal to the square of the focal length. (b) The vanishing pointvx and the axis
of revolutionls define a linelx along which the principal point must lie

3 Algorithms and Implementation

3.1 Estimation of the Harmonic Homology W

The profileε of each surface of revolution is extracted from the image by applying
a Canny edge detector (see Fig. 2). The harmonic homologyW that maps each
side of the profileε to its symmetrical counterpart is then estimated by minimizing
the geometrical distances between the original profile and its transformed version.
This can be done by samplingN evenly spaced pointsxi along the profileε and
optimizing the cost function

CostW(vx, ls) =
N∑

i=1

dist(ε,W(vx, ls)xi)2, (2)

wheredist(ε,W(vx, ls)xi) is the distance between the original profileε and the
transformed sample pointW(vx, ls)xi. The4 parameters for the optimization areθ
andd, which define the axis of revolutionls , andρ andr, which define the vanishing
pointvx in thex-direction (see Section 2).

The success of most non-linear optimization problems requires a good initial-
ization so as to avoid convergence to a local minimum. This is achieved here by
using bitangents of the profile [16]. Two points near a bitangent are selected and a
polynomial is fitted to the profile in the neighbourhood of each point. The bitangent
and the bitangent points can then be obtained analytically from the two polynomi-
als. Given two bitangentsl(p1,p2) andl(q1,q2) on the two sides of the profileε
with bitangent pointsp1,p2 andq1,q2 respectively (see Fig. 3), the intersection
of the two bitangents (l(p1,p2), l(q1,q2)) and the intersection of the diagonals
(l(p1,q2), l(q1,p2)) give two points which define a line for an estimate ofls. An
estimate for the vanishing pointvx is given by the point of intersection of the lines
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Fig. 2. The profiles of the surfaces of revolution (bowls) are extracted by Canny edge detector

l(p1,q1) andl(p2,q2). The initialization ofls andvx from bitangents often pro-
vides an excellent initial guess for the optimization problem. This is generally good
enough to avoid any local minimum and allows convergence to the global minimum
in a small number of iterations. The estimation of the harmonic homologyW is
summarized in Algorithm 1.
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Fig. 3. Initialization of the optimization parametersls andvx from the bitangents and lines
formed by bitangent points

3.2 Estimation of Intrinsic Parameters

Known Aspect Ratio When the aspect ratio of the camera is1, the linelx passing
through the principal point(u0, v0) and the vanishing pointvx will be perpendicular
to the axis of revolutionls (see Section 2). As a result,lx can be expressed in terms
of vx and ls, and is given bylx = [l2 − l1 l1v2 − l2v1], wherevx and ls are
represented by[v1 v2 1]T and[l1 l2 l3]T respectively. Given two such lineslx1 and
lx2, the principal point(u0, v0) will be given by the point of intersection of the two
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Algorithm 1 Estimation of the harmonic homologyW
extract the profileε of the surface of revolution by using a Canny edge detector;
sampleN evenly spaced pointsxi alongε;
initialize the axis of revolutionls and the vanishing pointvx by identifying bitangents in
ε;
while not convergeddo

transform each pointxi by W;
compute the distances betweenε and the transformed pointsWxi;
updatels andvx to minimize the function in (2);

end while

lines. When more than two lines are available, the principal point(u0, v0) can be
estimated by linear least-squares method from




lTx1

lTx2
...

lTxN





 su0

sv0

s


 = 0, (3)

whereN ≥ 2 is the total number of lines (i.e. number of profiles) ands is a scale
factor. The estimated principal point(u0, v0) is then projected on each linelxi or-
thogonally asu0i, and the focal lengthf will be given by

f =
1
N

N∑
i=1

√
dist(u0i,vxi) × dist(u0i, lsi), (4)

wheredist(u0i,vxi) is the distance between the vanishing pointvxi and the pro-
jected principal pointu0i, anddist(u0i, lsi) is the distance between the axis of rev-
olution lsi and the projected principal pointu0i. Note that the terms for summation
are actually the focal lengths estimated from each pair ofvxi andlsi with the esti-
mated principal point projected onto the correspondinglxi (see Section 2), and the
focal lengthf is taken to be the mean of these estimated values. When the aspect
ratioa is known but not 1, there exists a homographyT(a) given by

T(a) =




1
a 0 0
0 1 0
0 0 1


 (5)

that transforms the image coordinate system such that the resulting camera would
have aspect ratio 1 with the original focal length preserved. After transforming the
camera to one with aspect ratio 1, the algorithm presented above can be applied in
the same way and the principle point will be given by(au0, v0), where(u0, v0) are
obtained from (3).



