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Many-body singlets by dynamic spin polarization
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We show that dynamic spin polarization by collective raising and lowering operators can drive a spin ensemble
from arbitrary initial state to many-body singlets, the zero-collective-spin states with large-scale entanglement.
For an ensemble of N arbitrary spins, both the variance of the collective spin and the number of unentangled
spins can be reduced to O(1) [versus the typical value of O(N )], and in the steady state many-body singlets are
occupied with a population of ∼20% independent of the ensemble size. We discuss a potential implementation
in a mesoscopic ensemble of nuclear spins using dynamic nuclear spin polarization by an electron. The result is
of twofold significance for spin quantum technology: (1) a cleaner surrounding and less quantum noise for the
electron spin and (2) a resource of entanglement for nuclear-spin-based quantum information processing. The
scheme can also be applied to other spin systems where collective raising and lowering operations are available.
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Many-body singlets (MBSs) are the zero-collective-spin
states of a spin ensemble with large-scale quantum entangle-
ment and zero spin uncertainties. They appear in a variety of
contexts in quantum physics and in condensed matter physics,
e.g., as horizon states of the quantum black hole,1 and as
ground states of quantum antiferromagnetic models.2 Their
special characteristics place them at the center of attention
for quantum applications. First, MBSs are invariant under
a simultaneous unitary rotation on all spins. This makes
MBSs suitable for spanning a decoherence-free subspace,3 for
quantum communications without a shared reference frame,4

and for metrology of the spatial gradient or fluctuations of
external fields.5 Second, MBSs are an extreme example for
the squeezing of spin uncertainties.6–9 The collective spin has
zero variance in all directions and thus a source of quantum
noise is removed, e.g., in the context of a quantum object
affected by a spin bath. Third, MBSs contain large-scale
quantum entanglement: every spin is entangled with the rest
of the ensemble. An example of pure MBSs is the product of
2-qubit singlets (Bell pairs). In the maximally mixed state of
all MBSs, the distillable bipartite entanglement is logarithmic
in the ensemble size.1

Despite the successful generation of a photonic analog of
4-qubit singlets by parametric down conversion,3,10 realization
of MBSs in a general spin ensemble is an outstanding goal
awaiting technically feasible approaches. Theoretical study
shows that spin squeezing based on quantum nondemolition
measurement can reduce the total collective spin variance of an
atomic ensemble by a factor of 5 in the lossless case.5 However,
in such squeezed state the weighting of MBSs is small and
vanishes in large N limits. Other relevant studies include the
proposal of a physical model for projective measurement of
MBSs by spin-dependent scattering.11

Here we introduce an approach for squeezing of collective
spin uncertainties and generation of large-scale entanglement.
The approach uses collective spin raising and lowering
operations only and is applicable to an ensemble of N arbitrary
spins initially in arbitrary state. The state after squeezing is
significant in figures of merit: in the low-loss limit, MBSs
are occupied with an N -independent population of ∼20% in
the steady state, and both the variance of the total collective
spin and the number of spins unentangled with the rest are

O(1) [versus the typical values of O(N )]. We discuss potential
implementation in a mesoscopic ensemble of nuclear spins,
a spin system of extensive interest either as a noise source
or as a superior information storage in quantum technology.
Our scheme uses only generic features of dynamic nuclear
spin polarization processes by an electron. MBSs can be
a valuable resource of quantum entanglement for nuclear-
spin quantum information processing.12–14 In electron-spin-
based quantum computation, reduction in the collective spin
fluctuations of the peripheral nuclei means less quantum noise
for the electron spin. The approach can be applied to other
spin (pseudospin) systems where collective raising/lowering
operations are available.

We refer to the definition of spin squeezing in the gener-
alized sense,5,9 where the degree of squeezing is quantified

by 〈 Ĵ
2〉, with Ĵ ≡ ∑N

n=1 În being the total collective spin
for an ensemble of N particles with equal or different spins.

