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ABSTRACT 

In this paper, six-node hybrid triangular finite element models are devised for axial symmetric 

Helmholtz problems. In the formulation, boundary and domain approximations to the Helmholtz field 

are defined for each element. While the boundary approximation is constructed by nodal 

interpolation, the domain approximation satisfies the Helmholtz equation and is composed of 

spherical waves with source points located along the axis of symmetry. To formulate rank sufficient 

six-node elements, a minimal of six wave modes from three source points are required. Two methods 

of selecting the source points are attempted. In the first method, the directions of the waves passing 

through the element are essentially parallel to the three lines connecting the parametric centre of the 

element and its three corner (or side) nodes. In the second method, the directions are essentially 

equally spaced at 2π/3 interval in the r-z-plane. For the attempted examples, the average error ratios 

of the proposed elements and the conventional element are around 50 %.  
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1.  INTROUDCTION 

In the hybrid finite element method for stress/structural analyses, the displacement-based finite 

element models are enhanced by introducing stress, strain or another displacement as the additional 

field variable(s) to the displacement approximation constructed by nodal interpolation [1-10]. In the 

case of the hybrid-displacement method, the additional field is a domain displacement which leads to 

equilibrating stress and may also satisfy some homogeneous boundary conditions [2,3,9,10]. This 

category of hybrid elements are also known as hybrid-Trefftz or Trefftz elements linked by the 

displacement-frame or the boundary displacement [4,6-10]. The underlying reason is that the domain 

displacement is mainly truncated from a Trefftz solution set which is the basis of the Trefftz non-

singular boundary element methods.  

      A major challenge in finite element analyses of Helmholtz problems is that the solutions are 

spatially oscillating throughout the entire problem domains. While considerable computational saving 

can be realized by using graded meshes in stress analyses, the practice is not applicable to Helmholtz 

problems. Hence, the mesh requirement induces tremendous computing load when the wavenumber 

or the problem domain size increases. To better tackle the issue, a number of wave-based approaches 

that make use of solution sets for the wave or Helmholtz equations have been proposed in the last 

decades. These include the Trefftz methods [11-18], the plane-wave basis method [19-22] and the 

discontinuous enrichment method [23,24], among others.  

      Though a number of Trefftz boundary element methods have been formulated for Helmholtz 

problems [11-15], Trefftz finite element models do not appear to be abundant. Among them, the 

least-square models [16,17] and the traction-frame models [18] can be noted. All Trefftz models 

possess their own domain approximations which are extracted from Trefftz solution sets. In the 

plane-wave basis method, the plane wave solutions are employed as the nodal enrichment functions 

in the context of the partition of unity finite element method [19-22]. The value of the Helmholtz 

variable at a node is the sum of plane wave solutions which represent plane waves propagating along 

different directions. Within the element, the Helmholtz variable is obtained by the conventional nodal 

interpolation. Thus, the system equation unknowns are the amplitudes of the plane waves at the 

nodes but not the nodal value of the Helmholtz variable. In the discontinuous enrichment method, 

the coarse scale approximation constructed by the conventional nodal interpolation is enriched by 

plane wave solutions. The enrichment which is intended to resolve the fine scale phenomenon 

induces discontinuity across the inter-element boundary [23,24]. Weak enforcement of the continuity 

is implemented through Lagrange multipliers. While the fine scale enrichments can be condensed at 

element level, the multipliers which link the enrichments of adjacent elements enter the global 
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equation. 

      In this paper, hybrid-Trefftz six-node triangular elements will be formulated for the axial 

symmetric Helmholtz problem for which there are hardly any advanced finite element models. Unlike 

the previous Trefftz finite elements, the present ones can readily be incorporated into the standard 

finite element program framework. Independent boundary and domain approximations to the 

Helmholtz field are defined. The boundary approximation is constructed by nodal interpolation. 