6 Kwan-Yee K. Wong et al.

Unknown Aspect Ratio When the aspect ratioa of the camera is unknown, the
principal point(u0, v0) and focal lengthf cannot be obtained directly from the
vanishing pointsvxi and axes of revolutionlsi. However, a search fora can be
performed by optimizing the cost function

Costa(a) = VAR({dist(u′
0i,T(a)vxi)

× dist(u′
0i,T

−T(a)lsi)}N
i=1), (6)

whereVAR is the variance of the data set.u′
0i is the projection of the princi-

pal pointu′
0 onto the line passing throughT(a)vxi and orthogonal toT−1(a)lsi.

dist(u′
0i,T(a)vxi) is the distance between the transformed vanishing point

T(a)vxi and the projected principal pointu′
0i, anddist(p′

0i,T
−1(a)lsi) is the dis-

tance between the transformed axis of revolutionT−1(a)lsi and the projected prin-
cipal pointu′

0i.
Since the search space is only one-dimensional, instead of performing an exten-

sive search, one can just plot the cost against typical range ofa and obtain the result
directly (see Fig. 4).
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Fig. 4. Plot of the cost function in (6) againsta from 0.8 to 1.7 with step size 0.001 for a
camera with aspect ratio 1

After convergence, the aspect ratioa obtained can then be used to transform the
vanishing pointsvxi and axes of revolutionlsi using the homographyT(a), and the
principal point(u0, v0) and focal lengthf can be recovered as in the case of known
aspect ratio.

4 Error Model

An important part of any estimation problem is the determination of the uncertain-
ties of the parameters estimated. It is not enough to state the value of a focal length
after calibrating a camera: a confidence interval for the value estimated must also be
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provided. A comprehensive introduction to this and related problems can be found
in [9].

4.1 Error Propagation

Consider the cost function

ξ2(θ) =
N∑

i=1

(yi − f(xi;θ))T(yi − f(xi;θ)). (7)

The valueθ = θ̂ that minimizes (7) is amaximum likelihood estimator (MLE)
for the parameterθ of the parametric modely = f(x;θ). For noise free-data, i.e.,
(xi,yi) exactly satisfying the model, theresidual ξ2(θ̂) in (7) will be zero. How-
ever, due to the presence of noise, the data will not perfectly fit the model, and
ξ2(θ̂) ≥ 0. It is possible to propagate this residual and obtain the corresponding un-
certainty for the parameter̂θ by projecting the points(2ξ2(θ̂),θ) ∩ (ξ2(θ),θ) onto
the plane(0,θ) (see Fig. 5). IfH|θ̂ is the Hessian ofξ2(θ) computed in̂θ, it can be
shown that the covariance matrixC(θ̂) of θ̂ will be given byC(θ̂) = 2ξ2H|−1

θ̂
.

ξ2

θ̂

ξ2

Fig. 5. The covariance matrix of the parameterθ̂ can be found by projecting points of the
manifold(2ξ2(θ̂), θ) ∩ (ξ2(θ), θ) onto the plane(0, θ)

Analysis of several covariance matrices for the parameters ofls andvx showed
that the uncertainty is essentially invx. This was expected, since the vanishing
pointvx corresponds to the intersection of lines which are nearly parallel. Thus it is
justified, in order to simplify the analysis, to ignore the uncertainty in the parameters
of ls. The covariance matrix ofu andv in vx will be henceforth denoted byC(vx).
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4.2 Covariance Matrix of the Principal Point

This error propagation technique can be directly used to determine the covariance
matrixC(u0) of the principal pointu0. The computation of the hessian of the func-
tion (2) is carried out during the optimization process.

