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Potential Core Lengths of Round Jets in Stagnant and Moving 

Environments 

 

C. M. Or, K. M. Lam and P. Liu 

 

 

Abstract:  This paper investigates the change of velocity and concentration fields in the 

initial region of a round jet in stagnant fluid and in a moving environment of the co-flow, 

counter-flow or cross-flow situation. The aim was to discuss issues of flow establishment 

and in the initial region, to determine the potential core length, and to observe the effect of a 

moving ambient. Turbulent jet velocities and concentration were measured with the planar 

imaging techniques of particle image velocimetry (PIV) and laser-induced fluorescence 

(LIF). The mean flow fields were obtained and analyzed to investigate the validity of 1/x 

decay relationship for jet centerline velocity and concentration. Values for the decay 

constant and jet virtual origin were obtained from the data. While the results show that the 

decay constant is increased by a co-flow but reduced by a counter-flow or a cross-flow, the 

virtual origin was found to be affected as well. The overall effect is that any situation of the 

moving environment leads to a slight reduction of the physical length of the potential core. 

The paper also suggests an intermittency function for the analysis of fluctuating jet 

concentration field in the potential core. The mean intermittency function provides a direct 

and reliable estimate of the potential core length of a jet in a moving environment. 

 

 

1. Introduction 

 

 A submerged round jet is often used for the purpose of wastewater discharge into 

water bodies such as rivers and oceans due to its rapid mixing and dilution capability. The 

presence of an ambient flow usually enhances mixing and dilution of the jet. It is thus 

important to understand the mixing behaviour of a jet submerged in stagnant and moving 

environments. The mostly studied moving ambient cases include the co-flow, cross-flow 

and counter-flow situations. While there have been many studies aiming at the measurement 

or prediction of jet behaviour in those moving environments and in stagnant ambient 

(Fischer et al. 1979, Wood et al. 1993, Jirka 2004, for review), most of them investigated 
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the “far field” of the jet, or the zone of established flow (ZEF). In the ZEF, self similarity 

behaviour is observed on the spreading of the jet as measured by various mean flow 

properties including the growth of jet width, the decay of jet centreline properties with axial 

distance, and the radial profiles of velocity and concentration. This self similarity of jet 

behaviour in the ZEF have facilitated the development of integral models for the prediction 

of jet dilution (e.g., Jirka 2004). 

 At the jet exit, jet effluent is discharged in the form of a core of fluid with constant 

exit velocity (and effluent concentration) leading to strong shear with the ambient fluid. The 

jet shear layer then grows and starts to erode the “potential core” from outside towards the 

jet centerline. This initial region of jet development is termed the zone of flow establishment 

(ZFE) where the initial top-hat type profiles of mean velocity and mean concentration 

transits to the final similarity profiles at the ZEF (e.g., Abramovich 1963). The flow 

transition from ZFE to ZEF is complex and gradual but the changes are mostly completed 

within an axial distance of about 5 to 10 jet-exit-diameters, D (e.g., Antoine et al. 2001). In 

hydraulic applications where the interests are mostly on the mixing and dilution efficiency 

at large distances from the jet exit, the ZFE or the potential core has not been given much 

attention. This may explain why most integral models do not distinguish between the ZFE and 

the ZEF. In these models, calculations start from the jet exit and the effect of the ZFE is taken 

into account by some adjusted initial conditions. 

 The ZFE is important in governing the initial development of the jet, especially the case 

for a jet in a moving environment. The length of the ZFE or the potential core may also affect 

the prediction of far field dilution. For instance, the far field trajectory of a jet in a cross-flow 

eventually runs along the direction of the cross-flow but the offset distance from the jet exit can 

be affected significantly by the length of the ZFE. There are also observations suggesting that 

improved integral model predictions in the initial region of the jet (e.g., within the first 15D) 

can be achieved through an explicit treatment of the ZFE length from which the computation 

starts (e.g., Kwan 1998). 

 Another issue in the near field behaviour of a jet is the jet virtual origin, the point from 

which the self-similar behaviours in the ZEF of the jet are projected to start. The virtual 

origin is often neglected in hydraulic applications but it may be located from the physical jet 

exit at a distance of as much as 5D (Antoine et al. 2001). 

 In this investigation, turbulent velocity and concentration fields were measured in the 

initial 15D region of round jets in a number of stagnant and moving environments including 
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the co-flow, cross-flow and counter-flow situations. The data were analyzed to study the 

decay of jet centerline properties in the ZEF and the length of the ZFE with the effect of the 

jet virtual origin. Then, a method of direct determination of the potential core length using 

flow data inside the ZFE was proposed. Afterwards, the effect of a moving environment on 

the potential core length was discussed. 

 

 

2. Experiments 

 

 Laboratory experiments were conducted in a 1.2 m wide partition of the 12 m  5 m 

shallow water basin in the Croucher Laboratory of Environmental Hydraulics at the 

University of Hong Kong. Water was set at 1 depth in the basin. A circular nozzle with exit 

diameter D = 10 mm was placed at mid-depth to discharge water in the form of a horizontal 

submerged round jet. The jet effluent was supplied from an overhead tank at a constant head. 