Equality of the two approximations is enforced along the element boundary [25-27]. Indeed, the 

hybrid variational functional employed in the formulation is similar to the functional used in elasticity 

hybrid-Trefftz elements with displacement-frame [2-4,8-10,18]. The spherical wave solutions are 

employed to construct the domain approximation. For rank sufficiency, a six-node element has to be 

equipped with at least six wave modes from three source points. Two methods of selecting the 

source points are attempted. In the first method, the directions of the waves passing through the 

element are essentially parallel to the three lines connecting the parametric centre of the element and 

its three corner (or side) nodes. In the second method, the directions are essentially equally spaced at 

2π/3 interval. For the attempted examples, the average error ratios of the proposed elements and the 

conventional element are around 50 % at considerably dense meshes. 

 

2.  CONVENTIONAL FORMULATION 

Helmholtz equation is often introduced by using the steady state acoustics. The Helmholtz variable u 

can be the spatial amplitude of the acoustic pressure or the velocity potential. This paper will restrict 

itself to bounded domains. Under the axial symmetry, a problem domain  is often considered thru 

its cross-section area A in the r-z-plane where r  0, see Figure 1. When A is discretized into sub-

areas or finite elements  Aes, the problem can be summarized as: 

  (a) Helmholtz equation: 2 2 0u k u          in all Aes  

  (b) natural boundary condition:  T u t n
        on all e

n   

  (c) essential boundary condition: u u  and 0u         on all e
u   

  (d) natural interfacial condition: ( ) ( ) 0T Tu u    n n
          on all e

m  

  (e) essential interfacial condition: u u   and u u        on all e
m  

In the above expressions, 2 is the Laplace operator (see Appendix), ( / , / )Tr z     


, 

(cos ,sin )T
n n n  where n is the inclination of the outward normal vector of the element boundary 
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to the r-axis, k is the wavenumber,  is the variational symbol and e
m  is the inter-element boundary. 

Moreover, ()+ and ()- denote the braced quantities at the two sides of e
m . In the absence of 

dissipation, k is real. Otherwise, it is complex. For simplicity, it will be assumed as usual that element 

boundary Ae can be partitioned into the non-overlapping portions e
t , e

u  and e
m , i.e. 

 e e e
t u m    = Ae  and   e e e e e e

t u u m m t         = null.  (1) 

The terms “natural interfacial condition” and “essential interfacial condition” are not widely used. 

However, they are indeed the interfacial counterparts of the natural and essential boundary 

conditions, respectively.  

 The elemental variational functional for the conventional finite element formulation of the 

Helmholtz problem is known to be: 

 2 21 [( ) ]
2 e e

t

e T
n

S

u u k u d u udS


        (2) 

where u satisfies the essential boundary and continuity conditions. Under the axial symmetry, the 

differential volume d and differential surface area dS can be replaced by respectively 2rdA and 

2rd in which the common factor 2 can be neglected for simplicity. Then, the functional becomes  

 2 21 [( ) ] .
2 e e

t

e T
n

A

u u k u rdA u urd


         (3) 

 For any smooth axial symmetric functions f = f(r,z) and h = h(r,z), the divergence theorem can be 

read (see Appendix) as:  

 2[( ) ( ) ] ( ) .
e e

T T

A A

h f h f rdA h f rd


        n
  (4) 

With h and f taken to be respectively u and u and recalling that u = 0 on e
u , variation of (3) is: 

 2 2δ δ ( ) δ ( ) δ ( ) .
e e e

t m

e T T
n

A

u u k u rdA u u u rdS u u rdS
 

           n n
    (5) 

It can be seen that the first integral enforces (a), the second integral enforces (b) and the third 

integral, when es of the adjacent elements are assembled, enforces (d).  

