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ABSTRACT

This paper addresses the problem of camera calibration from

spheres. By studying the relationship between the dual im-

ages of spheres and that of the absolute conic, a linear so-

lution has been derived from a recently proposed non-linear

semi-definite approach. However, experiments show that

this approach is quite sensitive to noise. In order to over-

come this problem, a second approach has been proposed,

where the orthogonal calibration relationship is obtained by

regarding any two spheres as a surface of revolution. This

allows a camera to be fully calibrated from an image of three

spheres. Besides, a conic homography is derived from the

imaged spheres, and from its eigenvectors the orthogonal in-

variants can be computed directly. Experiments on synthetic

and real data show the practicality of such an approach.

1. INTRODUCTION

Camera calibration, the determination of the camera intrin-

sic parameters, is traditionally achieved by imaging some

special pattern with known metric structure[1][2]. How-

ever, these approaches involve the design and use of highly

accurate tailor-made calibration patterns, which are often

difficult and expensive to be manufactured. Apart from this,

multi view vision systems are becoming more and more cost

effective, and calibration of such a large number of cameras

with a pattern is tedious and cumbersome. Besides, it is also

very difficult to calibrate all the cameras simultaneously as

the points on the calibration pattern may not be all visible

simultaneously in all views. To overcome these difficulties,

it is desirable to have some common simple object. In [3],

Wong et. al. proposed to use a surface of revolution (SOR)

to calibrate a camera. The silhouettes of SOR can be ex-

tracted more reliably compared with points and they facili-

tate more precise camera calibration. In addition, as long as

the SOR is placed in the common view field of the cameras,

its occluding contours are always visible from any position.

Hence it can be used to accurately calibrate multiple cam-

eras mounted at arbitrary locations simultaneously.

Sphere, a special type of SOR, is used in this paper as

the calibration object. It has first been used in [4] to com-

pute the aspect ratio of the two image axes. Later, Daucher

et. al. [5] introduced a multi-step nonlinear approach to

estimate four camera parameters using spheres. More re-

cently, Teramato and Xu [6] related the absolute conic with

three images of spheres and calibrated the camera by min-

imizing some geometric errors nonlinearly. Agrawal [7]

derived similar constraints in the dual space, and the pa-

rameters were solved by minimizing some algebraic errors

using semi-definite programming. Note that all the above

approaches involve a nonlinear procedure which can result

in a low calibration speed. In this paper, two novel linear

approaches, namely the scalar and orthogonal approaches,

have been proposed to overcome the above problems. The

scalar approach is obtained by eliminating the imaged sphere

centers in the calibration constraints in [7] so that the non-

linear semi-definite minimization is avoided. The orthogo-

nal approach is inspired by [3], where any combination of

two spheres can be regarded as a surface of revolution with

its rotation axis uniquely defined by the joint line of the two

sphere centers. The orthogonal constraints [8] can then be

used to calibrate the camera. Besides, a conic homography

can be derived from the imaged spheres and from its eigen-

vectors, the orthogonal invariants can be computed directly.

This paper is organized as follows. § ?? presents the fun-

damentals for camera calibration from the absolute conic.

§ 3 relates the dual image of a sphere to that of the abso-

lute conic. § 4 introduces two novel linear approaches for

camera calibration from spheres. § 5 shows the results of

synthetic/real experiments. Conclusions are given in § 6.

2. CALIBRATION WITH THE ABSOLUTE CONIC

One advantage of direct calculation of the image of the ab-

solute conic(IAC) is that it allows a linear calibration. The

absolute conic was first introduced by Faugeras et al. [9]. It

is a point conic on the plane at infinity that is invariant to ro-

tation and translation as a set. Given the camera calibration

matrix K, it projects to the IAC as

ω = K−TK−1 =





ω1 ω3 ω4

ω3 ω2 ω5

ω4 ω5 ω6



 . (1)
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The IAC, and its dual (DIAC) ω∗ = KKT [8] are imaginary

point and line conics respectively, which have no real point

lying on them. The camera matrix K can be easily obtained

from the IAC or DIAC by Cholesky decomposition [10].