〈 Ĵ
2〉 = 0 indicates perfect squeezing where the N spins are

in the MBSs. 〈 Ĵ
2〉(s̄)−1 gives an upper bound on the number

of spins unentangled with others, where s̄ is the average spin
per particle.5,9 States of the spin ensemble can be grouped
into multiplets, i.e., irreducible invariant subspaces of the total
spin. A multiplet {|J,M,αk

J 〉,M = −J, . . . ,J } is denoted in
short as {J,αk

J }, where αk
J is a general index for distinguishing

the set of orthogonal (2J+1)-dimensional multiplets. The aim
is to transfer population from all multiplets to those singlets
with J = 0.

Our scheme is motivated by the discovery of an identity

〈J + 1,−J + 1,αJ+1|(ĵ+
A − ĵ+

B )|J,−J,αJ 〉
〈J,−J,αJ |(ĵ+

A − ĵ+
B )|J + 1,−J − 1,αJ+1〉∗

= −[(J + 1)(2J + 1)]−
1
2 , (1)

where ĵA is the collective spin of an arbitrary subset
of the ensemble and ĵB ≡ Ĵ − ĵA [Fig. 1(a)]. Moreover,
〈J ′,M ′,αJ ′ |ĵ+

A − ĵ+
B |J,−J,αJ 〉 = 0 for |J ′−J | > 1 or M ′ �=

−J + 1. Under the condition that each multiplet is initialized
on the spin coherent state |J,−J,αJ 〉, application of the
ĵ+
A − ĵ+

B operator tends to transfer populations from multi-
plets of larger dimension to multiplets of smaller dimension
[Fig. 1(c)].
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FIG. 1. (Color online) (a) A spin ensemble partitioned into
subsets A and B (C and D) by the solid (dashed) line. (b) An
example of how the operator ĵ+

A − ĵ+
B couples various basis states

|J,M,jA,jB〉 (solid arrows). The absolute value squared of the
transition matrix elements are indicated with the thickness of the
arrows. The transitions related to the spin coherent states |J,−J 〉
are highlighted. Hollow vertical arrows show the coupling by Ĵ −.
(c) Schematics of the population transfer rates between multiplets
under the condition that each multiplet is initialized on the spin
coherent state |J,−J 〉 when the ĵ+

A − ĵ+
B operator is applied. The

transfer rate of {J,αk
J } ← {J,αk′

J } is identical to the rate of the
backward transfer {J,αk′

J } → {J,αk
J }. The rate of {J + 1,α

q

J+1} →
{J,αk

J } is by a factor of (J + 1)(2J + 1) larger than that of the
backward transfer {J,αk

J } → {J + 1,α
q

J+1}.

Squeezing of collective spin uncertainties can thus be
realized by dynamic spin polarization with the lowering
operator Ĵ− and raising operators of the form ĵ+

A − ĵ+
B .

Consider the use of two such operators ĵ+
A − ĵ+

B and ĵ+
C − ĵ+

D ,
where C and D constitute a different bipartition of the
ensemble [Fig. 1(a)]. The Hilbert space can be divided into
independent subspaces according to the quantum numbers
{jA∩D, jB∩D, jB∩C, jA∩C}, conserved by the raising/lowering
operations, and their values determine the number of (2J+1)-
dimensional multiplets n(J ). If Ĵ− is applied more frequently,
such that the system is in spin coherent states every time
ĵ+
A − ĵ+

B or ĵ+
C − ĵ+

D is applied, we find the steady state in each
subspace: ρ = ∑

J f (J )
∑n(J )

k=1 |J,−J,αk
J 〉〈J,−J,αk

J |, where
f (J ) = (J + 1)(2J + 1)f (J + 1). Most subspaces contain
at least one MBS,15 and n(J ) � n(0)(2J + 1). Thus, in
the steady state, MBSs are occupied with a population

n(0)f (0) � [
∑

J g(J )]−1 = 0.20, and the variance 〈 Ĵ
2〉 �

[
∑

J g(J )]−1 ∑
J J (J + 1)g(J ) = 2.44, where g(J ) ≡ (2J +

1)[
∏J−1

i=0 (i + 1)(2i + 1)]−1.
Dynamic spin polarization by the collective raising and

lowering operators can be described by Lindblad terms
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FIG. 2. (Color online) Simulation of squeezing control with the
operators Ĵ −, ĵ+