      Figure 2(a) shows the six-node triangular element in the global r-z-plane. To formulate a 

conventional element, r,  z and u are obtained by interpolation which can be expressed as: 
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6

1
i i

i
r N r



  , 
6

1
i i

i
z N z



   and  
16

1 6
1

6

[ ,..., ]i i
i

u
u N u N N

u

 
    
 
 

 Nd   (6) 

where N1 = (1-s-t)(1-2s-2t), N2 = t(2t-1) , N3 = s(2s-1) , N4 = 4st , N5 = 4s(1-s-t) , N6 = 4t(1-s-t) and 

(s,t) are the area coordinates which vary between 0 and 1. The interpolation matrix N and the vector 

of nodal dofs d are self-defined. The C0 continuity nature of N can readily enable the satisfaction of 

(c) and (d). With (6) substituted into (3), the latter becomes  

 1
2

e T T
c  d K d f d   (7) 

where 

 
1 1

2 2

0 0

[( ) ( ) ] [( ) ( ) ]
e

t
T T T T

c
A

k rdA k rJdsdt


         K N N N N N N N N   and  
e
t

T
nu rd



 f N . 

Furthermore, J = (r/s)(z/t)  (z/s)(r/t) is the Jacobian determinant of the coordinate 

transformation between (r,z) and (s,t).  

 As N is quadratic in (s,t), the six-point integration rule which is exact up to the fourth order is 

required to evaluate the element.  

 

3.  HYBRID-TREFFTZ FINITE ELEMNET FORMULATION 

The following elemental hybrid functional can be formed by introducing a second Helmholtz 

approximation g to (3) [25-27]:  

 2 21 [( ) ] ( )( )
2 e e e

t

e T T
h

A A

g g k g rdA g u g rd turd
 

            n
  (8) 

from which  

   2δ [( ) ] [( )( ) ( )( )] .
e e e

t

e T T T
h

A A

g g k g g rdA g u g g u g rd t u rd     
 

                n n
    (9) 

With h and f in (4) taken to be respectively g and g, (9) can be expressed as: 

                           

2 2δ ( ) ( )( )

( ) ( ) .

e e

e e
t m

e T
h

A A

T T

g k g g rdA g u g rd

g t u rd g u rd

 

 


 

         

        

 

 

n

n n



    (10) 

The first to the fourth integral enforce (a), the equality of u and g, (b) and (d), respectively. Same as 

the conventional formulation, when u is obtained by nodal interpolation, (c) and (e) can be ensured 
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readily. If g satisfies the Helmholtz equation strictly, i.e. 2 2 0g k g   , the area integration in 

functional can be avoided by virtue of (4) and  

 1[ ( ) ( ) ] .
2e e

t

e T T
h

A

g g g u rd tu rd
 

          n n
    (11) 

Now, u only has to be known along element boundary and it can therefore be termed as the 

boundary approximation. On the other hand, g satisfies the domain condition and must be known 

within the element domain. It can be therefore termed as the domain approximation and expressed 

as: 

 g = P  (12) 

where P is the shape function matrix and  is the vector of coefficients. With (6) and (12) substituted 

into (11),  

 1
2

e T T T
h    Gd f d    (13) 

in which  

 ( )
e

T T

A

rd


  H n P P
   and  ( ) .

e

T T

A

rd


   G n P N
  

H should be symmetric but its evaluation by numerical integration induces asymmetry. By recalling 

the divergence theorem in Appendix and 2P + k2P = 0, H and G can be expressed as: 

 2[( ) ( ) ]
e

T T

A

k rdA   H P P P P   and  2[( ) ( ) ]
e

T T

A

k rdA   G P N P N .  (14) 

Domain integration will be employed to avoid the asymmetry of H.  

As there is no inter-element continuity requirement on g, β can be condensed from (13) thru the 

stationary condition Hβ = Gd of the functional. The latter becomes: 

 11 1( )
2 2

e T T T T T
h h

    d G H G d f d d K d f d   (15) 

where Kh is self-defined and is the element matrix of the hybrid-Trefftz finite element model. Same 

as Kc, Kh can also be incorporated into the standard finite element program framework. Boundary 

conditions for Kh and Kc are prescribed in identical manner.  

