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Abstract

Recently genome-wide association studies (GWAS) have identified numerous susceptibility variants for complex diseases. In
this study we proposed several approaches to estimate the total number of variants underlying these diseases. We assume
that the variance explained by genetic markers (Vg) follow an exponential distribution, which is justified by previous studies
on theories of adaptation. Our aim is to fit the observed distribution of Vg from GWAS to its theoretical distribution. The
number of variants is obtained by the heritability divided by the estimated mean of the exponential distribution. In practice,
due to limited sample sizes, there is insufficient power to detect variants with small effects. Therefore the power was taken
into account in fitting. Besides considering the most significant variants, we also tried to relax the significance threshold,
allowing more markers to be fitted. The effects of false positive variants were removed by considering the local false
discovery rates. In addition, we developed an alternative approach by directly fitting the z-statistics from GWAS to its
theoretical distribution. In all cases, the ‘‘winner’s curse’’ effect was corrected analytically. Confidence intervals were also
derived. Simulations were performed to compare and verify the performance of different estimators (which incorporates
various means of winner’s curse correction) and the coverage of the proposed analytic confidence intervals. Our
methodology only requires summary statistics and is able to handle both binary and continuous traits. Finally we applied
the methods to a few real disease examples (lipid traits, type 2 diabetes and Crohn’s disease) and estimated that hundreds
to nearly a thousand variants underlie these traits.
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Introduction

The number of genome-wide association studies (GWAS) has

grown rapidly in the past few years [1]. GWAS have identified a

number of robust associations for complex diseases like breast

cancer, prostate cancer, type 1 and 2 diabetes etc. As more

variants are discovered, it is natural to ask: what is the total number

of susceptibility variants that underlie these complex diseases? Or

equivalently, how many more variants need to be found in order

to explain the entire heritability?

It turns out that the results from GWAS could provide

important clues to the above questions. We developed a

methodology to tackle the problem by fitting distributions to the

GWAS results. We assumed that the effect sizes of all susceptibility

variants in the genome, as measured by the variance explained

(Vg), follow an exponential distribution. For binary traits, the

variance explained is computed based on the liability threshold

model. The model proposes a latent continuous liability, which is

assumed to follow a normal distribution with mean 0 and variance

1. The variance in liability explained can be directly interpreted as

the locus-specific heritability. The method is described in details in

another paper [2].

Our aim is to fit the observed distribution of Vg from GWAS to its

theoretical distribution. In practice, the sample size of a study is limited

and there is inadequate power to detect variants with small effect sizes.

As a result, variants with larger effects are over-represented and the Vg

of the discovered variants would not follow a standard exponential

curve. To correct for this bias, we also considered the statistical power

corresponding to every given Vg. In addition, we developed an

alternative estimator of the number of variants by directly fitting a

suitable distribution to the observed z-statistics.

The assumption of an exponential distribution of effect sizes is

theoretically justified. Orr [3] studied Fisher’s model of adaptation

and considered random adaptive walks to the optimum. He

showed that the sizes of the factors fixed during adaptation assume

an exponential distribution. The exponential model was also

supported by a paper by Bost et al. [4], in which fluxes through

metabolic pathways were studied.

The problem of the total number of variants in the genome is

rarely addressed. Recently a study by Pawitan et al. [5] asked a

similar question. However, their methods and focus is largely

different from our current study. In their study, they have

constructed several hypothetical scenarios of allele frequencies and

odds ratios (ORs), and estimated the number of variants required to
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make up a total 40% of heritability. Assuming a pattern of allele

frequencies and ORs ‘‘similar’’ to what has been observed for

confirmed variants, they also estimated the number of susceptibility

variants for type 2 diabetes. However the details of calculations were

not shown. They also employed variance in liability explained as an

effect size measure, which is similar to our study (but we assume a

normal distribution of the underlying liability rather than a logistic

distribution). In contrast to Pawitan et al., we did not construct

specific combinations of allele frequencies and ORs, instead we fit

appropriate distributions to actual GWAS data to estimate the

number of variants. The array of methodologies presented in this

paper has not been previously described.

At the time of submission, we also noticed an interesting paper by

Park et al. [6] which have addressed a similar problem. However,

the problem addressed in this study is not exactly the same as in Park

et al. We are considering the entire range of effect sizes while in Park

et al the range of effect sizes is limited to those observed for known

susceptibility variants. In other words, Park et al. aimed at

estimating the total number of variants within the range of effect sizes

that have been observed in GWAS conducted to date. On the other hand, we

aimed at providing a framework to evaluate the total number of variants

underlying a disease, regardless of the effect sizes of variants. The number of

variants estimated from Park et al. will therefore be smaller than the

number from our approach. For example, for Crohn’s disease, Park

et al. estimated the number of loci to be ,150 within the range of

effect sizes of known loci while our estimate is around a thousand (as

detailed in later sections). Park et al [6] also addressed issues of

power calculations for future GWAS and estimate predictive power

of common variants using AUC (area under the curve of the

receiver operating characteristic curve). Our study is more focused

on exploring various approaches to estimation of the number of

variants and tackling the complications involved, such as different

ways to correct for winner’s curse, relaxing the significance

threshold with correction for false positives and deriving the

confidence intervals analytically. We have also perfozrmed

extensive simulations to compare and verify the performance of

totally fourteen different proposed estimators.

Methods

Exponential distribution of Vg for all susceptibility
variants in the genome

We assume that the Vg of all susceptibility variants in the genome

follow an exponential distribution. The probability density function

(pdf) of an exponential distribution can be expressed as

f (Vg; l)~le{lVg

where the rate l is the only parameter that characterize the

distribution. The mean is simply given by 1/l. Therefore the

number of susceptibility variants can be derived given l:

No: of susceptibility variants~h2=E(Vg)~h2=(1=l)~h2l

where h2 is the total heritability.

Probability density function for Vg in GWAS and fitting
by maximum likelihood

In practice one cannot observe all the susceptibility variants.

Suppose a GWAS was performed and some variants were found to

be associated with p-values below a certain threshold a. The

probability density of the Vg of these observed significant variants

is directly proportional to the standard exponential density

multiplied by the power:

f (Vg)!le{lVg|pwr(Vg)

where pwr is a function that returns the corresponding power for a

given Vg, assuming allele frequency, prevalence, type I error (p-value

cutoff) and sample size are all fixed. Examples of the power-adjusted

pdf for different sample sizes are shown in Figure 1. The power was

evaluated based on a simple approach described in detail in So and

Sham [7]. Briefly, we computed z = ln(OR)/SE(ln OR) under H1

and estimated the corresponding power. Here we take advantage of

the fact that the power corresponding to a given Vg is grossly similar

regardless of the risk allele frequency (see Table S1 for some

examples). The allele frequency was therefore not taken into account

for power calculation but was set at a fixed value (0.5). The problem

will however be significantly complicated if we do consider the

modest difference in power for different allele frequencies, as the

above simple formulation of Vg distribution can no longer be

applied. For a continuous outcome, the exact power can be derived

by the variance explained alone (see later sections).