To have a turbulent jet condition, the jet exit velocity, Uj, was set at a value between 0.36 

m/s and 0.37 m/s. The Reynolds number was Re = UjD/  4,000. Experiments and 

measurements were carried out with the round jet in stagnant water and in a number of 

ambient flow situations, which included the co-flow, cross-flow and counter-flow situations. 

The moving environment condition was simulated by towing the jet in the basin of stagnant 

water at a constant speed Uo. The towing system consisted of a platform on trolleys and was 

powered by a step motor with speed controlled by a computer. A co-flow and counter-flow 

ambient was created by towing the jet along the jet exit direction, while a cross-flow ambient 

was created by towing a horizontally rotated jet in the basin. This technique has been 

reported in Lam et al. (2006) and a schematic diagram of the present set up is shown in Fig. 

1. In each ambient flow situation, different strengths of the ambient current were tested with 

the jet-to-current velocity ratio, R = Uj/Uo, varied from 2 to 20. 

 Time-varying velocity and concentration fields in the initial region of the jet were 

measured with the techniques of particle-image velocimetry (PIV) and laser-induced 

fluorescence (LIF), respectively. In this study, these planar flow diagnostic techniques made 

non-intrusive velocity and concentration measurements on the horizontal longitudinal plane of 

the jet flow field. For PIV measurements, the jet effluent and water in the basin were seeded 

with neutrally buoyant particles of 30-micron nominal diameter. A double-pulsed Nd:YAG 

laser was used to illuminate the flow on the measurement plane through a window on the 
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side of the water basin. A PIV camera was mounted on the platform together with the jet 

nozzle and was thus towed together with the jet. To avoid image distortion due to surface 

waves, a hollow glass tank was placed touching the water surface and towed together with 

the camera (Fig. 1). The firing rate of the pulses was 10 Hz, which means that the temporal 

resolution was 10 PIV snapshots per second. For each flow case, about 1000 snapshots were 

captured to ensure reliable statistical estimate of the stationary turbulent jet flow. At fast 

values of Uo, the 1000 snapshots could not be obtained within one tow and a number of 

tows were made to capture the required number of snapshots for reliable measurement of 

time-averaged mean flow behavior. 

 The double-pulsed PIV images were analyzed by a PIV analysis software (Dantec 

Dynamic Studio) which was based on the spatial cross-correlation algorithm of Willert and 

Gharib (1991) but with adaptive and multi-pass interrogation windows. All velocity vectors 

were validated with a threshold of signal-to-noise ratio at about 1.2 for the correlation 

peaks. Rejected vectors were replaced by vectors estimated from the surrounding values. In 

the final iteration, PIV vectors are obtained on interrogation areas of size 32 pixels × 32 

pixels and with 50% overlap. With the camera resolution at 1344 pixels   1024 pixels, the 

two-dimensional velocity field at each time instant consisted of 83   63 vectors of U and 

V. In most tests, this spatial extent of the PIV measurements was about 8.6D   6.5D and 

the spatial resolution of the velocity vectors was thus approximately 0.1D. 

 In some flow cases, the same optical set up for PIV was used for concentration 

measurement with LIF. Fluorescent dye Rhodamine 6G was added to the jet effluent at a 

constant concentration and an orange filter was added in front of the camera to pass only the 

fluorescent light signal. Only one of the dual images from the PIV camera was used for LIF 

analysis from which concentration levels were computed from the gray levels. In other flow 

cases, LIF measurements were made with a continuous wave Argon-ion laser for 

illumination and a high-speed camera for image capture. Those LIF measurements covered 

a larger measurement region area up to about 15D in length. 

 

 

3. Potential core length from velocity and concentration changes in ZEF 

 

3.1. Decay of jet velocities in simple jet 
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 In many past studies, the length of the ZFE is indirectly determined from the decay of 

centerline velocity or concentration in the ZEF. For a round jet in stagnant ambient, that is, 

the “simple jet”, many previous studies (e.g., Fischer et al. 1979) found that the centerline 

velocity or concentration decays with –1/x in the self-preserving ZEF as: 
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where x is the axial distance from the (physical) jet exit, Uc is the jet centerline velocity and 

L is the length of ZFE (from the physical jet exit). When projected upstream, the x
–1

 decay 

(and the linear growth of jet width) is traced back to start at the virtual origin of the jet 

which is located at x = x0, and with K1 being the decay constant (Hussein et al. 1994, 

Antoine et al. 2001). Ignoring the virtual origin, the ZFE length is usually assigned the value 

K1D. For velocity, the commonly accepted value for K1 is 6.2 (Fischer et al. 1979) but the 

review in Antoine et al. (2001) of past studies of the simple jet and jets in very weak coflow 

suggests that the value of K1 can occupy a wide range between 5.8 and 6.7. 