In order that the element matrix Kh is rank sufficient or has full rank, it can be proven by simple 

matrix algebra that dim.(β)  dim.(d).  
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4.  SPHERICAL WAVES AS DOMAIN MODES 

While the above section outlines the principle to formulate the hybrid-Trefftz element for the axial 

symmetric Helmholtz problem, elements with their domain approximation modes devised from the 

spherical wave solution will be presented in this section. Let S(0,zS) be the source point (see Figure 

1), the spherical waves are 

 exp( ) exp( ),S S

S S

ikR ikR
kR kR

 
 
 

   or   cos( ) sin( ),S S

S S

kR kR
kR kR

 
 
 

 (16) 

where 2 2 2( )S SR r z z    is the square of distance between the source point S and (r,z).  

 To formulate rank sufficient six-node element, a minimal of six wave modes from three source 

points are required. It should be noted that if a six-node equilateral triangle element is formulated by 

using the spherical wave modes from the three source points lying in the lines which pass through the 

element center and parallel to its edges, the resulting element would be rank deficient. On the other 

hand, a rank sufficient element can be obtained by employing the wave modes from the three sources 

points which are located in the lines passing through the element center and its corner nodes, see 

Figure 3(b). These observations on the element rank are similar to those of the six-node hybrid-

Trefftz plane element formulated with plane-wave modes [26]. To generalize the successful modes to 

a general triangular element, two methods of selecting the spherical wave modes are employed. 

 

4.1  Node-Centre Modes   

The spherical wave modes arising from the first method will be termed as “node-centre” modes. 

In this method, the parametric centre 0 with following coordinates given by (6): 

 
6

0 1/3
1

i it s
i

r N r
 



  ,  
6

0 1/3
1

i it s
i

z N z
 



  (17) 

will be employed. The source points A(0,zA), B(0,zB)  and C(0,zC) are the z-intercepts of Q-1, Q-2 

and Q-3 as shown in Figure 3(a). It is trivial that  

 1 0 0 1

1 0
A

r z r zz
r r





 , 2 0 0 2

2 0
B

r z r zz
r r





 , 3 0 0 3

3 0
C

r z r zz
r r





. (18) 

The treatment for the cases that a z-intercept is far away from the element will be discussed in 

Section 4.3. The element employing the above source points and thus the following shape function 

matrix for the domain approximation: 
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 0 0 0[cos( ), sin( )], [cos( ),sin( )], [cos( ),sin( )]A B C
A A B B C C

A B C

R R RkR kR kR kR kR kR
R R R

 
  
 

P  (19) 

will be termed as SATN. In the above matrix,  

 2 2( )A AR r z z    , 2 2( )B BR r z z     and  2 2( )C CR r z z     (20) 

whilst the normalization factors RA0, RB0 and RC0 are respectively the values of RA, RB and RC at 

0(r0,z0).  

      The z-intercepts of 0-4, 0-5 and 0-6 constitute another set of source points. With them, the 

resulting element will be termed as SATN*.  

 

4.2 Equal-spaced Modes  

      The spherical wave modes arising from the second method will be termed as “equal-spaced” 

modes. In this method, source points Q(rQ,zQ)’s are the Fermat points (also known as Torricelli 

points and the 1st isogonic centers) of the triangles formed by the corner or side nodes [28]. Taking 

the Fermat point of nodes (1, 2, 3) as the illustration, Q-1, Q-2 and Q-3 are equal-spaced as shown 

in Figure 3(b). The condition can be mathematically expressed as: 

 1 2 1 2

1 2 1 2

( )( ) ( )( )
3

( )( ) ( )( )
Q Q Q Q

Q Q Q Q

z z r r r r z z
r r r r z z z z
    


    

 , 2 3 2 3

2 3 2 3

( )( ) ( )( )
3

( )( ) ( )( )
Q Q Q Q

Q Q Q Q

z z r r r r z z
r r r r z z z z
    


    

. (21) 

By solving them, 

 
2 2 2 23

1 2 3

1

( 3 )( ) 4 ( ) ( )( ) 31
22 3

i i j k i i j k i i j k
Q i j k

i

r z z z r z r r r z r r r r rr r z z
W W

      
     

 
 ,  

 
2 2 2 23

1 2 3

1

4 ( ) ( 3 )( ) ( )( ) 31
22 3

i i j k i i j k i i j k
Q i j k

i

r z z z z r r r r z z z z z zz z r r
W W

      
     

 
  (22) 

where  

 
2 23

1

( ) ( )
3 ( )

2
i j i j

i j k
i

r r z z
W x r z



   
    

 
 ,  j = mod(i,3)+1  and   k = mod(i+1,3)+1.  