To scale the above density so that it integrates to 1, we divide the

above density by the normalizing factor
Ð 1

0
le{lVgpwr(Vg)dVg.

Hence the probability density function (pdf) of Vg, corrected for

inadequate coverage of small-effect variants due to limited sample

size, is given by

f (Vg)~
le{lVgpwr(Vg)Ð 1

0
le{lVgpwr(Vg)dVg

Note that the denominator is only a function of l and is not a

function of Vg since Vg is integrated over its possible range.

The above pdf can be used for maximum likelihood estimation

of l from a list of ‘‘significant’’ Vg obtained from genome-wide

association studies. l can be obtained by maximizing the following

log-likelihood function:

ln L(l)~
X

i

ln f (Vgi)

where i refers to the ith observation. The details of deriving the

maximum likelihood estimate (MLE) can be found in the appendix.

Distribution fitting by methods of moments
The theoretical population mean of Vg under the power*-

density curve is given by

mVg~

ð
Vg|f (Vg)dVg

~

ð1

0

Vg|le{lVg|pwr(Vg)dVgð1

0

le{lVg|pwr(Vg)dVg

We can then find the l that gives the closest theoretical mean to

the observed sample mean of Vg from GWAS. In other words, we

solve the following equation,

Ð 1

0
Vg|le{lVg|pwr(Vg)dVgÐ 1

0
le{lVg|pwr(Vg)dVg

~

P
i

Vgi

n
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It turns out that the method of moments and maximum likelihood

give identical estimates for l (the proof is given in Text S1).

Therefore we can use either method for distribution fitting. The

above formulation given by methods of moments is computation-

ally simple.

Relaxing the p-value threshold
Typically in GWAS we only consider the variants that

withstand a Bonferroni correction (typical threshold = 0.05/total

no. of variants) to be significant. However, for fitting the density

curve and estimation of l, a small number of false positives may be

allowed to reduce variance. Here we allow a more liberal

threshold so that more variants can be used in distribution fitting

and estimation of l. At the same time, we make use of the local

false discovery rate (lfdr) procedure [8] to remove the effect of false

positive variants, so that the estimated mean reflect only the effects

of truly associated variants.

The local fdr is the posterior probability of H0 given the test

statistic.

lfdr~ Pr (H0DZ~z)

The posterior probability of H1 given the test statistic, or

Pr(H1|Z = z), is given by (1-lfdr). Local fdr is calculated for the

z-value of every SNP (e.g. from Wald test in logistic regression) in a

GWAS. The Vg for each SNP is weighted by 1-lfdr corresponding

to that particular SNP. The weighted mean of Vg can be

expressed by

mVg,weighted~

P
i

wiVgiP
i

wi

where wi~1{ Pr (H0DZ~zi)

Although theoretically we may include all SNPs in distribution

fitting, it should be noted that the local fdr around z = 0 is often

close to or equal to 1, due to limited sample size. The actual

number of truly associated variants is usually larger than that

predicted by local fdr when z is around 0. Inclusion of all variants

will lead to an underestimation of mean Vg, as the weights for

SNPs with z-values around 0 will be inappropriately low.

Therefore we set an fdr threshold and only considered z-values

corresponding to a fdr lower than a particular value. Here we

assume that when we restrict our consideration to z-values below

the fdr threshold, we can accurately assess the non-null density of z

(denoted f1(z) by Efron), and hence ‘‘recover’’ the Vg correponding

to these non-null z-values. The statistical power (required for the

construction of the power x density curve) is calculated according

to the z-value cutoff. Local fdr was calculated by the locfdr

program by Efron [9].

Figure 1. Probability density of the Vg of detected variants in a GWAS with adjustment for power. We assume an exponential
distribution of Vg for susceptibility variants under unlimited sample size. In practice, sample size and power is limited and small-effect variants will be
under-represented. Therefore the probability density should be adjusted for power. ‘‘Orig density’’ denotes the original exponential distribution, and
the numbers like 2000/2000 denotes the number of cases and controls. The significance threshold was set at 561027 and prevalence set at 0.001.
Lambda equals 2000. The risk allele frequency was assumed at 0.5.
doi:10.1371/journal.pone.0013898.g001
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Fitting the most significant z-values to the alternative
density

Another approach is to consider f1(z), the density of the non-null

z-statistics. Since we assume the Vg of associated variants follow an

exponential distribution with parameter l, we can derive f1(z)
which is also characterized by the parameter l. We may then fit the

most significant z-values to f1(z), and estimate the underlying l.

This is similar to our earlier proposal of fitting observed Vg of

significant markers to the power x density curve, but this time the z-

values instead of Vg are used for distribution fitting.

Evaluating the alternative density of z. Note that the

observed z-values do not equal the true z-values. Denoting the true

z-value by d, then

zDd*N(d,1)

Alternatively, we may consider an observed z-value as a sum of the

true z-value and a random ‘‘noise’’ component which is standard

normal:

z~dzY with Y*N 0,1ð Þ

We first consider the distribution of d. For simplicity, we first

restrict all d to be positive and denote them by d+. Let g be a

function that converts Vg to d, ie

dz~g(Vg)

(since d are all positive, a single Vg can only give a single value of d,

in other words, there is a one-to-one correspondence of Vg and d)

The density of d is given by

f (dz; l)~D 1

dg(g{1(dz))=dVg
DfVg (g{1(dz); l)

where g{1 is a function converting d+ to Vg and fVg is the density

of Vg. fVg is an exponential distribution characterized by the

parameter l.

Now we consider all values of d, positive and negative. The

distribution of d is symmetrical i.e. f(d) = f(2d), so the above

densities are twice of the overall density which includes all values

of d. The overall density of d is given by

f (d; l)~
1

2
D 1

dg(g{1(d))=dVg
DfVg (g{1(d); l)

Now we turn to the evaluation of f1 zð Þ.Since we have

z~dzY with Y*N 0,1ð Þ,

we can obtain f1(z) by convolution of the density functions of d and Y:

f1(z)~

ð?
{?

fd(d; l)Q(z{d)dd

Note that f1(z) is determined by parameter l only as we integrate over d.

Fitting observed data to the alternative density. Since the

sample size is limited, we can only detect variants with effect sizes

larger than a certain extent. Assuming a Bonferroni correction is

used and family-wise error rate is set at a, the z-value threshold zcrit

is given by DW{1(a=2N)D where N is the total number of markers in

the study. The observed significant z-values hence follows a

truncated f1(z)with truncation at zcrit and - zcrit. The pdf of the

truncated f1(z) is given by

f1,trunc(z; l)~
f1(z; l)

2

ð?
zcrit

f1(z; l)dz

assuming symmetrical distribution of effect sizes, i.e.

f1(z) = f1({z), such that the truncated area on the left and the

right are equal.