After the computation of the homologies,u0 is recovered from (3), which can
be rewritten as

Lx

[
u0

1

]
= 0. (8)

If Lx = [Nx−d], then the least squares solution of (3) will be given byû0 = N+
x d,

whereN+
x is the Moore-Penrose inverse ofNx. Therefore,

C(û0) = N+
x diag(σ2(d))N+T

x , (9)

wherediag(σ2(d)) corresponds to the diagonal matrix whose entries areσ2(di).

4.3 Variance of the Focal Length

The computation of the variance of the focal length as estimated by (4) is more
elaborated. Each term in the summation in (4) is a separate (but not independent)
estimatefi of f , given byfi =

√
di1

√
di2. In order to simplify the calculations

some hypothesis will be assumed: (a)
√

di2 is constant; sincedi2 = vT
x ls, di2 is

not constant; nevertheless, the vanishing pointvx is, in general, tens of thousands
of pixels away fromls; the covariance matrix ofvx, in all the experiments made,
indicates an uncertainty of less than 50 pixels for this parameter, justifying the ap-
proximation; (b)fi is independent offj if i �= j; in fact, they all depend onu0, but
the influence ofls andvx is dominant. Under this hypothesis it can be shown that

VAR(f) ≈ 1
N2

N∑
i=1

1
4di1

VAR(di1)di2. (10)

Despite all the approximations, (10) and (9) produce good results, as shown by the
results of the experiments.

5 Experimental Results

Experiments on both synthetic and real data have been performed, and the results
will be presented in the following subsections.

5.1 Synthetic Data

Generation of Data The experimental setup consists of a surface of revolution
which is made up of two spheres intersecting each other. The intrinsic parameters
of the synthetic camera are given by the calibration matrixK as in [6], where focal
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lengthf = 700, aspect ratioa = 1 and with principal point at(320, 240), and the
images have a dimension of640 × 480. Each sphereQ will be projected as a conic
C on the image plane and the projection is given by [4]C = (PQ−1PT )−1, where
P is the3× 4 projection matrix of the camera,Q is a4× 4 matrix representing the
sphere andC is a 3 × 3 matrix representing the conic. The profile in each image
is found by projecting each sphere into the image as a conic and finding points on
each conic that lie outside the other conic. The profiles formed by the three cameras
are shown in Fig. 6.

camera 1 camera 2 camera 3

Fig. 6. Profiles of the surface of revolution in the images taken by the synthetic camera at the
three different positions

In order to evaluate the robustness of the algorithms described in Section 3, dif-
ferent levels of noise have been added along the normal direction of each pixel on
the profile. Nevertheless, whereas for corner features the assumption of uncorrelated
noise is acceptable, the noise affecting adjacent edgels of profiles exhibits a strong
correlation. This is due to the fact that one of the steps of edge detection is a smooth-
ing of the image, which introduces correlation between adjacent pixels. To simulate
this effect, uncorrelated uniform noise was convolved with the same Gaussian ker-
nel used to smooth the image, and the output of this filtering was used as to disturb
the edgels of the profile.

Experiments and Results Experiments on noise-free data (see Fig. 6) and data with
six different noise levels have been performed. The six noise levels are 0.5, 0.7,
1.0, 1.2 and 1.5 pixel respectively. For each noise level,10 experiments have been
conducted using the algorithms described in Section 3 for unknown aspect ratio.
One hundred evenly spaced points have been sampled from each profile for the
estimation of the harmonic homologyW.

The results of the experiments are shown in Table 1 , Table 2 and Table 3. The
estimated parameters being shown for each noise level are the mean values over
the 10 experiments. The errors being listed are the percentage errors of the mean
value of each parameter relative to the ground truth focal length. As the noise level
increases, both the relative errors and standard deviations increase. For a noise level
of 1.0 pixel, the error for the focal length and principal point is less than 5%.
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noise level mean(f ) std(f ) error(f )
ground truth 700.00 0.00 0.00%

0.0 698.18 0.00 -0.26%
0.5 686.34 13.21 -1.95%
0.7 674.65 23.50 -3.62%
1.0 676.05 28.15 -3.42%
1.2 685.69 7.70 -2.04%
1.5 638.67 30.02 -8.76%