     Now, the source points A(0,zA), B(0,zB)  and C(0,zC) are the z-intercepts of Q-1, Q-2 and Q-3. 

Similar to (18),  

 1 1

1

Q Q
A

Q

r z r z
z

r r





 , 2 2

2

Q Q
B

Q

r z r z
z

r r





 and 3 3

3

Q Q
C

Q

r z r z
z

r r





. (23) 

The six-node element employing the above source points and thus the following shape function 

matrix for the domain approximation: 



9 
 
 

 [cos( ),sin( )], [cos( ), sin( )], [cos( ),sin( )]AQ BQ CQ
A A B B C C

A B C

R R R
kR kR kR kR kR kR

R R R
 

  
 

P  (24) 

will be termed as SATE. In the above matrix, RA, RB and RC have been defined in (20) whilst the 

normalization factors RAQ, RBQ and RCQ are respectively the values of RA, RB and RC at Q(rQ,zQ).  

      By changing nodes (1,2,3) to nodes (4,5,6), another point Q* inside the element can be obtained 

such that Q*-4, Q*-5 and Q*-6 can define another set of source points. The  resultant element will 

be denoted as SATE*. 

 

4.3  Treatment for a Distant Source Point 

 It may happen that a source point S(0,zS) is far away from the element within which the related 

wave is essentially parallel to the z-axis. To avoid numerical difficulty associated with the large radial 

distant RS, the two related spherical wave modes will be replaced by the two plane wave modes 

along the z-axis: 

     1/3 1/3cos ( ) , sin ( )s t s tk z z k z z
   

       if     1/3

1/3

tan χs t

Ss t

r
z z

 

 




  (25) 

where  is the small angle and is here taken rather arbitrarily to be /120.  

 

4.4  Singularity at the Source Point 

 The wave mode cos(kR)/R is singular at its source point where R = 0. When the source point is 

too close to the element, the singularity may pose numerical difficulty. A simple remedy to avoid the 

problem if to replace the hybrid element with the conventional one when r = 0 in one or more 

element nodes.  

 

5.  NUMERICAL EXAMPLES 

In this section, the predictions of the afore-discussed axial symmetric triangular elements are 

reported. These elements include: 

 CAT – the conventional six-node element, see Section 2. 

 SATN – the six-node hybrid element based on the node-centre modes with their source 
points defined by 0-1, 0-2 and 0-3, see Section 4.1.  

 SATE – the six-node hybrid element based on the equal-spaced modes with their source 
points defined by Q-1, Q-2 and Q-3, see Section 4.2.  
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      To enhance the graphical clarity in portraying the numerical predictions, SATN* discussed at the 

end of Section 4.1 will not be reported. SATN* element is slightly less accurate than SATN and its 

predictions are graphically indistinguishable from those of SATN. For the similar reasons, SATE* 

discussed at the end of Section 4.2 will not be reported. 

      Unless specified, all elements are evaluated by the six-point domain integration rule [30]. Higher 

order integration rules yield practicably identical results. To compare the accuracy of the elements, 

the normalized error and the relative error with respect to the error of the conventional element will 

be computed. They are 

 

1/21/2 22

2 2

( )( )
Normalized error

( ) ( )
e

e

exactexact

e

exact exact

e

u u du u d

u d u d
 

 

     
  

       
   

 
 

, 

 

1/21/2 22

2 2

( )( )
Relative error

( ) ( )
e

e

exactexact

e

c exact c exact

e

u u du u d

u u d u u d
 

 

     
  

         
   

 
 

 (26) 

where u denotes the finite element prediction, uexact denotes the exact solution, uc denotes the 

prediction of the conventional element CAT. In the hybrid elements, g is the prediction within the 

element domain and, thus, u is replaced by g. In both error measures, the area integrals are evaluated 

by the six-point domain integration. Again, higher order integration rules yield practicably identical 

results. In the examples, the number of nodal spacings per wavelength  

 Nn = wave length / nodal spacing = 2/(kh)  (27) 

will be specified. In the expression, h denotes the nodal spacing. For conventional element models, 

many literatures recommend Nn > 10 (see, e.g., [21,29] among others).  