The log likelihood for a set of significant z-values is

l(z; l)~
X

i

log
f1(zi; l)

2

ð?
zcrit

f1(zi; l)dz

0
BBB@

1
CCCA

The MLE of l can be obtained by numerical maximization of the

above likelihood function.

Again one may wish to relax the significance threshold to allow

more variants for distribution fitting. To remove the effects of the

false positive variants, we may employ a weighted likelihood

approach with weights equal to Pr(H1) for each included marker.

Pr(H1) may be estimated by 1 minus the local fdr for each marker.

The weighted likelihood is

l(z; l)~
X

i

wi log
f1(zi; l)

2

ð?
zcrit

f1(zi; l)dz

0
BBB@

1
CCCA where wi

~1{ Pr (H0jZ~zi)

For reasons already described above, we set an fdr threshold and

only include SNPs below that threshold.

By fitting the distribution of the truncated f1(z), there is no need

to further correct for winner’s curse because we have already

conditioned on DzDwzcrit. (Since we assume symmetric distribution

of effect sizes, f1(z) = f1({z) and in practice one may work with DzD
instead.)

Correcting for winner’s curse
Winner’s curse refers to the possible overestimation of effect size

of significant genetic variants in association studies. It may be

interpreted as a form of selection bias. The selection of SNPs

meeting significance threshold alters the probability distribution of

odds ratios (or z-values) for the chosen SNPs, resulting in bias in

effect size estimates. The selection bias is most prominent when

the study has weak power and when the significance threshold is

extreme. This is particularly pertinent to genome-wide association

studies, in which the association signals are usually weak and very

stringent significance thresholds are often imposed to guard

against multiple testing. As overestimation of effect size will lead to

overestimation of mean Vg, or underestimation of l, we

investigated various statistical methods based on conditional

likelihood to correct for the winner’s curse.

The details of the winner’s curse correction approaches applied

here were described by Ghosh et al. [10] and Zhong & Prentice

[11]. We consider the test statistic for a single marker in the

Estimating Number of Variants
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following form:

Z~
b̂b

SÊE(b̂b)

The above statistic is assumed to be asymptotically normal. For

example, when one performs logistic regression to test for SNP

associations, the Wald test statistic will take the above form. b̂b then

denotes the estimated regression coefficient.

In our case, we are only interested in SNPs with z-values

exceeding a certain threshold c, where c is chosen such that the

family-wise error rate (FWER) or false discovery rate are controlled

below a certain level. The selection of SNPs passing the significance

cutoff distorts the original normal distribution. The conditional

likelihood after selection can be expressed by [10,12]

Lc(m)~fm(zDDZDwc)~
w(z{m)

W({czm)zW({c{m)

Instead of working with the z-values, Zhong and Prentice [11]

worked with the regression coefficients b and used an equivalent

form of the above conditional likelihood in their paper. Here for

clarity, we focused on the formulation using the z-statistics. A

number of corrected estimates of the effect size have been

proposed based on the above result. Below we briefly describe five

estimators considered in our simulations.

The first one is the MLE estimator

m1,corr~ arg max
m

Lc(m)

which is in fact the same as matching the expectation of the

sampling distribution of m to the observed mean.

The second one is the mean of the normalized conditional

likelihood,

m2,corr~

Ð?
{? mLc(m)dmÐ?
{? Lc(m)dm

which aims to reduce the mean squared error from a Bayesian point of

view. m2,corr may be treated as a posterior mean with a flat prior on m.

The third estimator is the mean of the first two estimators

m3,corr~
m1,corrzm2,corr

2

which aims to combine the strength of the first and second

estimators.

The fourth estimator produces a sampling distribution of z with

median at the observed z-value. The estimator can be expressed as

mmed~m̂m :

ðzobs

{?
fm(zDDZDwc)dz~0:5

where zobs is the observed z-statistic for the SNP under study. Note

that Zhong and Prentice [11] dealt with the distribution of

regression coefficient b, but since z and b are directly related

through the fixed SE (z = b/SE), it does not make any difference if

one works with the sampling distribution of z.

The fifth estimator is a weighted average of the uncorrected

regression coefficient estimate (buncorr) and the median corrected

coefficient estimate (bmed ) (note bmed~SE|mmed ). The weight

depends on the estimated variance of the uncorrected coefficient

(s2
uncorr) and the difference between the corrected and uncorrected

coefficients.
bMSE,med~K̂Kbuncorrz(1{K̂K)bmed

where K̂K~
s2

uncorr

s2
uncorrz(buncorr{bmed )2

.

All the above correction methods work for binary as well as

continuous outcomes. The first four methods just require z-values

as input. For the last method, an estimate of the standard error of

coefficient is required. As a crude approach, we again assumed a

fixed risk allele frequency of 0.5 so that log(OR) and the standard

error (SE) can be estimated from z-values. It should be noted that

the SE is in fact a function of the risk allele frequency. For the

same level of relative risk and the same z-statistic, a larger SE will

result if risk allele frequency is lower. Ignoring the risk allele

frequency will result in less accurate estimates of SE. Hence it is

recommended that one considers the actual risk allele frequencies

if they are available. In view of this limitation, the results that are

based on the last correction method (i.e the ‘‘MSEmedian’’

estimators) should be regarded as rough estimates only.

Simulation strategy
We simulated z-statistics and investigated the performance of

the various estimators in recovering the underlying parameter that

generates the statistics. The z-statistics were composed of two

groups: the first group corresponded to H0 with distribution N(0,1)

; the second group corresponded to H1 (i.e. truly associated

variants) with distribution N(d,1), where d was determined by the

parameter of the distribution of Vg as described below.

We simulated the Vg of associated variants according to the

exponential distribution,

Vg*exp(l)

Given the allele frequency, prevalence and sample size, one may find

the relative risk that produces the given Vg and hence a corresponding

z-value (denoted d) can be obtained. Since the same Vg gives rise to

similar power and z-values, we simply fix the allele frequency at 0.5.

In each replication we simulated 100,000 z-values, 99.5% of

which are null. The non-null z-values were derived from their

corresponding exponentially distributed Vg. We assumed a

prevalence of 0.001 and a local fdr cut-off of 0.3 throughout. We

investigated the performance of a number estimators under three

different sample sizes (number of cases = 3500, 5000 and 7000 with

equal number of controls) and four different l (1000, 2000, 3000,

4000). The root mean squared error from 300 simulations was

computed. The root mean squared error is given by

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
i~1

(l{l̂li)
2

B

vuuut
where B is the number of simulations, l is the true parameter value

and l̂li is the estimated parameter value in the i th simulation.