The image of the absolute conics can be found by mak-

ing use of the orthogonal constraints. The vanishing point v

of the normal direction to a plane and the vanishing line l of

the plane satisfy the pole-polar relationship w.r.t. the image

of absolute conic ω [8], and hence

l = ωv. (2)

Thus to fully calibrate a camera at least three such conjugate

pairs are needed. To calibrate a zero skew/natural camera,

at least two are needed.

3. THE APPARENT CONTOUR OF A SPHERE AND

ITS DUAL

Without loss of generality, consider a camera P=K[I3|0]
viewing a sphere Q̂ centered at the Z-axis(see Fig.1(a)).

The limb points X = [X0cos θ X0sin θ rX0 1]T of the sphere

always form a planar circle C3. The image points x̂ (see

Fig.1(b)) of X under P can be defined as

x̂=K [I|0]









X0cosθ
X0sinθ

γX0

1









=X0K





1 0 0
0 1 0
0 0 γ









cosθ
sinθ

1



 , (3)

where [X0 0 γX0 1] is the generating point of the circle C3.

Since the point Xu = [cos θ sin θ 1]T lies on the unit circle

Cu=diag{1, 1,−1}, the homography Ĥ=Kdiag{1, 1, γ}
transforms Cu to the image of C3 as Ĉ = Ĥ−TCuĤ

−1.

Now consider the sphere rotates to an arbitrary position about

the camera center by a rotation R. Let H=KRdiag{1, 1, γ},

the image of the sphere is thus given by

C = H−TCuH
−1. (4)

In the dual space, the dual of C is given by

C∗ = KRdiag{1, 1,−γ2}RTKT

= KR(I + diag{0, 0,−(γ2 + 1)})RTKT

= KKT − (γ2 + 1)Kr3r
T

3
KT

= KKT − ooT, (5)

where r3 is the third column of the rotation matrix R and

o=
√

γ2 + 1Kr3 is the image of the sphere center R[0 0 Z 1]T

under P. This result coincides with those derived in [7].

Note there exists a scalar for each sphere image, i.e.,

β1C
∗

1
= ω∗ − o1o

T

1

β2C
∗

2
= ω∗ − o2o

T

2

β3C
∗

3
= ω∗ − o3o

T

3
. (6)
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(b)Image of a sphere

Fig. 1. A sphere is viewed by a camera P=K[I3|0].

It can be easily derived that the ratios of the scalars βj/βi

are the eigenvalues of CjC
∗

i (i, j =1, 2, 3 and i 6= j). The

image of each sphere center o can then be obtained by a lin-

ear combination of the first two eigenvectors of CjC
∗

i [7].

Note although βj/βi and βk/βi can be chosen to be con-

sistent with βj/βk(i, j, k =1, 2, 3 and i 6= j 6=k), multiple

choices exist in practise. The correct one can be retained by

the heuristic that all the three resulting imaged sphere cen-

ters should lie within their corresponding apparent contours.

Note there can even be no solution when noise is too large.

4. LINEAR CALIBRATION APPROACHES

4.1. Scalar Approach

The fundamental idea is to eliminate the images of the sphere

centers in (6) so that apart from ω∗, only three unknowns re-

main, i.e., the scalars β1,β2 and β3. The equation (6) can be

rewritten as

ω∗ − βiC
∗

i =oio
T

i =





o2

i1 oi1oi2 oi1oi3

oi1oi2 o2

i2 oi2oi3

oi1oi3 oi2oi3 o2

i3



 , (7)

where oi=[oi1 oi2 oi3]
T (i=1, 2, 3) is the image of the ith

sphere center. By observing the elements on the right hand

side, three quadratic equations can be derived as

o2

i1o
2

i2 = (ω∗

11
−βic

∗

i11)(ω
∗

22
−βic

∗

i22) = (ω∗

12
−βic

∗

i12)
2

o2

i1o
2

i3 = (ω∗

11
−βic

∗

i11)(ω
∗

33
−βic

∗

i33) = (ω∗

13
−βic

∗

i13)
2

o2

i2o
2

i3 = (ω∗

22
−βic

∗

i22)(ω
∗

33
−βic

∗

i33) = (ω∗

23
−βic

∗

i23)
2. (8)