 

5.1  Condition Number versus Integration Order and Invariance 

      The element in Figure 2(b) is considered. Nodes H and J bisect EF and EG, respectively. The 

element edge lengths are 1, 0.97 and 1.17 which gives an average nodal spacing of 0.5 

approximately. Two wavenumbers k = 1.25 and 2.5 are considered. The relevant Nns are 

approximately equal to 10 and 5, respectively. Let || denote the eigenvalue magnitude of the 

element matrix, ||max, ||min and the condition number Nc (= ||max/||min) are computed. Table 1 lists 

the computed values of the elements when the element matrices are evaluated by three-point, six-
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point and seven-point domain integration rules [30]. There are two three-point rules and only the 

more popular one, in which all the sampling points are away from the element boundary, is 

considered. It can be seen that Nc changes considerably when the integration changes from three-

point to six-point rule. Numerical tests also indicate that the elements evaluated by the six-point rule 

are markedly more accurate than those by the three-point rule.  

 Different nodal connectivity orders which define the directions of the parametric axes are also 

attempted. The elements are also shifted along the z-direction. The computed values do not vary 

with the connectivity and the rigid body translation. Thus, the elements are invariant [31,32].   

 
Table 1.  ||max, ||min and Nc of the elements under different domain integration rules. 

three-point rule six-point rule seven-point rule 
 

||max ||min Nc ||max ||min Nc ||max ||min Nc 

k = 1.25 27.75 1.349 20.57 27.45 1.476 18.60 27.46 1.476 18.61 
CAT 

k = 2.5 27.00 1.979 13.64 25.60 2.134 11.99 25.65 2.129 12.05 

k = 1.25 27.52 1.474 18.68 26.17 1.481 17.67 26.21 1.481 17.69 
SATN 

k = 2.5 26.89 1.992 13.50 24.41 2.066 11.81 24.53 2.061 11.90 

k = 1.25 27.60 1.474 18.73 26.36 1.481 17.80 26.39 1.481 17.82 
SATE 

k = 2.5 26.95 1.991 13.53 24.56 2.070 11.86 24.68 2.064 11.96 

 

5.2  Plane-Wave Problem 

 Figure 4 depicts a square and rhombic annulars with centers at (L,0) and sizes LL where L = 2. 

The domain boundaries are prescribed with the boundary conditions derived from the following 

plane wave solution: 

 cos( )u kz  (28) 

The typical mesh layout can also be seen in Figure 4. With kL fixed to either 10 or 20, the mesh 

density is varied such that Nn ranges from 2 to 8.  

Square Annular – Figures 5(a) and 5(b) plot the normalized errors against the total number of 

nodes employed in modelling the square annular which is prescribed with the natural boundary 

condition. It can be seen that the convergence rates of the compared elements are essentially the 

same when the mesh is dense. Figure 5(a) shows the results for kL =  10. At the highest mesh 

density, the relative errors of SATN and SATE are 21.5 % and 33.7 %, respectively. Figure 5(b) 

shows the results for kL =  20. At the highest mesh density, the relative errors of SATN and SATE 
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with respect to CAT are 57.6 % and 52.2 %, respectively.  

Rhombic Annular – Figures 6(a) and 6(b) plot the normalized errors against the total number of 

nodes employed in modelling the rhombic annular which is prescribed with the essential boundary 

condition. Again, the convergence rates of the compared elements are essentially the same when the 

mesh is dense. Figure 6(a) shows the results for kL =  10. At the highest mesh density, the relative 

errors of SATN and SATE are both 42.0 %. Figure 6(b) shows the results for kL =  20. At the 

highest mesh density, the relative errors of SATN and SATE are both 48.9 %. 