In total fourteen estimators of l were evaluated. Table 1

provides a summary of the 14 estimators under study. The

estimators fell into two main groups. The first group of estimators

was obtained from fitting only the variants passing a Bonferroni

correction. The family-wise error rate was set at 0.05. The second

group of estimators were obtained from fitting all variants below

Estimating Number of Variants
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an fdr threshold (set at 0.3), which allowed inclusion of an increased

number of markers. In each group, five estimators were obtained by

first applying different winner’s curse correction methods to the

observed effect sizes and then fitting a density x power curve to the

corrected levels of Vg. For comparison, we also included in each

group an estimator derived from fitting the density x power curve but

without any winner’s curse corrections. Lastly, we fit the truncated

convolution density f1(z) to the selected z-values in each group.

Dealing with continuous traits
Although our previous discussions focus on variance explained

of binary outcomes, the method can easily be extended to

continuous traits. The only difference lies in the conversion of Vg

to z and calculation of power given a level of Vg. In fact fewer

assumptions are required for continuous traits. For example, no

extra information on the prevalence of disease is required.

A given level of Vg corresponds to a specific z-statistic and the

same Vg would always give rise to the same power. In summary,

we have the following relations between z and Vg :

z~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{2)

Vg

1{Vg

� �s
and Vg~

z2

n{2zz2

where n is the sample size.

Recall that we require the derivative dg(Vg)=dVg to construct

the convolution density of z, where g is the function to convert Vg

to z. In the case of a continuous outcome, one can easily obtain a

closed form expression

dg(Vg)

dVg

~
1

2(1{Vg)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{2)(1{Vg)

Vg

s

The mathematical details are given in the supplementary methods

(Text S1).

Confidence interval (CI) for l and number of
susceptibility variants

Non-parametric bootstrap. Non-parametric bootstrap can

be applied to all proposed estimation methods. for construction of

CIs. To perform non-parametric bootstrap, one resamples with

replacement the subjects from the case-control dataset and re-

calculates the test statistic for each SNP in each run. Then repeat the

entire procedure of distribution fitting as described above. The l
found in each bootstrap run is recorded and the confidence interval

of l can be obtained from the empirical distribution of l in

bootstrap runs. The non-parametric bootstrap approach takes into

account of all possible sources of uncertainties, such as uncertainties

in the estimate of the odds ratios and allele frequencies and variation

brought about by winner’s curse correction methods. This approach

is relatively straightforward and can be applied to any of the

proposed estimation methods. However, the raw data on the

genotypes and phenotypes of all subjects are required.

Parametric bootstrap. Parametric bootstrap is another way

to obtain the CI when raw data is not available. The basic idea is

to generate many simulated samples (each with the same of

number of observations) from the known distribution of Vg or

z-values, based on the estimated value of l. Then we could re-

estimate l in each simulated sample and obtain a distribution for

l. For example, we considered fitting the pdf of the alternative

z-values, or f1(z; l̂l). In this case, one simulates z-values based on

the pdf f1(z; l̂l). Perhaps the easiest way to simulate the z-values is

to first derive the cdf by integrating f1(z; l̂l) up to various points

and then simulate uniform random variables. Corresponding

random z-values can be generated from the inverse cdf.

As the bootstrap methods are more computationally intensive

than analytic methods, we will focus on the latter in simulations

and applications to a few real datasets. Bootstrap methods

however may have better performance particularly when the

number of observations is small. If access to the raw data is

available, non-parametric bootstrap is also applicable and has the

merit of being free from distributional assumptions.

Table 1. An overview of the proposed estimators of l.

Name of estimator
SNP inclusion
criteria

Distribution fitting
method

Winner’s curse
correction

Corresponding
number-
ing in figures

Bonf Bonf pwr*exp_density None 1

Bonf.corr Bonf pwr*exp_density Avg of Ghosh 1&2 2

Bonf.corr1 Bonf pwr*exp_density Ghosh 1 3

Bonf.corr2 Bonf pwr*exp_density Ghosh 2 4

Bonf.corr.med Bonf pwr*exp_density Median (Zhong) 5

Bonf.corr.MSEmedian Bonf pwr*exp_density MSE median (Zhong) 6

Bonf.fitfZ.conv Bonf f1conv Not necessary 7

truncfdr fdrthres pwr*exp_density None 1

truncfdr.corr fdrthres pwr*exp_density Avg of Ghosh 1&2 2

truncfdr.corr1 fdrthres pwr*exp_density Ghosh1 3

truncfdr.corr2 fdrthres pwr*exp_density Ghosh2 4

truncfdr.corr.median fdrthres pwr*exp_density Median (Zhong) 5

truncfdr.corr.MSEmedian fdrthres pwr*exp_density MSE median (Zhong) 6

truncfdr.fitfZ.conv fdrthres f1conv Not necessary 7

Bonf, Bonferroni correction; fdrthres, local fdr threshold; pwr*exp_density, fitting by the power times exponential density curve; flconv, fitting by considering the
convolution density of non-null observations f1(z); Avg, average. The winner’s curse correction methods are named by the first author of the corresponding reference
papers. Please see the text for details.
doi:10.1371/journal.pone.0013898.t001
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Analytic approaches. A common analytic approach for

calculating CI is to assume normality of the parameter and obtain

the SE by inversion of the Fisher information matrix.

Alternatively, one may obtain CI by inverting hypothesis tests,

such as the maximum likelihood ratio test (MLRT).

These analytic methods for calculation of CI however cannot

directly be applied when we estimate l by fitting to the distribution

of observed Vg with correction for winner’s curse. Note that we

assume the actual Vg is exponentially distributed and hence fit the

power x exponential density curve to the data. What we obtain

from association studies however is not the actual Vg but Vg with

random sampling variation. Put it another way, the Vg is derived

from the allele frequencies and odds ratios. Both of them have

sampling variations (especially the odds ratios) and would not be

identical when we repeat the study. Nevertheless our approach is

to fit the estimated ‘‘true’’ Vg to the exponential density multiplied

by power. The uncertainties of the allele frequencies and ORs

have not been dealt with in the model.

Hypothetically, if one is able to fit the observed data to the

actual sampling distribution of Vg, then the analytic approaches for

obtaining CI are applicable. But since the form of this distribution

is difficult to obtain, we cannot obtain CIs by analytic means

directly. Correction for winner’s curse introduces further varia-

tions. The effect to the variance and CI of the final l estimate is

not straightforward. In addition, different ways of winner’s curse

correction have different effects on the variances of l, as shown in

our simulations.

Analytic means of calculating CI can be applied when we fit the

significant variants to the convolution density f1(z) directly. Note

that the sampling variation of effect size has been incorporated

since the convolution already takes into account the random

Gaussian noise added to the actual z-value.

Two standard analytic methods in deriving the confidence

interval were used. The first one is based on inverting the observed

Fisher information evaluated at the MLE. It may be expressed as

the negative of the 2nd derivative of the log-likelihood function,

Il̂l(x)~{l’’l̂l(x)~{
d2ll(x)

dl2 D
l~l̂l

where x represent the observed data, l is the parameter to

estimate and l̂l is the MLE. The confidence interval of l is given by

l̂l+Il̂l
{1=2za=2

assuming normality of the parameter estimate.