 The importance of the virtual origin is often overlooked in many studies but Antoine et 

al. (2001) reviewed that x0 can be as large as 5D. This may significantly affect the indirectly 

determined value of the physical ZFE length whose actual distance from the jet exit is found 

from Eq. (1) as: 

  01 xDKL           (2) 

While it is a common assumption that the virtual origin is located downstream of the 

physical jet exit, that is x0 > 0, there are experimental data indicating negative values for x0 

(Antoine et al. 2001, Uddin and Pollard 2007). 

 For the simple jet at Re = 4,130, Fig. 2 shows the mean velocity vectors from PIV 

measurements. They show the global spreading behaviour of the simple jet, such as decay of 

mean jet centerline velocity and growth of jet width along downstream direction. In 

addition, the transition from ZFE to ZEF can also be identified from the development of 

radial velocity profiles (as shown by the envelopes of the vectors at successive axial 

locations). Following the procedures in many past studies, the development of centerline 

velocity is plotted in Fig. 3(a) in the form of Uj/Uc against x/D in order to determine the 

values of K1 and x0 in Eq. (1). It is observed that a linear curve can be fitted to the data for 

x/D > 3. The fitting gives a negative value of x0 at 2.4D and a decay constant at K1 = 5.1. 

This value of K1is lower than the range of variation reported in previous studies. The decay 

constant of a turbulent round jet can vary over a range of values depending on factors 
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including initial velocity profiles, nozzle shapes, and amount of flow entrainment near jet 

exit (Antoine et al. 2001, Xu and Antonia 2002, Babu and Mahesh 2004, Quinn 2006). The 

negative value of x0 implies that the virtual origin is located upstream of the jet exit and the 

physical length of the potential core from the jet exit is shorter than K1D (Fig. 2). The length 

of the potential core, measured from the jet exit, has the value L = (5.12.4)D = 2.7D. 

 

3.2. Jet velocity decay of jets in co-flow and counter-flow 

 

 The mean velocity field of a jet in co-flow is similar to that of a simple jet except that 

the jet velocities would approach the co-flow velocity at sufficiently long distances 

downstream (Xia and Lam 2009). Fig. 4 shows two examples of the mean velocity fields of 

a jet in co-flow at velocity ratio R = 10 and 2.5. The mean spreading behaviour of a round 

jet in a counter-flow has been reported in Lam and Chan (1997, 2002). Fig. 5 shows the 

mean velocity vectors of a jet in a weak and a strong counter-flow. The results at the 

strongest counter-flow under test, R = 2.5, shows the typical flow pattern of a jet in counter-

flow where jet penetration and backward turning can be observed. At a weaker counter-flow, 

for instance, in Fig. 5(a), the jet penetrates through a long distance and the data up to x/D = 

8 cannot show the end of the penetration. Many studies showed that the penetration distance, 

xp, of a round jet in a counter-flow varies linearly with the velocity ratio. Saghravani and 

Ramamurthy (2010) recently confirmed that the relationship xp/D  2.7R applies to 

unconfined jet in a counter-flow. This is consistent with the result in Fig. 5(b). 

 The decay curves of jets in co-flow and counter-flow have been plotted in Fig. 3(b). It 

is clearly observed that presence of a counter-flow significantly increases the rate of decay. 

The effect of a co-flow is not as obvious but comparing to the simple jet, the centerline 

velocity starts to decay at a farther upstream location in the presence of a co-flow. 

 For a jet in co-flow, Fig. 6 shows examples of plot of Uj/Uc against x/D at R = 20 (the 

weakest co-flow) and at R = 2.5 (the strongest co-flow). In the present measurement region, 

the jet centerline velocities still follow the x
–1

 decay. At large x where the jet velocities 

become insignificant comparing to the co-flow, the decay will change to x
–2/3

 (Fischer et al. 

1979). From the best straight line fit to the data of Uj/Uc(x) in Fig. 6, the values of K1 and x0 

are obtained and their values have large differences between the two velocity ratios. Table 1 

lists the values of K1 and x0 at all five velocity ratios under study. The physical lengths of 

ZFE from the jet exit as calculated from Eq. (2) are also listed. In all cases, negative values 
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are found for x0. In the weaker co-flows, the decay constant has values within a narrow 

range at K1 between 5.5 and 5.9. Large differences in values are found when the co-flow 

becomes stronger at R  5. 

 The effect of a co-flow in reducing the decay rate of Uc(x) was supported previously 

(e.g., Chu et al. 1999) by the argument of a smaller shear velocity around the jet exit 

expected in the presence of a co-flow. The present results in Table 1 show that K1 increases 

from the simple jet value as the co-flow becomes stronger (that is, decreasing values of R). 

However, the results also show that in a stronger co-flow, x0 becomes more negative, that is, 

the virtual origin is shifted towards the upstream of the jet exit. The overall result is that the 

value of L remains essentially constant at 2D to 2.3D in all co-flow cases, except in the 

strongest tested co-flow, at R = 2.5, where L = 1.5D. A similar qualitative observation can 

also be made from the centerline velocity decay curves in Fig. 3. A plot of the data in Table 

1 is given in Fig.7. A recent study also suggests that the physical length of the ZFE is 

decreased by the presence of a co-flow (Xia and Lam 2009). 