 

5.3  Cylindrical-Wave Problem 

     In this section, a cylindrical-wave problem is studied by using the same domains and meshes as 

the last subsection, see Figure 4. Both domain boundaries are prescribed with the boundary 

conditions derived from the following cylindrical wave solution: 

 0 ( )u J kr  (29) 

where J0 is the zeroth order Bessel function of the first kind. Now, kL is fixed to either 16 or 32 

whereas the mesh density is varied such that Nn ranges from 2 to 8.  

Square Annular – Figures 7(a) and 7(b) plot the normalized errors against the total number of 

nodes employed in modelling the square annular which is prescribed with the natural boundary 

condition. Again, the convergence rates of the compared elements are essentially the same when the 

mesh is dense. Figure 7(a) shows the results for kL =  16. At the highest mesh density, the relative 

errors of SATN and SATE are 28.3 % and 36.0 %, respectively. Figure 7(b) shows the results for kL 

=  32. At the highest mesh density, the relative errors of SATN and SATE with respect to CAT are  

32.2% and 29.7, respectively.  

Rhombic Annular – Figures 8(a) and 8(b) plot the normalized errors against the total number of 

nodes employed in modelling the rhombic annular which is prescribed with the essential boundary 

condition. Figure 8(a) shows the results for kL =  16. At the highest mesh density, the relative errors 

of SATN and SATE are 60.5 % and 71.6 %, respectively. Figure 8(b) shows the results for kL =  32. 

At the highest mesh density, the relative errors of SATN and SATE are 61.6 % and 71.2 %, 

respectively. 

 

5.4  Spherical-wave Problem 

 Figure 9 represents a typical mesh in which the number of elements along each coordinate axis is 

8 and the number of elements is 96 for a hemispherical domain with radius R = 1. Boundary 

conditions corresponding to the following spherical wave solution:  
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2 2

2 2

sin( )k r zu
k r z





 (30) 

are implemented. The conditions include u = 1 at (0,0), ,ru = 0 along r = 0, ,zu = 0 along z = 0 and u 

= sin(kR)/(kR) on r2 + z2 = R2. With kR fixed to either 10 or 20, the mesh density is varied such that 

Nn ranges from 2.4 to 9.6. Figures 10(a) and 10(b) plot the normalized errors against the total 

number of nodes employed in modelling the hemisphere. Same as the last examples, the convergence 

rates of the compared elements are essentially the same when the mesh is dense. Figure 10(a) shows 

the results for kR = 10. At the highest mesh density, the relative errors of SATN and SATE are 70.1 

% and 56.5 %, respectively. Figure 10(b) shows the results for kR =  20. At the highest mesh 

density, the relative errors of SATN and SATE are 67.6 % and 56.8 %, respectively.  

 

6.  CONCLUSION 

Six-node hybrid-Trefftz triangular axial symmetric elements are devised in this paper. They have the 

same boundary degrees of freedom as the conventional element, which is based on a single field 

variational functional, and can be readily be incorporated into the standard finite element program 

framework. Boundary conditions can also be prescribed as if they were conventional elements. A 

hybrid variational functional that enforces the equality of the two fields inter alia is employed. While 

the boundary field is approximated by the standard nodal interpolation, the domain field satisfies the 

Helmholtz equation and is composed of spherical waves with source points located along the axis of 

symmetry. Two ways of selecting the source points have been attempted and they lead to the “node-

centre” and “equal-spaced” modes. For the attempted examples, the average error ratios of the 

proposed elements and the conventional element are marginally less than 50 % at considerably dense 

meshes. On the other hand, the convergent rate of the proposed and conventional elements are 

essentially the same. This is well-expected as the convergent rate is limited by the orders of boundary 

and domain approximations whichever the lower.  
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Appendix:   Mathematical Preliminary for Axial Symmetry 

Consider the following general 3D position vector R and its differential dR:  

 
cos
sinx y z

x r
x y z y r

z z




   
          
   
   

R e e e  , 
cos sin 0
sin cos 0

0 0 1
d dr r d dz

 
  

     
            
     
     

R  (31) 

where r2 = x2 + y2 and tan = y/x. The covariant tensors gis and the contravariant tensors gis for the 

cylindrical coordinates (r,, z) can be derived as: 

 
cos sin 0

[ , , ] sin cos 0
0 0 1

r z

r
r

 
 

 
   
  

g g g  ,   
cos (sin ) / 0

[ , , ] [ , , ] sin (cos ) / 0
0 0 1

r z T
r z

r
r



 
 

 
    
  

g g g g g g . 