A − ĵ+
B , and ĵ+

C − ĵ+
D (see text). The system is

initially in the completely mixed state in the subspace with {jA∩D =
7/2, jB∩D = 7/2, jB∩C = 7/2, jA∩C = 7/2}. The polarization rates
are �h = 2000�o. (a) P (J ) gives the integrated probability of
finding the system with total collective spin J at various time. At
t = 0.5�−1

o , MBSs are occupied with the population P (0) = 0.21,

and 〈 Ĵ
2〉 = 2.44. (b) Population distribution on various MBSs,

triplets and quintets at t = 1.5�−1
o . The sum of populations on all

other multiplets is less than 2%.

in the master equation ρ̇ = − 1
2

∑3
m=1(L̂†

mL̂mρ + ρL̂
†
mL̂m −

2L̂mρL̂
†
m), where L̂1 ≡ √

�hĴ
−, L̂2 ≡ √

�o(ĵ+
A − ĵ+

B ), and
L̂3 ≡ √

�o(ĵ+
C − ĵ+

D ). An example of the simulated squeezing
dynamics is given in Fig. 2. The initial density matrix is
the completely mixed one in the subspace with {jA∩D =
7/2, jB∩D = 7/2, jB∩C = 7/2, jA∩C = 7/2}, which corre-

sponds to 〈 Ĵ
2〉 = 63. The polarization rates used are �h =

2000�o. After a pumping time of t = 0.5�−1
o , MBSs are

occupied with a population of 0.21 and 〈 Ĵ
2〉 is substantially

reduced to 2.44.
Conditions for efficient squeezing – The Ĵ− and ĵ+

A − ĵ+
B

operators are applied with the rates �h|〈ψf |Ĵ−|ψi〉|2 and
�o|〈ψf |ĵ+

A − ĵ+
B |ψi〉|2, respectively, and the scheme requires

that the former rate shall always be larger. We note that
〈J,M,jA,jB |(ĵ−

A − ĵ−
B )(ĵ+

A − ĵ+
B )|J,M,jA,jB〉 increases with

the decrease of J and reaches the maximal value of ∼(jA +
jB)2 for small J , while 〈J,M|Ĵ+Ĵ−|J,M〉 ∼ J 2. Thus we find
the requirement �h/�o > (jA∩D + jB∩D + jB∩C + jA∩C)2,
the latter quantity ∼4Ns2 in an ensemble of N spin s particles.

Spin decoherence can compete with the squeezing, since it
causes the population decay of MBSs with a rate ∼Nγn, γn

being the single-spin decoherence rate. When �h/�o > 4Ns2

is satisfied, the inhomogeneous raising operator pumps popu-
lation into MBSs with a rate �o|〈ψf |ĵ+

A − ĵ+
B |ψi〉|2 ∼ N�o.

We thus anticipate that decoherence will have negligible effects
on the squeezing under the low-loss condition 1

4Ns2 �h >

�o 
 γn. This is indeed confirmed by numerical simulations
where single-spin decoherence terms are included in the master
equation [Fig. 3(a)]. The effects of spin decoherence are almost
invisible for γn = 0.1�o.

Using inhomogeneous operators of a general form – A
general collective operator

∑
n cnÎ

+
n with inhomogeneous cn

can be expanded as
∑

A βA(Ĵ+ − 2ĵ+
A ), with A being various
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FIG. 3. (Color online) (a) Effects of spin decoherence. Black
curves: 8 spin- 1

2 , �h/�o = 40; red (dark gray) curves: 12 spin- 1
2 ,

�h/�o = 60; green (light gray) curves: 8 spin-1, �h/�o = 200.
γn = 0 for solid curves, and γn = 0.1�o for dashed curves. The
spins are initially in the maximally mixed states. (b) Squeezing
of 8 spin- 1

2 particles using different collective operators. Red
(dark gray) curves are squeezing by Ĵ − and only one inho-
mogeneous operator: ĵ+