 For a jet in counter-flow, Fig. 3(b) already shows that the ZFE length is shortened and 

the jet centerline velocity decays at a much faster rate. The curves of Uj/Uc(x) at R = 2.5 and 

R = 10 are shown in Fig. 8. In the weaker counter-flow (R = 10), the jet behaves very similar 

to the simple jet in the initial region (Fig. 5(a)). Fig. 8 shows that the jet centerline velocity 

at x/D < 6 follows the x
1

 decay to which Eq. (1) can be fitted. In the stronger counter-flow 

at R = 2.5, the jet penetrates through an axial distance to about 7D only (Lam and Chan 

1997, 2002; Saghravani and Ramamurthy 2010). However, the data in Fig. 8 suggests that 

the x
1

 jet centerline velocity decay seems still valid at the initial part of the jet penetration 

distance. It is obvious that the data of Uj/Uc within the first few diameter distance from x/D 

= 2.5 follow a linear trend and Eq. (1) can be fitted to those data. . The fitted values of K1 

and x0 for all cases of jet in counter-flow are presented in Table 1 and Fig. 7. As expected, 

the decay constant K1 clearly becomes smaller (that is, a faster decay rate) as the counter-

flow becomes stronger. However, the change in values of x0 follows an opposite trend, that 

is x0 having a higher value with a stronger counter-flow. Thus, the resulting values of L lie 

within a narrow range between 2.0D and 2.4D over all the counter-flow velocity ratios. 

 

3.3. Jet velocities of jets in cross-flow 
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 In a cross-flow, the jet bends towards the cross-flow direction. In a weak cross-flow, 

the bending is not significant in the initial region, say, x/D < 14 for R = 20 in Fig. 9(a). The 

jet centerline trajectory, shown superimposed on the mean velocity vectors in Fig. 9, is 

obtained by tracking the locations of maximum mean axial velocity, Uc = max(U) at 

successive x-sections of the jet. The change of these “centerline” mean axial velocities with 

x is shown in Fig. 10. The 1/x decay of Uc applies only within a short distance downstream 

of the potential core at x/D < 6. An attempt is made to fit Eq. (1) to the data within these 

axial distances and the values of K1 and x0 are obtained as shown in the figure. 

 At R = 6, the jet trajectory is bent to more than 45
o
 in Fig. 9(b). Comparing to Fig. 9(a), 

the jet exit velocity decays quickly and a potential core of constant jet velocities cannot be 

readily revealed by the mean vector plot. For the mean axial velocities along the jet 

trajectory, shown in Fig. 10, the 1/x decay can only be fitted over a very short distance 

between x/D =2 and 4. 

 It is evident from the PIV results that the ZFE of a jet in cross-flow cannot be 

confidently deduced by the change of jet properties in the relatively far field. Nevertheless, 

an attempt is made to fit the 1/x decay to the change of jet centerline velocity over the short 

distance just downstream of the potential core. The values of K1 and x0 so obtained are listed 

in Table 2 for the different velocity ratios of the cross-flow. As expected, when the cross-

flow changes from weak to strong (that is, decreasing values of R), the decay constant K1 

becomes monotonically smaller, that is, the jet centerline velocity decays faster. However, 

the jet virtual origin is also changed by R. The combined result on the potential core length 

is that L remains fairly constant at about 2D in a cross-flow weaker than R  4 but when the 

cross-flow is stronger, L becomes significantly shorter. 

 

3.4. Change of effluent concentration in ZEF 

 

 While the velocity field provides information on the mixing and spreading of the jet, 

measurement of concentration field of jet effluent can directly reveal the dilution of a jet. In 

this study, time varying concentration fields in each flow case was obtained from the LIF 

images. Some examples of mean concentration field C(x, y) are shown as gray-level images 

in Fig. 11 which includes jets in a co-flow (a), a counter-flow (b) and a cross-flow (c). In the 

co-flow at R = 10, the jet spreads similar to the simple jet. The counter-flow at R = 4 

increases the spreading of the jet and turns the jet backwards at x/D  11. The cross-flow at 
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R = 6 bends the jet in the lateral direction but no significant bending effect on the potential 

core is observed. 

 In the gray-level images of concentration field in Fig. 11, the potential core is revealed 

as the bright conical region attached to the jet exit where the tracer concentration is the 

highest. This potential core or ZFE for the concentration field has a different length from 

that for the velocity field. Previous studies suggested that the length of this ZFE applicable 

to the tracer concentration field, LT, is shorter than the ZFE length of the velocity field (e.g., 

Xia and Lam 2009). For the simple jet, it is commonly accepted that the centerline 

concentration remains unchanged at the jet exit concentration inside LT and then decays with 

x
-1

 in the ZEF: 
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Here, Cc is the centerline concentration, Cj is the scalar concentration at jet exit and KT is the 

decay constant of centerline concentration. The decay constant is often quoted to have a 

value at KT = 5.0 (e.g., Fischer et al. 1979) while Antoine et al. (2001) suggested values 

between 5.1 and 6.3. The virtual origin, x0, may also be different from that of the velocity 

field. 