The second approach is derived from the maximum likelihood

ratio test (MLRT). It is based on the duality of hypothesis testing

and interval estimation. To construct a confidence interval with

coverage 12a, we consider the acceptance region of a test of size a
for H0 : l~l0VsH1 : l=l0. Here we just consider a single

parameter for simplicity. The maximum likelihood ratio test has

the following test statistic which follows a chi-square distribution:

2½l(l̂l; x){l(l0; x)�*x2
1

We are interested in all the lambdas such that the null hypothesis is

not rejected, or more simply, the lambdas that are not significantly

different from the MLE. The confidence interval with coverage

12a includes all l0 satisfying

2½l(l̂l; x){l(l0; x)�ƒx2
1,1{a

or l(l0; x)§l(l̂l; x){
x2

1,1{a

2

Simulation on coverage probabilities of CIs
It is less clear whether these analytic approaches would work if

we worked with weighted maximum likelihood. To assess the

coverage probability of the proposed analytic CIs, we performed a

brief simulation study on a sample size of 3500 cases and 3500

controls and lambdas of 1000, 2000 and 3000. One thousand

simulations were carried out. In each simulation run, random

z-values are generated as previously described. Ninety-five percent

confidence intervals of the parameter l were computed using two

analytic methods (inversion of Fisher information matrix and

MLRT), for markers passing Bonferroni correction and for those

passing the local fdr threshold of 0.3. We evaluated coverage

probabilities and the width of the CIs.

Application to real data
The above distribution fitting methods were applied to a few

real disease examples. As estimation of the local fdr requires all

summary statistics to be available, we focused on studies that had

full summary statistics released before. We included three large-

scale studies, one on lipid levels [13], one on type 2 diabetes [14]

and the other on Crohn’s disease [15]. As the SNPs in a GWAS

are correlated due to linkage disequilibrium (LD), several markers

may be in strong LD with one casual variant and still show

statistical significance. The mean effect size or Vg may be inflated

as the signals from these proxy markers were counted as well. We

experimented a rough pruning procedure to reduce the effect of

correlation. The pruning was applied to the diabetes and Crohn’s

datasets and SNPs were pruned such that they were at least 30 kb

apart.

For the Crohn’s disease dataset [15], we also tried to estimate

the effect sizes from the replication study alone to replace winner’s

curse corrections. The loci listed in Table 2 of [15] were taken to

be the true associated variants. The power was calculated based on

the probability of passing both the 1st-stage p-value threshold

(,561025) and the 2nd-stage threshold (,0.0008 or 0.05/63 by

Bonferroni correction) given the effect size. l was estimated by the

same distribution fitting procedure as detailed previously.

Fitting other types of distributions to real data
Although we have focused on the exponential distribution in

this study, we noted that this is only theoretical and may not exactly

be the true model in real scenarios (please see the discussion

section for further details). Particularly, the effect size distribution

of complex traits may be more skewed towards zero than an

exponential distribution, as suggested in Park et al. [6]. Therefore

we have also tried to fit other types of distributions to the real data

and observe how the parameter estimates will change. We have

chosen to fit gamma distributions as an alternative to exponential

distribution. This is because the gamma distribution is highly

flexible with both shape and scale parameters. When the shape

parameter is one, it is equivalent to an exponential distribution.

Distributions that are more skewed towards zero than an

exponential density have shape parameters less than one. We set

different shape parameters and the scale parameter estimates were

estimated by fitting the alternative density of z-values (the

methodology is described under the section ‘‘Fitting the most

significant z-values to the alternative density’’). The mean of a

gamma distribution is simply the product of the shape and scale

parameters.
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Results

Simulation results for estimators of l
Tables 2, 3 and 4 shows the overall performance of 14 different

estimators as measured by the root mean squared error from 300

simulations. In total 12 scenarios were studied. Firstly, we focus on

the comparison of using only the most significant variants passing

Bonferroni correction versus using all variants below a certain

local fdr threshold. It is clear that by relaxing the p-value threshold

and then removing the false positive effects by local fdr weighting,

the root mean squared error can be reduced. The mean, bias and

SD of different estimators were shown in tables S2 and S3. The

variance (or SD) of the estimators decreased when we allowed

more markers for fitting with adjustments for false positives using

fdr. The improvement was more marked when the effect size was

small (i.e. true l is large) and the sample size was not large. For

example when Ncase = Nctrl = 3500 and l is 4000, the SD of the fdr-

adjusted estimators was only about one-third of the SD of the

Bonferroni- adjusted counterparts. The bias of the fdr-adjusted

estimators were also in general smaller than that of the Bonferroni-

adjusted ones, but for the last two (‘‘MSEmedian’’ and

‘‘fitfZ.conv’’[i.e. fitting f1(z)]) this situation was often reversed.

Figures 2 and 3 show the boxplots of the different estimators.

For the estimators in figure 2, variants were included in fitting if

they passed the Bonferroni threshold. The last two estimators

(‘‘MSEmedian’’ and ‘‘fitfZ.conv’’) were nearly unbiased and had

Table 2. Root mean squared error of different estimators from simulations when number of cases and controls each equals 3500.

RMSE l = 1000 l = 2000 l = 3000 l = 4000

N = 3500 RMSE rank RMSE rank RMSE rank RMSE rank

Bonf 198 12 783 13 1553 14 2403 11

Bonf.corr 201 13 773 12 1520 13 2841 12

Bonf.corr1 159 11 645 11 1408 11 3065 13

Bonf.corr2 237 14 845 14 1477 12 2318 10

Bonf.corr.med 123 8 443 8 1001 8 2311 9

Bonf.corr.MSEmedian 93 6 323 4 802 7 1866 7

Bonf.fitfZ.conv 91 4 352 6 1021 9 3795 14

truncfdr 140 10 625 10 1335 10 2151 8

truncfdr.corr 110 7 407 7 692 5 1035 5

truncfdr.corr1 92 5 339 5 615 4 998 4

truncfdr.corr2 126 9 446 9 694 6 936 2

truncfdr.corr.median 71 1 221 1 418 1 730 1

truncfdr.corr.MSEmedian 77 3 282 3 593 3 970 3

truncfdr.fitfZ.conv 74 2 245 2 520 2 1236 6

doi:10.1371/journal.pone.0013898.t002

Table 3. Root mean squared error of different estimators from simulations when number of cases and controls each equals 5000.