Table 1. Results of calibration of focal length from profiles of surface of revolution using
synthetic data with different noise levels

noise level mean(a) std(a) error(a)
ground truth 1.0000 0.0000 0.00%

0.0 1.0000 0.0000 0.00%
0.5 1.0031 0.0063 0.31%
0.7 1.0059 0.0078 0.59%
1.0 1.0014 0.0086 0.14%
1.2 0.9950 0.0027 -0.50%
1.5 1.0080 0.0069 0.80%

Table 2. Results of calibration of the aspect ratio from profiles of surface of revolution using
synthetic data with different noise levels

noise level mean(u0, v0) std(u0, v0) error(u0, v0)
ground truth(320.00,240.00) (0.00,0.00) (0.00%,0.00%)

0.0 (321.05,240.06) (0.00,0.00) (0.15%,0.01%)
0.5 (318.54,247.18) (12.73,8.19)(-0.21,%1.03%)
0.7 (311.87,258.64)(18.00,13.06)(-1.16%,2.66%)
1.0 (322.20,256.65)(22.06,16.96) (0.31%,2.38%)
1.2 (339.01,247.17) (7.70,4.09) (2.72%,1.02%)
1.5 (316.64,253.99)(17.62,14.94)(-0.48%,2.00%)

Table 3. Results of calibration of the principal point. Errors are relative to the focal length

5.2 Real Data

Ground Truth The camera used in the experiments for real data is a FUJI MX-700
digital camera and the image size is chosen to be640 × 480. The ground truth for
the camera’s intrinsic parameters is obtained by using a calibration grid.

11 images of the calibration grid have been taken with the camera at different
orientations. Corners are extracted from each image using a Canny edge detector and
line fitting techniques. For each image, a linear least-squares method [1] is first used
to obtain estimates for the11 parameters of the projection matrix. These estimates
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are then used to initialize the optimization for the projection matrix elements which
minimize the re-projection errors [7] while enforcing aspect ratio 1 and zero skew.

Experiments and Results A set of real images have been used for the calibration
of the digital camera, consisting of 3 images of two bowls, providing 4 profiles
of surface of revolution (see Fig. 7). The results of calibration from the images
using the algorithm presented in Section 3 for unknown aspect ratio are shown in
Table 4. The errors shown are the percentage error of the each parameter relative to
the ground truth focal lengthf = 685.00 estimated from the calibration grid.

Fig. 7. 3 images of the bowls with the extracted profiles and estimated axes of revolution
represented by solid and dash lines respectively

parameter f a u0 v0

MLE 697.53 1.0100 318.36244.40
ground truth685.00 1.0008 322.60232.15

error 1.83%0.9245%-0.62% 1.79%
predicted std 10.37 - 5.19 3.41

Table 4. Results of calibration using the profiles extracted from the images of the bowls

6 Conclusions

By exploiting the symmetry of surfaces of revolution and properties of vanishing
points, a practical technique for camera calibration has been developed. The use
of a surface of revolution makes the calibration process easier, in not requiring the
use of any precisely adjusted device such as a calibration grid. Note that a sur-
face of revolution can be generated by rotating any arbitrarily shaped object on a
turntable [12] and thus the method can be seamlessly incorporated into reconstruc-
tion systems based on turntable sequences. The proposed method is promising, as
demonstrated by experimental results on synthetic and real data. The focal lengths
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are estimated with high accuracy, with an error smaller than 4% for realistic levels
of noise.

The experiments with synthetic data have demonstrated that the calibration al-
gorithm is remarkably robust, performing well for any practical level of noise. The
estimation of the focal length seems to be biased, and the focal length is consistently
underestimated. Nevertheless, this trend was not confirmed by the real data experi-
ments, which produced a nearly 2% overestimation off . This suggests that the error
model for the synthetic data experiments must be improved.

The error analysis developed in Section 4 is accurate, except in the prediction
of the range ofv0. This parameter, however, presented unstability even for the cal-
ibration obtained from the grid, which produced results in the interval 225.69 –
239.7245. It also has a standard deviation larger then all the other parameters, com-
puted from the 11 values found by using the calibration grid. A natural extension of
this ideas is to use the error analysis not only to predict uncertainty bounds, but also
to improve the quality of the estimation.
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