 Similar to the velocity field, the potential core length for concentration may be 

determined indirectly from a fitting to Eq. (3) of centerline concentration data in the ZEF of 

the simple jet or, in the case of jet in a current, within the region downstream of the 

potential core where the x
-1

 decay is observed. For brevity, the data fitting in this study is 

not shown but the resulting values of KT, x0, and LT for some jet cases are summarized in 

Table 3. For the simple jet, the decay constant has an average value of KT = 5.8 from a 

number of test runs. The virtual origin for the decay of effluent concentration is found to be 

upstream of the jet exit, having a value of x0 = 2.1D. For the simple jet, the variation of the 

values of LT, from LT = KTD + x0, is smaller than that of KT or x0 among all test runs. The 

average value of potential core length is 3.7D. 

 For a jet in counter-flow, the x
-1

 decay of centerline concentration is observed only 

within the first part of the penetration distance (similar to the observation in Fig. 8). It is 

found that both KT and LT remains essentially constant at R > 5 but showing a slightly 

decreasing trend with decreasing values of R, that is with a stronger counter-flow (Table 3). 

At R < 5, the potential core length is remarkably reduced by the counter-flow. 
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 For the jets in co-flow, it is interesting to observe from Table 3 that the variation of the 

decay rate, as reflected by the value of KT, is limited to about 10% only. The location of jet 

virtual origin shows a larger variation over the different strengths of co-flow. The resulting 

potential core length is found to be reduced slightly by the co-flow, from LT/D = 2.60 at R = 

20 to LT/D = 1.82 at R = 2.5. It is commonly accepted that under a co-flow, a jet spreads 

with a slower rate (e.g., Chu et al. 1999). This is not readily observed in the present data of 

KT. In Fig. 13, the mean concentration field is shown in the form of axial development of 

radial concentration profiles for jet in a weak co-flow at R = 10 and jet in a strong co-flow at 

R = 2.5. The jet widths, as found from the locations of concentration level drops to 1/e times 

the centerline value, are plotted superimposed on the profiles. Comparing the slope of the jet 

width curves shows that the jet widths in the strong co-flow are smaller than those in the 

weak co-flow at the same downstream distances. 

 

 

4. Direct determination of potential core length 

 

4.1. Analysis of concentration field in ZFE 

 

 It is shown in the previous section that the indirect method of inferring the potential 

core length from the velocity or concentration data in the downstream region may incur 

difficulties, especially for a jet in counter-flow or cross-flow. The planar LIF technique 

enables time histories of concentration to be obtained on the whole (x, y) plane and not just 

along the centerline. It is thus possible to directly determine the location of the potential 

core from the concentration data in the initial region. A number of techniques have been 

proposed by the present authors (Or et al. 2007) and the more reliable ones are briefly 

described here using the example of LIF results of a jet in a co-flow at R = 10. 

 After long time averaging, the mean concentration field of the round jet in a co-flow at 

R = 10 is obtained as already shown in Fig. 11(a). The potential core can be qualitatively 

observed from the gray-level image of C(x, y) but a quantitative determination of its exact 

length is required. The change of mean concentration along the jet centerline is shown in 

Fig. 13. The transition from ZFE to ZEF is not as ideal as Eq. (3) which dictates that Cc 

remains constant at Cj inside the potential core and suddenly follows the x
-1

 decay 

downstream of x = LT. The potential core length LT, found by fitting Eq. (3) to the data in 



 12 

ZEF, is the x location where the x
-1

 decay curve meets the Cc = Cj line. In a moving 

environment where the centerline concentration does not follow the x
-1

 decay, the potential 

core length cannot be confidently determined from the decay of Cc(x) downstream of the 

potential core. Provided that the jet exit concentration is obtained precisely, a simple method 

of directly measuring the potential core length is to track the x location where the centerline 

concentration drops to, say, 0.9 or some other fractions of the exit level. However, the 

choice of the fraction is up to debate. 

 In jets and mixing layers, the intermittency function has been used to describe 

quantitatively turbulence mixing of one fluid such as the potential core jet fluid with the 

other fluid such as the ambient environment (e.g., Andreopoulos 1985). It was originally 

applied to turbulent velocity signals measured by the hot wire or turbulent temperature 

signals. Davidson and Wang (2002) extended the application to time history of jet 

concentration field. Or et al. (2007) suggested that the intermittency function can be used to 

find the location of the potential core since inside the ZFE, the potential core contains jet 

effluent at the exit concentration and the concentration should remain constant with time 

given no mixing with the ambient environment. The intermittency function is defined as the 

amount of “non-intermittency” of the concentration signal due to turbulent dilution of the 

ambient fluid. It should have a value of unity or 100% inside the potential core. Outside the 

potential core, turbulent mixing with the surrounding fluid takes place and the concentration 

level is decreased due to dilution. The intermittency function thus drops below unity. 