The gradient operator  and Laplace operator 2 for the cylindrical coordinates are:  

 r z

r z



  

   
  

g g g    and 

 
2 2

2
2 2 2

1 1( )( ) ( )r z r z r
r z r z r r r r z

 

  
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        
         

g g g g g g . 

For any smooth functions f = f(r,z) and h = h(r,z),  

 ( ) ( ) ( ) ( )T r z T r zf f h h f h f hf h
r z r z r r z z
       

      
       

g g g g  , 
2

2
2

1 ( )f ff r
r r r z
  

  
  

 (32) 

and 

 
2

2
2

1( ) ( ) [ ( ) ]T f f h f h fh f h f h r
r r r z r r z z
      

       
      

 (33) 

For any area A in the r-z-plane, (33) and the Green’s theorem yield 

  2[( ) ( ) ] [ ( ) ( )] (cos sin )T
n n

A A A

f f f fh f h f rdrdz hr hr drdz h rd
r r z z r z

 


     
        

         (34) 

Where A denotes the entire boundary of A and n is the inclination of the outward normal vector of 

the boundary to the r-axis, see Figure 1.  
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Figure 1. Cross section A of an axial symmetric body in the r-z-plane. S denotes the source point of 
the spherical wave u = exp( ) / ( )S SikR kR  where 2 2 2( )S SR r z z   . Over the boundary of A, n 

denotes the inclination of the outward normal vector to the r-axis. 
 
 
 
 
 
 
 

 

               (a)                           (b) 
Figure 2. The six-node triangular element. (a) s and t  [0,1] are the area coordinates. (b) The single 

for examining the condition numbers and invariance of the element matrices.  
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(a) (b) 

Figure 3. Directions of the spherical-wave modes employed in (a) SATN and (b) SATE. 0(r0,z0)  
with (r0,z0) = (r,z)|s=t =1/3 and Q(rQ,zQ) are points inside the element for locating the source points. 

 
 
 
 
 
 
 

 

                      (a)         (b) 
Figure 4. The (a) square and (b) rhombic annular domains with centres (L,0) and sizes LL where L 

= 2. Both domains are meshed into 2(44) elements. Boundary conditions derived from the 
plane-wave and cylindrical-wave solutions are prescribed. 
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5(b) 

Figure 5. Errors of the elements in the plane-wave problem considered by a square annular domain 
with kL (a) 10 and (b) 20. The mesh density is varied such that Nn ranges from 2 to 8.  
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6(b) 

Figure 6. Errors of the elements in the plane-wave problem considered by a rhombic annular 
domain with kL = (a) 10 and (b) 20. The mesh density is varied such that Nn ranges from 2 to 8.  
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7(b) 

Figure 7. Errors of the elements in the cylindrical-wave problem considered by a square annular 
domain with kL = (a) 16 and (b) 32. The mesh density is varied such that Nn ranges from 2 to 8.  
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Figure 8. Errors of the elements in the cylindrical-wave problem considered by a rhombic annular 
domain with kL = (a) 16 and (b) 32. The mesh density is varied such that Nn ranges from 2 to 8.  
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Figure 9. A semi-spherical domain with radius R = 1 is meshed into 96 elements (8 elements along 
each coordinate axis). Boundary conditions derived from a spherical-wave solution are prescribed. 
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Figure 10. Errors of the six-node elements in the spherical-wave problem. (a) kR = 10 and (b) kR= 
20 are considered. Ne is varied such that the number of nodal spacings per wavelength Nn along the 

coordinate axis varies from 2.4  to 9.6. 