RMSE l = 1000 l = 2000 l = 3000 l = 4000

N = 5000 RMSE rank RMSE rank RMSE rank RMSE rank

Bonf 131 12 570 13 1212 12 1991 14

Bonf.corr 139 13 567 12 1233 13 1874 12

Bonf.corr1 114 11 451 11 1045 11 1670 10

Bonf.corr2 161 14 656 14 1326 14 1894 13

Bonf.corr.med 103 10 348 9 746 9 1184 9

Bonf.corr.MSEmedian 84 6 243 5 532 4 959 7

Bonf.fitfZ.conv 82 5 245 6 574 6 1155 8

truncfdr 88 7 431 10 978 10 1679 11

truncfdr.corr 91 8 294 7 671 7 916 5

truncfdr.corr1 81 4 242 4 569 5 794 4

truncfdr.corr2 100 9 335 8 724 8 943 6

truncfdr.corr.median 69 2 182 1 371 1 491 1

truncfdr.corr.MSEmedian 65 1 217 3 437 3 721 3

truncfdr.fitfZ.conv 72 3 182 2 407 2 620 2

doi:10.1371/journal.pone.0013898.t003
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comparable variance. Figure 3 shows estimators that were fdr-

adjusted. Overall speaking, the median and fitfZ.conv estimators

had the lowest bias among all. The estimator without winner’s

curse correction was clearly downward biased, no matter which

kind of inclusion threshold was used.

Considering the overall performance of all estimators, three

estimators stood out as the best three in 10 out of 12 scenarios.

They included ‘‘truncfdr.corr.median’’, ‘‘truncfdr.corr.MSEme-

dian’’ and ‘‘truncfdr.fitfZ.conv’’ (please refer to table 1 for a

description of the estimators). As expected, all three were

estimators using fdr adjustment. Among winner’s curse correction

approaches, the median and MSE median estimators outper-

formed others in the current study. Fitting directly by f1(z) also

had favorable performance.

Simulation results for confidence intervals of l
Table 5 shows the properties of CIs obtained from 1000

simulations, including coverage probabilities, mean and SD of the

width of CI, and the value of the upper and lower 95% CI averaged

from the simulations. Under the three simulated scenarios, all four

CIs had coverage probabilities close to the theoretical value (0.95),

although for ‘‘MLRT weighted’’ (maximum likelihood ratio test using

weighted likelihood) the coverage probability seemed to be slightly

lower than 0.95. By employing the weighted likelihood approach, we

were able to include more variants and not surprisingly, the width of

CI was much shorter than that from a standard likelihood approach.

The SD of the CI width was also smaller.

Results for real disease data
For Crohn’s disease, we have tried an approach that did not

require any winner’s curse corrections. The effect sizes of the true

associated variants were extracted from replication studies as

described in [15]. l was estimated at 1196 and hence the estimate

of mean Vg was 0.0836%. The other results were summarized in

table 6. Only the results based on fdr adjustment were shown since

they are superior to Bonferroni-corrected estimators. Readers may

refer to table S4 for the Bonferroni-corrected results for reference.

The estimated values of l range from about a few hundreds to

around two thousand. Pruning of SNPs did not change the

estimates substantially, though we noted an increase in l for the

Crohn’s dataset after pruning. The estimated number of

susceptibility variants is simply given by the heritability multiplied

by l. The heritabilities for type 2 DM and Crohn’s disease were

taken to be 0.424 [16] and 0.55 [17]. The heritabilities of HDL,

LDL and TG were taken to be 0.63, 0.36 and 0.37 respectively

according to Abney et al. [18]. As shown in table 6, the estimated

number of susceptibility variants underlying the studied traits

ranged from around four hundred to a thousand. Table 7 showed

the estimated number of variants when we assumed a gamma

distribution that allows a greater number of SNPs with smaller

effects. A smaller shape parameter implies that the distribution is

more skewed towards zero. As one would expect, the estimated

number of variants went up as the distribution is increasingly

skewed towards zero. The resulting estimates were about two to

three times of the original estimate (based on exponential

assumption) when the shape parameter decreased to 0.3.

Discussion

In this study we proposed a variety of methods to estimate the

number of susceptibility variants in the genome based on the

assumption that effect sizes are exponentially distributed.

One advantage of our methodology is that all proposed

estimators require only the summary statistics (z-values or p-values)

rather than the raw data, although the availability of raw data allows

non-parametric bootstrap to evaluate confidence intervals. If only

the z or p-values of the most significant markers are available, the

models can still be fit, but one should be aware that distribution

fitting on a small number of markers is often unstable.

Another feature of our methodology is that we used the variance

explained as a measure of effect size. It is worth noting that the

variance explained depends on both the allele frequency and the

relative risk (RR). A rare variant with a large effect size may have

similar Vg as a common variant with smaller effect size. For

example, under a prevalence of 0.01, a variant with risk allele

frequency (RAF) 0.5 and allelic RR 1.1 has the same Vg

(0.0639%) as another variant with RAF 0.0005 and RR 6.348 with

Vg (assuming allelic RR is multiplicative). The exponential

Table 4. Root mean squared error of different estimators from simulations when number of cases and controls each equals 7000.

RMSE l = 1000 l = 2000 l = 3000 l = 4000

N = 7000 RMSE rank RMSE rank RMSE rank RMSE rank

Bonf 87 11 395 12 905 12 1552 12

Bonf.corr 91 13 403 13 915 13 1587 13

Bonf.corr1 78 8 319 11 733 11 1338 11

Bonf.corr2 104 14 474 14 1045 14 1715 14

Bonf.corr.med 72 5 258 9 548 8 1011 9

Bonf.corr.MSEmed 64 3 190 6 381 5 716 6

Bonf.fitfZ.conv 65 4 180 4 357 4 678 4

truncfdr 60 1 291 10 684 10 1247 10

truncfdr.corr 84 10 222 7 487 7 817 7

truncfdr.corr1 78 9 190 5 397 6 680 5

truncfdr.corr2 89 12 252 8 555 9 897 8

truncfdr.corr.median 72 6 162 3 304 3 486 3

truncfdr.corr.MSEmedian 64 2 156 1 283 2 471 2

truncfdr.fitfZ.conv 73 7 158 2 282 1 470 1

doi:10.1371/journal.pone.0013898.t004
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distribution of Vg is compatible with numerous rare variants with

large RR or numerous common variants with small RR, or a

combination of both. Since current GWAS panels only focus on

common variants, we are estimating the parameter of the

exponential distribution based on the set of common SNPs, and

hoping the result can be extrapolated to rare variants.

We have also applied the methodology to a number of real

disease traits. The results suggested that roughly hundreds of

susceptibility variants underlie these traits. This is not particularly

striking, as many researchers might have expected that a large

number of variants are implicated from the polygenic model for

complex diseases. However, we have shown how to quantify the

number of susceptibility variants, albeit approximately, in a

statistical framework. We also noted that GWAS have been

relatively successful for the traits studied here: over 20 loci have

been identified for type 2 diabetes and around 30 loci have been

identified for Crohn’s disease [15] and lipid levels [13]. The

genetic architecture of these few traits need not represent that of

other complex diseases. Many diseases or traits have not been

examined in large-scale or meta-analytic GWAS yet, it would be

interesting to perform the analyses on these datatsets and compare

the estimated number of variants for different outcomes.