 In this paper, the time-dependent intermittency function, ),,( tyxI , at a point is 

calculated from the comparison of instantaneous concentration at that point with the initial 

exit concentration Cj. As an illustration, Fig. 14(a) shows the example of one instantaneous 

concentration field in the initial region of a jet. The corresponding region of unity 

intermittency obtained from a binarization analysis is shown in Fig. 14(b) and this shows 

clearly the region of potential core fluid not yet diluted by mixing with the ambient fluid. 

From the time series of 1000 LIF images, a time series of intermittency function is obtained. 

The mean intermittency factor is then obtained as ),( yxI  in Fig. 14(c). The advantage of 

using this mean intermittency factor over the mean concentration field, in Fig. 11(c), in the 

determination of potential core length is that the drop of values is much sharper on leaving 

the potential core. This is illustrated by the comparison of centerline decay of I(x, 0) and 

Cc(x) in Fig. 13. For this case of a jet in a co-flow at R = 10, the distances at which the mean 

intermittency function falls to 0.9, 0.5 and 0.1 are 1.80D, 3.06D and 4.50D. 
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 In addition to the mean intermittency function, Or et al. (2007) also proposed to carry 

out proper orthogonal decomposition (POD) analysis to the time series of I(x, y, t) for a 

better estimate of the potential core length. Applications of the snapshot POD method to the 

concentration field of jet flow have been reported in Sirovich et al. (1990), Bernero and 

Fiedler (2000), Xia and Lam (2005). After POD analysis of the intermittency function, it 

was found that the first four modes already contain about 70% of the total energy of the 

fluctuations and that mode 1 alone contributes about 65%. Mode 1 describes the most 

dominant pattern of fluctuations and it has very similar pattern as the mean intermittency 

function. It was concluded in Or et al. (2007) that a confident estimate of the potential core 

length of a jet in a moving environment can be obtained as the x location where the mean 

intermittency function or the mode 1 intermittency function drops to 0.5. In this paper, the 

LIF data are analyzed with this technique of intermittency and direct determination of the 

potential core length is made from the mean intermittency function. 

 

4.2. Potential core length of round jet in moving environment 

 

 The preceding sections describe how an estimate of the potential core length can be 

obtained from an ensemble of LIF concentration fields with the analysis of intermittency 

function. Fig. 15 shows those estimates for jets in a co-flow, counter-flow or cross-flow. In 

all conditions of the moving ambient, the potential core length LT is found to be shortened 

with increasing strengths of the ambient current. At R > 10, all strengths of the weak 

ambient current lead to very similar values of LT but as the ambient current becomes 

stronger from R < 10, the potential core length is shortened sharply. Similar values of 

potential core lengths are found between a jet in a co-flow and that in a counter-flow of the 

same velocity ratio, while, in comparison, a jet in a cross-flow has a shorter LT. The values 

of LT as obtained from the fitting of x
-1

 decay of jet centerline concentration (or, of sectional 

maximum concentration for jet in cross-flow) in the initial region of the ZEF are also shown 

in Fig. 15. Those values are generally lower than the directly estimated values by half to one 

jet-exit-diameter length. 

 For the ZFE length of a jet in cross-flow, Pratte and Baines (1967) proposed the 

following expression for L based on the velocity field: 

  RR ee
D

L 041.0625.0 7.27.24.5          (4) 
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In this study, the potential core length of concentration field of the simple jet is found at LT 

 3.8D. Thus, for comparison to the present data, Eq. (4) is adjusted by assuming a constant 

ratio between LT and L at LT/L = 3.8/5.4. The resulting curve of LT/D is included in Fig. 15. 

It is observed that the curve predicts well the data at R  5. 

 

 

5.  Conclusions 

 

 This paper discusses the issues and problems relating to the determination of potential 

core length in a round jet discharging into stagnant and moving environments. The 

establishment of jet flow as shown by the measurements of velocity and concentration fields 

in the potential core and the initial region does not support the simplified division of the jet 

into the ZFE and ZEF. There are unresolved issues including the significance of the virtual 

origin, the axial range of validity of x
-1

 decay of jet centerline velocities or concentration in 

a moving ambient, and the gradual change from jet exit velocity and concentration to the 

decaying quantities near the end of the potential core. For the concentration field, this paper 

proposes a direct method to measure the potential core length using the concept of 

intermittency function. 