A − ĵ+
B (solid); 0.7(ĵ+

A − ĵ+
B ) + 0.3(ĵ+

C −
ĵ+
D ) (dashed);

∑
n exp(i n

4 π )Î+
n (dash-dotted). �h/�o = 50. Black

curves are squeezing by Ĵ − and two inhomogeneous operators:
ĵ+
A − ĵ+

B and ĵ+
C − ĵ+

D (solid); 0.7(ĵ+
A − ĵ+

B ) + 0.3(ĵ+
C − ĵ+

D ) and
0.7(ĵ+

E − ĵ+
F ) + 0.3(ĵ+

G − ĵ+
H ) (dashed). �h/�o = 100. {A|B} =

{1234|5678}, {C|D} = {1278|3456}, {E|F } = {1357|2468}, and
{G|H } = {1458|2376} give different bipartition of the eight
spins.

subsets of the ensemble. Since Eq. (1) holds for −ĵ+
A + ĵ+

B ≡
Ĵ+ − 2ĵ+

A with an arbitrary choice of A, we have this same
identity for such a general linear combination. Squeezing to
MBSs can thus be achieved using Ĵ− and inhomogeneous
collective raising operators of the general form. This allows
great flexibility for implementation in various physical sys-
tems. The numerical simulations in Fig. 3(b) compare the
squeezing efficiency by operators of various inhomogeneous
form. Even better efficiency is achieved using operators with
more inhomogeneity than Ĵ+ − 2ĵ+

A .
Implementation in the nuclear spin bath of an electron – The

homogeneous and inhomogeneous collective raising/lowering
operations of nuclear spins are realized in the process of
dynamic nuclear spin polarization (DNSP), a major tool
for manipulation of nuclear spins.16–29 We consider the

hyperfine interaction Ĥ0 = ∑
n |ψ(rn)|2 În · ←→

A · Ŝ, coupling

the electron spin Ŝ to peripheral lattice nuclear spins În.
←→
A is

the hyperfine coupling constant in tensor form, and the position
dependence of coupling enters through the envelope function
ψ(r) of the electron only. Ĥ0 generally describes the hyperfine
interaction of an electron or hole system in quantum dots or
shallow donors formed in group IV or III-V materials.30,31

In most DNSP schemes, Ĥ0 induces the electron-nuclear
flip-flop in passing electron spin polarization to the nuclei
and the energy cost is compensated by emission/absorption of
phonons or photons.19–23 These DNSP schemes are termed
as the dc type hereafter. Alternatively, DNSP can also

(b)(a) (c)
H0 Hac

x

y

FIG. 4. (Color online) (a) Schematics of an electron in a nuclear
spin bath. The first coordination shell has four nuclear spins in green
(light gray) color and the second shell has eight nuclear spins in
blue (dark gray) color. (b) dc hyperfine coupling coefficients at the
various lattice sites. (c) ac hyperfine coupling coefficients with ac
electric field in the x direction. The heights of the bar give the
magnitude.

utilize the ac correction to the hyperfine coupling, Ĥac =
∑

n(dω · ∇|ψ(rn)|2) cos(ωt) În · ←→
A · Ŝ, when an ac electric

field induces an electron displacement dω cos(ωt), with energy
cost for electron-nuclear flip-flop directly supplied by the ac
field.27–29 Such a DNSP process is termed hereafter as the ac
type.

For nuclear spins on the periphery of an electron, MBSs
can be realized by combining dc and ac DNSP processes
which polarize nuclear spins in opposite directions with the
operators

∑
n |ψ(rn)|2Î−

n and
∑

n
∂

∂μ
|ψ(rn)|2Î+

n , respectively.
Here μ is the direction of ac electric field. The lattice sites with
equal electron density |ψ(r)|2 are grouped into coordination
shells. On each shell,