Limitations
To accurately infer the number of total susceptibility variants in

the genome from GWAS data is a very difficult problem, and the

methodology presented here should only be interpreted as a rough

estimate based on the exponential distribution assumption. We

stress that the work presented here is not a perfect solution to the

problem. Instead, we made our best attempt to estimate the

Figure 2. Boxplots of different estimators of l, with inclusion threshold based on Bonferroni correction.
doi:10.1371/journal.pone.0013898.g002
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number of variants, and more importantly, we hoped to provide a

useful and rigorous statistical framework to attack the problem.

One difficulty in dealing with GWAS data is that the SNPs are

correlated, while most distribution fitting methods in statistics

apply to independent observations. Often clusters of SNPs may

show high significance but may just contain one or few true

independent signals. As a result of the ‘‘redundant’’ significant

signals, the mean Vg may be overestimated and l underestimated.

In addition the strong correlation may distort the assumed

exponential distribution of effect sizes. One way to alleviate this

problem is to prune the SNPs before analyses so that they are

roughly independent. On the other hand, pruning reduces the

number of markers available for distribution fitting and will

increase the variability of the estimates, especially when the effect

sizes are small and there are few markers considered significant

even in the entire set of genotyped SNPs. There is no perfect

solution to this sort of bias-variance tradeoff. However, as the

sample size becomes larger, more SNPs will pass the significance

threshold and there will be adequate SNPs for stable parameter

estimates even if the SNPs are pruned prior to analysis.

Also, the significant associations in a GWAS may not be causal

variants themselves, but maybe merely tagging them. We have to

assume that the variance explained by significant results in a

GWAS is close to that of the causal variants if they were typed.

Current GWAS technologies mainly aim at capturing common

variants. As a result, the best thing we can do is to infer the total

number of underlying based on the effect sizes of common

variations. The contribution of rare variants and structural

Figure 3. Boxplots of different estimators of l, with inclusion threshold based on local fdr.
doi:10.1371/journal.pone.0013898.g003
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variations to complex diseases is largely unexplored in the

literature. In addition, gene-gene or gene-environmental interac-

tions may also play a role in the etiology of complex diseases, but

our current understanding regarding interactions is still very

limited. To make predictions on the total number of susceptibility

variants in the genome, inevitably we have made the assumption

that the other variants that are not captured share a similar

distribution of Vg as common variants. Of course this assumption

may not work very well in practice. Nonetheless, we think this

limitation may become less of a concern in the future when studies

accumulate and technologies improve. While now we can only fit

the Vg of common variants, with more rare and structural variants

discovered in the future, their effect sizes may also be fit using the

proposed framework. Interactions may be regarded as multi-locus

genotypes and their Vg can be readily calculated and distribution

fitting can be done as well. The framework we presented does not

pose any restrictions on the actual nature of the susceptibility

variants. With accumulation of more studies we will hopefully be

able to obtain more reliable estimates considering a greater variety

of genetic variations.

We assumed an exponential distribution of Vg in this study,

which is justified by theories in adaptation [3]. The exponential

distribution is simple with only one parameter, hence the

estimation can be quite reliable despite modest sample size.

Employing more flexible models with more parameters would

allow better fitting when the true distribution is not exponential.

However, we will need much larger sample sizes such that there

are enough variants passing the significance threshold (Bonferroni

or fdr) that are available for fitting. Otherwise, the estimate will be

unstable.

Despite the advantages, we must point out that the exponential

assumption is a theoretical prediction after all, and may not be

exactly true in practice. For example, Park et al.[6] suggested

recently that the effect size distributions for complex traits may be

Table 5. Simulation results for different estimates of 95%
confidence intervals (CI).

True lambda

1000 2000 3000

Coverage probability Info 0.949 0.959 0.953

Info weighted 0.936 0.955 0.969

MLRT 0.953 0.954 0.946

MLRT weighted 0.93 0.942 0.948

Average width of CI Info 359 1348 3703

Info weighted 285 877 2025

MLRT 360 1370 4007

MLRT weighted 285 883 2069

SD of width of CI Info 39 296 2213

Info weighted 24 122 454

MLRT 39 307 2452

MLRT weighted 25 124 477

Mean value lowCI (info) 831 1402 1423

upCI (info) 1190 2750 5127

lowCI (info weighted) 882 1623 2175

upCI (info weighted) 1166 2500 4201

lowCI (MLRT) 843 1492 1865

upCI (MLRT) 1203 2862 5872

lowCI (MLRT weighted) 889 1663 2318

upCI (MLRT weighted) 1174 2545 4387

‘‘Info’’ refers to CI obtained by inversion of Fisher information matrix.
‘‘Weighted’’ refers to weighting by the 1-local fdr.
MLRT, maximum likelihood ratio test; lowCI, lower 95% CI; upCI, upper 95% CI.
doi:10.1371/journal.pone.0013898.t005

Table 6. Estimates and confidence intervals of lambda for a few complex traits, variants included according to fdr threshold.

HDL LDL TG DM(all SNPs) DM(pruned) Crohn(all SNPs) Crohn(pruned)

Estimates of lambda

truncfdr 634 828 989 692 652 1086 1249

truncfdr.corr 827 1203 1534 1380 1215 1615 2062

truncfdr.corr1 813 1190 1522 1344 1150 1569 1976

truncfdr.corr2 835 1198 1519 1374 1256 1642 2117

truncfdr.corr.median 769 1115 1403 1244 1042 1442 1787

truncfdr.corr.MSEmedian NA NA NA 1116 926 1329 1603

truncfdr.fitfZ.conv 693 975 1192 1162 1192 1388 1715

Confidence intervals

upCI.wt (fdrthres) 751 1056 1257 1363 2420 1553 2348

loCI.wt(fdrthres) 635 895 1128 960 236 1222 1083

upCI.MLRT.wt(fdrthres) 881 1152 1460 1380 3344 1562 2438

loCI.MLRT.wt(fdrthres) 561 835 996 975 397 1229 1183

Esimated no. of susceptibility variants

based on truncfdr.corr.median 484 401 519 527 442 793 983

based on truncfdr.fitfZ.conv 437 351 441 493 505 763 943

The bolded lines refer to estimators having the best overall performance in simulations.
HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglyceride; DM, type 2 diabetes mellitus; Crohn, Crohn’s disease.
Bonf, inclusion threshold based on Bonferroni correction; fdrthres, inclusion threshold set at local fdr of 0.3.
‘‘wt’’ refers to weighting by 1-local fdr. Please refer to the previous tables for abbreviations of the estimators and the types of CI calculated.
doi:10.1371/journal.pone.0013898.t006
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more skewed to the left than an exponential distribution. As a

result, we may have underestimated the total number of

susceptibility loci. In view of this limitation, we have also tried

to fit gamma distributions with shape parameters less than one,

which allow more variants with small effect sizes than an

exponential distribution. When the shape parameter dropped to

0.3, the estimated number of loci increased by about 2 to 3 times

compared to the case when the exponential distribution is fitted.