 Experiments are carried out for jets in stagnant and moving environments where time 

histories of jet velocity fields and concentration fields are measured with the planar imaging 

techniques of PIV and LIF. In a short and selected region just downstream of the potential 

core, the jet centerline velocities or concentration can be fitted to the x
-1

 decay from which 

the decay constant and jet virtual origin are estimated. In this study, the virtual origin is 

often found upstream of the jet exit and this results in a short physical potential core length 

(as measured from the physical jet exit) which is shorter than 4D in most cases. This may be 

particular to the jet nozzle used in the study but an important and perhaps more universal 

observation is that the presence of an ambient moving environment changes not only the 

decay constant but also x0. While the results generally support a slower decay of jet velocity 

or concentration in a co-flow or and a faster decay of jet in a counter-flow or in a cross-flow, 

the physical length of the potential core appears to be affected by the ambient current in a 

much lesser degree. It is found that only in a strong moving environment that the potential 

core is notably shortened no matter this is a co-flow, counter-flow or cross-flow situation. 
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 The paper continues to propose a direct method to determine the potential core length 

from the time history of concentration field obtained in the ZFE itself. This method is based 

on the intermittency function which distinguishes the instantaneous potential core region of 

pure jet fluid. The time-varying intermittency function is obtained from the binarization of 

the instantaneous LIF image with the exit concentration level as the threshold. The x 

location at which the time-averaged mean intermittency function drops to 0.5 along the jet 

centerline trajectory is suggested as a reliable estimate of the physical length of the potential 

core. This method works well for jets in a moving environment of any situation and 

similarly, the resulting potential core length is found to be shortened by a counter-flow, 

cross-flow or co-flow at R < 10. 
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Nomenclature 

 

The following symbols and abbreviations are used in this paper: 

 

 kinematic viscosity 

C concentration of jet effluent 

Cc centerline concentration of jet effluent 

Cj concentration of jet effluent at jet exit 

D jet exit diameter 

I intermittency function 

K1 decay constant for jet centreline velocity 

KT decay constant for jet centreline concentration 

L length of ZFE of jet velocity field, from physical jet exit 

LT length of ZFE of jet concentration field 

R jet-to-current velocity ratio: R = Uj/Uo 

Re Reynolds number 

U axial velocity component, along x direction 

Uc jet centerline velocity 

Uj jet exit velocity 

Uo ambient flow speed of moving environment 

x axial distance from physical jet exit, along initial jet discharge direction 

x0 x location of jet virtual origin 

xp axial distance of jet penetration of jet in counter-flow 

y lateral coordinate, perpendicular to initial jet discharge direction 

ZEF Zone of established flow 

ZFE Zone of flow establishment 
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Tables 

 

 

 

Table 1 

Decay constant, virtual origin and potential core length inferred from 1/x decay of jet 

centerline velocity in ZEF. Jet in co-flow or counter-flow. 

 

 Co-flow Counter-flow 

Velocity ratio, R K1 x0/D L/D K1 x0/D L/D 

2.5 9.30 7.79 1.51 2.03 0.03 2.00 

5 6.24 4.17 2.07 2.15 0.14 2.29 

7.5 5.87 3.70 2.17 2.66 0.34 2.32 

10 5.65 3.52 2.13 3.66 1.50 2.16 

20 5.47 3.16 2.31 4.14 1.78 2.36 

(Simple jet) (5.11) (2.40) (2.71) (5.11) (2.40) (2.71) 
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Table 2 

Decay constant, virtual origin and potential core length inferred from 1/x decay of jet 

centerline velocity in ZEF. Jet in cross-flow. 

 

 Cross-flow 

Velocity ratio, R K1 x0/D L/D 

2 0.74 0.67 1.31 

4 0.99 0.43 1.42 

6 1.14 0.82 1.96 

8 1.77 0.10 1.86 

12 3.06 1.00 2.06 

20 3.20 1.21 1.99 
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Table 3 

Decay constant, virtual origin and potential core length inferred from 1/x decay of jet 

centerline concentration in ZEF. 

 

 Co-flow Counter-flow Cross-flow 

Velocity 

ratio, R 
KT x0/D LT/D KT x0/D LT/D KT x0/D LT/D 

2.5 3.54 1.72 1.82 5.65 3.98 1.67 1.25 0.11 1.36 

5 3.67 1.30 2.38 8.11 6.01 2.09 1.95 0.06 1.89 

10 3.75 1.22 2.53 9.79 7.53 2.26 4.74 2.57 2.17 

15 3.91 1.35 2.57 9.27 6.96 2.31 5.22 3.02 2.20 

20 4.07 1.48 2.60 8.99 6.56 2.42 5.65 3.52 2.12 

(Simple jet)    (5.83) (2.13) (3.70)    
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Figure Captions 

 

Fig. 1. Schematic diagram of experimental setup for jet in counter-flow. 

 

Fig. 2. Mean velocity field of simple jet at Re = 4130, with illustration of virtual origin. 

 

Fig. 3. Axial development of jet centerline velocity. (a) Simple jet data and fitted x
–1

 decay 

of Eq. (1): solid symbols showing data used in fitting. (b) Jets in co-flow and 

counter-flow (with negative R), and simple jet (R = ). 

 

Fig. 4. Mean velocity vectors of jet in co-flow: (a) R = 10 (b) R = 2.5. 