From each combination of two conics, three linear equa-

tions can be obtained by eliminating the second order com-

ponents of ω∗,

a2ω
∗

11
+ a1ω

∗

22
− 2b12ω

∗

12
− c12 = 0

a3ω
∗

11
+ a1ω

∗

33
− 2b13ω

∗

13
− c13 = 0

a3ω
∗

22
+ a2ω

∗

33
− 2b23ω

∗

23
− c23 = 0, (9)



where am =βiC
∗

imm−βjC
∗

jmm, bmn =βiC
∗

imn−βjC
∗

jmn,

cmn=(β2

i C∗2

imn−β2

j C∗2

jmn)−(β2

i C∗

immC∗

inn−β2

j C∗

jmmC∗

jnn)
(m,n=1, 2, 3). Note in practise, however, errors in the esti-

mated scalar βi can cause instability in calibration. Another

novel approach is then proposed to overcome this problem.

4.2. The Orthogonal Approach

The orthogonal relationship in (2) can be directly obtained

from the image of two spheres.

Proposition I From images C1 and C2 of two circles, a ho-

mography Hc = C2C
∗

1
, termed as the conic homography,

can be obtained so that its eigenvectors give a line of fixed

points (axis) and a fixed point (vertex) not on the line.

Due to space restrictions, its proof for the general cases

is omitted here, while the proof for the special case when

the camera is viewing two spheres is given as follows.

Proof. For each pair of conics C∗

i and C∗

j (i 6= j), multiply-

ing the line lij = oi × oj which joins the images of the two

sphere centers to both sides of (6) gives

βiC
∗

i (oi × oj) = (ω∗ − oio
T

i )(oi × oj)

βiC
∗

i lij = ω∗lij = vij . (10)

Here the axis lij is the vanishing line of the plane passing

through the camera center and the two sphere centers, the

vertex vij is the vanishing point of the plane normal direc-

tion. Consider also the image of C∗

j , it can be derived that

βiC
∗

i lij − βjC
∗

j lij = ω∗lij − ω∗lij = 0 (11)

Hence lij can be computed as the eigenvector of CjC
∗

i with

the eigenvalue βj/βi, and it can also be easily proved that

vij is the intersection of the two remaining eigenvectors.
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Fig. 2. Given three spheres, three SORs can be formed to give

three pairs of axes and vertices.

From (2), two sphere images provide 2 linear constraints

on the IAC so that from three sphere images, 6 constraints

are obtainable for fully calibrating the camera (see Fig.2).

Note alternatively the image of the sphere center can be re-

garded as the vanishing point of the plane formed by the

sphere limb points. However, it is easy to see that the re-

sulting constraints are dependent on those above. Similarly,

the constraints obtained from the scalar approaches can nei-

ther provide additional constraints. Hence when the number

of spheres reduces to 2, a camera with more than 2 unknown

parameters can not be calibrated.

Note when the line joining two sphere centers passes

through the camera center, the sphere limb points become

concentric so that only 4 independent constraints can be ob-

tained. Hence a camera with only four parameters, i.e., zero

skew or unit aspect ratio, can be recovered. When the cen-

ters of the three spheres are collinear, only two constraints

can be obtained and the camera cannot be calibrated. Addi-

tionally, increasing the number of the spheres can increase

the precision of calibration only when any four sphere cen-

ters are not co-planar.

5. EXPERIMENTS AND RESULTS

5.1. Synthetic Data

The synthetic camera has fixed intrinsic parameters, with

focal length αx =880, αy =800, skew s=0.1 and princi-

ple point (u0, v0)=(320, 240). The points on the apparent

contour of each sphere are corrupted with Gaussian noises

of 16 different levels from 0 to 3 pixels, and a conic is then

fitted to the noisy points by some classical algorithms [11].