The new estimates are mostly in the range of one to two

thousands. This gives a rough idea of the range of estimates if the

distribution of effect size is more left-skewed.

As first mentioned in the introduction, Park et al. [6] recently

have worked on a similar problem. It is notable that Park et al.

have proposed a way to deal with the problem in a non-parametric

manner without relying on estimate of total heritability. However,

it should be noted that we are considering the entire range of effect

sizes rather than the observed range, which is a bit trickier. The

unobserved effect sizes are likely to be smaller than the observed

ones and cannot be modeled easily. Note that non-parametric

methods are usually highly flexible. They can fit the observed data-

points well (and may perform well within the range of effect sizes

observed). However, flexible models also increase the risk of

overfitting. They may be less reliable at predicting future data-

points as they may magnify the ‘‘noise’’ or random fluctuations in

the original data. The danger of overfitting is exaggerated when

we have to extrapolate beyond the observed spectrum of effect sizes.

The risk of overfitting is also heightened when the number of loci

(i.e. data-points) available for fitting is small in the first place, as

explained earlier.

As a result, we have focused on the more restrictive parametric

models in the current study, and in particular the exponential

model. This is not because the exponential model is perfect, but it

is the only parametric model with theoretical support and

represents the best ‘‘educated guess’’ of effect size distribution in

our view. One may change the exponential assumption to other

models such as gamma distributions, as was done in this study.

With greater sample sizes for association studies and more loci

available for fitting, one may be able to reliably fit statistical

distributions with more free parameters, for example the gamma

distribution (which is very flexible) with free shape and rate

parameters. The reliance on the exponential distribution can then

be relaxed. The framework presented in this paper can potentially

be extended to deal with other types of distributions.

It should be noted that our methodology requires an external

estimate of the total heritability. As there are many different

statistical approaches and designs that are available for heritability

studies, one may need to be aware of the limitations of different

heritability estimates. For example, twin and adoption studies can

separate shared environmental from shared genetic factors in

families, while family-based studies (e.g. those based on siblings

and parent-offsprings only) cannot make a distinction between the

two types of shared effects.

We have proposed an fdr-based approach to relax the

significance threshold so that more markers are available for

fitting. Simulations showed that this approach had superior

performance when compared to the conventional way of including

only the markers that passed the Bonferroni threshold. In practice,

confounding factors such as population stratification may be

present to increase the false positive rate. Many methods such as

principal component analysis are available for correcting popula-

tion stratification [19]. If major residual confounding is suspected,

for example the genomic inflation factor (l) [20] remains high after

correction by principal component analysis, then one should be

cautious in relaxing the significance threshold. In such cases, one

should also be alert to the most significant markers being false

positives, and extensive replications are necessary to confirm the

results. One may also consider correcting the results by genomic

control [20].

Goldstein [21] presented an alternative approach to estimate

the number of variants underlying height in a recent commentary.

His approach is different from ours and Park et al. [6]. In [6] and

our study, the authors considered the probability density function

of effect sizes and obtained parameters estimates by distribution

fitting. Goldstein considered the entire range of effect sizes as we

do. However, he ranked the SNP from largest to smallest effect

sizes and plotted the effect size (in variance explained) (on y-axis)

against the rank of each SNP (on x-axis). An exponential function

curve was fit to the observed data-points with least-squares

regression. Essentially the rank of SNP is the predictor variable

and the effect size is the outcome variable. The number of variants

is solved using integration. This is not the same as the probably

more intuitive and conventional distribution fitting methods in

Table 7. Estimated number of susceptibility variants
assuming a gamma distribution of effect sizes.

Shape Lambda Mean
Number of
variants

LDL 0.9 937 9.60E-04 375

0.7 845 8.28E-04 435

0.5 754 6.63E-04 543

0.3 664 4.52E-04 797

HDL 0.9 657 1.37E-03 460

0.7 585 1.20E-03 526

0.5 514 9.73E-04 648

0.3 445 6.74E-04 935

TG 0.9 1152 7.81E-04 474

0.7 1038 6.75E-04 548

0.5 812 6.16E-04 601

0.3 924 3.25E-04 1140

Crohn (all) 0.9 1328 6.78E-04 812

0.7 1211 5.78E-04 951

0.5 1093 4.57E-04 1203

0.3 970 3.09E-04 1779

Crohn (pruned) 0.9 1649 5.46E-04 1008

0.7 1512 4.63E-04 1188

0.5 1375 3.64E-04 1513

0.3 1219 2.46E-04 2235

DM (all) 0.9 1122 8.02E-04 528

0.7 1042 6.72E-04 631

0.5 962 5.20E-04 816

0.3 884 3.40E-04 1249

DM (pruned) 0.9 1165 7.73E-04 549

0.7 1095 6.39E-04 663

0.5 1026 4.87E-04 870

0.3 994 3.02E-04 1405

When the shape parameter equals one, the gamma distribution is equivalent to
an exponential distribution and the results are listed in table 6. When the shape
parameter decreases, the distribution is more skewed towards zero, implying
that we assume more variants to have small effect sizes.
doi:10.1371/journal.pone.0013898.t007
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which one fits a distribution to the histogram of effect sizes (i.e. y-

axis is the density, x-axis is the effect size). Goldstein’s method was

only described briefly and the statistical methodology itself was not

the major focus of the commentary. No detailed rationale for the

approach or simulations was presented. Hence we are unable to

make rigorous and comprehensive comparisons of our approach to

that described in Goldstein. However, it is clear that in Goldstein’s

approach, the power of study is not considered and as admitted by

the author, it is assumed that all SNPs yet to be found have smaller

effects than the weakest one discovered to date. This will lead to an

overestimation of the number of variants.

Estimation of the number of variants underlying a trait is a very

challenging task. We believe that for most complex diseases, the

Vg of susceptibility variants are likely to be rather small. It may be

possible to investigate the aggregate effect of these variants, for

example Purcell et al. [22] showed a large number of SNPs (with p

values up to 0.5) from a schizophrenia GWAS demonstrate

predictive power collectively. It will be much harder to estimate

the number of variants making up this combined effect as the Vg of

each variant is probably tiny. For instance, it may be difficult to

distinguish between 100 variants having an average Vg of 0.01%

versus 10 variants having an average Vg of 0.1%.

In conclusion, we have developed a novel statistical approach to

estimate the number of susceptibility variants in the genome. The

performance of different proposed estimators were tested by

simulations and applied to some real data examples. Despite the

limitations, we believe this study is a useful step towards the

understanding of the genetic architecture of complex diseases.
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