∑
n |ψ(rn)|2Î−

n is the homogeneous
collective lowering operator while

∑
n

∂
∂μ

|ψ(rn)|2Î+
n is of

the inhomogeneous form. Figure 4(a) shows the schematic of
an electron with a two-dimensional (2D) Gaussian envelope
function. The 12 lattice nuclear spins form two coordination
shells according to the dc hyperfine coupling strength. For the
green shell with four lattice nuclear spins, Ĥac = ãŜ−(ĵ+

A −
ĵ+
B )eiωtEx + ãŜ−(ĵ+

C − ĵ+
D )eiωtEy + c.c., where Ex(y) is the

ac electric field in the x (y) direction. For the blue shell, the ac
DNSP operators are of a more general inhomogeneous form,
and numerical simulations in Fig. 3(b) have demonstrated
efficient squeezing using one such operator (dashed red) or
using two such operators, assuming an electric field alternating
between the x and y directions (dashed black).

Under the influence of incoherent electron spin flips in
the DNSP process, the large shell-to-shell difference in the dc
hyperfine coupling strength causes loss of intershell coherence
in a time scale much faster than the squeezing. Thus different
coordination shells are independently squeezed toward MBSs.
For a shell of N spin-s nuclei, the collective spin variance
can be reduced by a factor of ∼Ns2 under the low-loss
condition. The improvement on the electron spin coherence
thus depends on the constitution of the spin bath. Moreover, the
steady-state population is on the extremal state |J,−J 〉 for all
multiplets, which corresponds to a different nuclear magnetic
field 〈a ∑

n Î z
n〉. Distillation of MBSs is thus possible on a shell

with large a through projective measurement of the electron
spin resonance.

Interaction between neighboring nuclear spins causes spin
diffusion and spin dephasing, which can result in loss of MBSs.
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The dipolar interaction between neighboring lattice sites is of
the strength ∼0.1 kHz. Nuclear spin diffusion by the Î+

n Î−
m

coupling terms is efficiently suppressed when the shell-to-shell
inhomogeneity in the hyperfine coupling is large. By the Î z

n Î z
m

term, the nuclear spins are subject to a dipolar magnetic field
dependent on the configuration of their neighbors, which leads
to dephasing with a rate of γn ∼ 1 kHz. For nuclei with spin
larger than 1/2, quadrupolar interaction by inhomogeneous
electric field can also contribute to γn. To realize efficient
squeezing, fast DNSP mechanisms are desired.

For optically controllable electron spin, e.g., in quantum
dot or impurity in III-V semiconductors, fast dc DNSP can be
realized by the hyperfine-mediated optical excitation of spin-
forbidden excitonic transitions.21,32 Assuming the electron
Zeeman splitting ωe ∼ 0.2 GHz, the intrinsic broadening of a
charged exciton γt ∼ 0.2 GHz, and an optical Rabi frequency
� ∼ 3 GHz for the excitonic transition, we estimate the
DNSP rate �h = a2�2

ω2
e γt

∼ 10 MHz on a coordination shell with
hyperfine coupling a = 3 MHz. For other electron-nuclear
spin systems, fast dc DNSP may be realized through the
bath-assisted electron-nuclear flip-flop in the presence of an
efficient energy dissipation channel, e.g., an electron Fermi
sea in nearby leads.20

ac DNSP is of the rate �o = ã2

γs
, where γs is the broad-

ening of the electron spin resonance.28 The magnitude of
the ac hyperfine interaction ã depends on the strength of
the ac electric field and the inhomogeneity of the electron
envelop function. Giving the phosphorus donor in silicon
as an example, we have the first several shells: (A,6.0,6),
(B,4.5,12), (C,3.3,4), (D,2.2,12), and (F,1.7,12), where
the first letter is the label of the shell by convention, the
second number is the hyperfine coupling strength in units of
megahertz, and the third is the number of equivalent sites
on the shell.33 The distance between neighboring shells is
in the order of ∼0.1 nm. Thus, we estimate ã ∼ MHz by a
moderate displacement of the electron dω ∼ 0.1 nm. Assuming
γs ∼ 0.1 GHz, �o can be of ∼10 kHz on these shells. Thus we
conclude that the low-loss condition can indeed be satisfied
for nuclear spins on the periphery of a strongly confined
electron.
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