Given 3 sphere images, the first experiment is to cali-

brate the camera under different noise levels. For each level,

100 independent trials are performed using the scalar and

orthogonal approaches, as well as Agrawal’s semi-definite

method. Fig.3(a) shows the average percentage errors of the

focal length. The errors of the other parameters, which are

not shown here, exhibit similar trend. It can be seen that the

errors increase linearly with the noise level. Besides, the or-

thogonal approach has a better precision compared with the

other two. From Fig.3(a), the scalar approach performs the

worst since the estimated scalars are seriously affected by

noises. Table 1.(a) shows the estimated parameters under

the noise level of 1 pixel.

In the second experiment, the camera is calibrated with

different numbers of spheres, from 3 to 10, under Gaussian

noise of 1 pixel. Note the number of constraints does not

increase linearly with the number of spheres N . It is in

fact its combination of 3, i.e. NC3. For each number of

spheres used, 100 independent trials are performed using

the scalar and orthogonal approaches, as well as Agrawal’s

semi-definite method. Fig.3(b) shows the average percent-

age errors of the focal length. It can be seen that the errors

decrease to a level below 1% when the number of spheres

attains four. Hence four spheres can be used to precisely

calibrated the camera. Table 1.(b) shows the estimated pa-

rameters from four spheres under the noise level of 1 pixel.
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Fig. 3. Relative errors of the focal length.

Table 1. Estimated camera parameters from images of
(a)Three spheres

Settings αx αy s (u0, v0)
Semi-definite 838.16 766.07 2.38 (334.94, 238.52)

Scalar 819.24 746.01 -1.18 (329.28,261.05)

Orthogonal 838.58 768.48 1.32 (324.97,242.24)
(b)Four spheres

Settings αx αy s (u0, v0)
Semi-definite 906.55 823.70 1.24 (314.47,237.05)

Scalar 869.93 790.77 1.41 (323.01,228.82)

Orthogonal 896.36 812.58 1.24 (318.83,239.28)

5.2. Real Scene

In the real scene experiment, an image of three pingpong

balls (see Fig.4(a)) is taken with a Nikon100D CCD cam-

era. The image resolution is 1505 × 1000. The Canny edge

detector [12] is first applied to find the points on the appar-

ent contours of the spheres, to which conics are fitted with

a least square approach [11]. The camera is calibrated with

the proposed scalar and orthogonal approaches and the re-

sults are compared with those from Agrawal’s semi-definite

approach. The estimated parameters are listed in Table 2,

where the result from the classical method of Zhang [2] is

taken as the ground truth. Fig.4(b) shows the calibration

pattern used with the Zhang’s calibration method. From Ta-

ble 2, it can be seen that the orthogonal approach performs

the best while the scalar approach the worst.

(a)Image of three spheres (b)Image of planar calibration pattern

Fig. 4. Images used for calibration.

Table 2. Camera parameters estimated from the pingpong ball

image with different approaches.

Settings αx αy s (u0, v0)
Zhang(ground truth) 2721.5 2722.3 0.68 (769.16, 504.38)

Semi-definite 2673.1 2672 1.87 (776.86, 486.98)

Scalar 2460.7 2461.7 6.27 (795.05, 488.54)

Orthogonal 2758.1 2759.8 0.36 (781.08, 491.83)

6. CONCLUSIONS

This paper have proposed two calibration algorithms, namely

the scalar and orthogonal approaches, by making use of the

apparent contours of at least three spheres in a single image.

Only linear procedures are involved, and the results are sim-

ilar to or even better than those of the previous approaches.

Their solutions can be used as a starting point for a max-

imum likelihood estimate which minimizes the geometric

error between the measured edgels and the conic. Note the

performance of calibration could be poor if the spheres are

imaged near the image centers. However, the key limitation

of previous approaches, namely the quality of the conic de-

tection strongly affecting the accuracy of calibration results,

can be alleviated using the orthogonal approach.
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