 

Fig. 5. Mean velocity vectors of jet in counter-flow: (a) R = 10 (b) R = 2.5. 

 

Fig. 6. Curves of Uj/Uc against x/D of jet in weak or strong co-flow. Solid symbols 

showing data used in fitting to Eq. (1). 

 

Fig. 7. Effect of ambient current on jet parameters of K1 and L/D. , : K1 for jet in co-flow 

and counter-flow, respectively. , : L/D for jet in co-flow and counter-flow, 

respectively. Values of simple jet shown in far right. 

 

Fig. 8. Curves of Uj/Uc against x/D of jet in weak and strong counter-flow. Solid symbols 

showing data used in fitting to Eq. (1). 

 

Fig. 9. Mean velocity vectors of jet in cross-flow: (a) R = 20 (b) R = 6. Locations of 

sectional maximum axial velocity shown with fitted jet centerline trajectory. 

 

Fig. 10. Curves of Uj/Uc against x/D of jet in cross-flow. Solid symbols showing data used 

in fitting to Eq. (1). 

 

Fig. 11. Mean concentration field of jet shown as gray-level image. (a) in co-flow at R = 10 

(b) in counter-flow at R = 4 (c) in cross-flow at R  6. 
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Fig. 12. Development of radial mean concentration profiles. 

 

Fig. 13. Centerline decay of mean concentration (open symbols) and mean intermittency 

function (closed symbols). Jet in co-flow at R = 10. 

 

Fig. 14. Potential core of jet in co-flow at R = 10. (a) Instantaneous concentration field, (b) 

instantaneous region of unity intermittency corresponding to (a) (c) gray-level field 

of mean intermittency function.  

 

Fig. 15. Effect of ambient current on potential core length for concentration in jet. Symbols: 

: co-flow : counter-flow ▲: cross-flow. Solid lines and filled symbols: LT 

determined from direct method; broken lines and open symbols: LT determined 

indirectly from Eq. (3). Dotted curve: Eq. (4) adjusted to LT/D = 3.8 at R = . 

 



 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. Schematic diagram of experimental setup for jet in counter-flow. 
 



 
 

                             
 
 
 

Fig. 2. Mean velocity field of simple jet at Re = 4130, with illustration of virtual origin. 
 
 
 
 

  
 
 

Fig. 3. Axial development of jet centerline velocity. (a) Simple jet data and fitted x–1 decay of 
Eq. (1): solid symbols showing data used in fitting. (b) Jets in co-flow and counter-flow (with 

negative R), and simple jet (R = ∞). 
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Fig. 4. Mean velocity vectors of jet in co-flow: (a) R = 10; (b) R = 2.5. 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5. Mean velocity vectors of jet in counter-flow: (a) R = 10; (b) R = 2.5. 
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Fig. 6. Curves of Uj/Uc against x/D of jet in weak or strong co-flow. Solid symbols showing 
data used in fitting to Eq. (1). 
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Fig. 7. Effect of ambient current on jet parameters of K1 and L/D.  
•, ×: K1 for jet in co-flow and counter-flow, respectively.  
ο, ∆: L/D for jet in co-flow and counter-flow, respectively.  

Values of simple jet shown in far right. 



 

 
 
 

Fig. 8. Curves of Uj/Uc against x/D of jet in weak and strong counter-flow. Solid symbols 
showing data used in fitting to Eq. (1). 

 
 
 
 
 
 
 

 
 
 
 

Fig. 9. Mean velocity vectors of jet in cross-flow: (a) R = 20; (b) R = 6. Locations of sectional 
maximum axial velocity shown with fitted jet centerline trajectory. 
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Fig. 10. Curves of Uj/Uc against x/D of jet in cross-flow. Solid symbols showing data used in 
fitting to Eq. (1). 

 
 



 
 

 
 

 
 

 
 
 
 

Fig. 11. Mean concentration field of jet shown as gray-level image. 
(a) in co-flow at R = 10; (b) in counter-flow at R = 4; (c) in cross-flow at R = 6. 
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Fig. 12. Development of radial mean concentration profiles. 
 

(a) R = 2.5 

(b) R = 10 
 



 
 
 
 
 
 

 
 
 
 
 
 

Fig. 13. Centerline decay of mean concentration (open symbols) and mean intermittency 
function (closed symbols). Jet in co-flow at R = 10. 



 
 
 
 
 

 
 

 
 

 
 
 
 
 
 

Fig. 14. Potential core of jet in co-flow at R = 10. (a) Instantaneous concentration field, (b) 
instantaneous region of unity intermittency corresponding to (a); (c) gray-level field of mean 

intermittency function.  
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Fig. 15. Effect of ambient current on potential core length for concentration in jet. Symbols: 
•: co-flow; ×: counter-flow; ▲: cross-flow. Solid lines and filled symbols: LT determined 

from direct method; broken lines and open symbols: LT determined indirectly from Eq. (3). 
Dotted curve: Eq. (4) adjusted to LT/D = 3.8 at R = ∞. 

 
 


