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Abstract—The sequential partial update LMS (S-LMS)-based 
algorithms are efficient adaptive filtering algorithms for 
reducing the high arithmetic complexity in acoustic and related 
applications. A limitation of the algorithms is the degraded 
convergence speed. In this paper, a new family of sequential 
partial update switch-mode noise-constrained NLMS (S-SNC-
NLMS) algorithms is proposed. These algorithms use a new 
variable step-size (VSS) method to increase the convergence 
speed of the traditional partial update algorithms while 
achieving the same steady-state excess mean square error 
(EMSE). It employs a maximum step-size to improve the initial 
convergence and exploits the prior knowledge of the additive 
noise variance as in the noise-constrained (NC) approach near 
convergence. The mean and mean square convergence behaviors 
of these new switch mode algorithms are studied to characterize 
its convergence condition and steady-state EMSE. Based on the 
theoretical results, an automatic threshold selection method for 
mode switching is also developed. Computer simulations are 
conducted to verify the theoretical results and effectiveness of 
the proposed algorithms. 

I. INTRODUCTION 

Adaptive filters are frequently employed in applications 
such as system identification and related problems, in which 
the statistics of the underlying signals are either unknown a 
priori, or slowly-varying. The well known least mean square 
(LMS) [1] algorithm and normalized LMS (NLMS) algorithm 
[2] are widely used in these fields due to their numerical 
stability and computational simplicity. However, they can 
become computationally demanding for some applications 
such as acoustic signal processing, where high-order adaptive 
filters are usually needed. To solve this problem, many 
techniques have been proposed to reduce their computational 
complexity. The partial update (PU) algorithms [3], [4], 
which update a portion of the filter coefficients at each 
iteration, is attractive for hardware implementation at the cost 
of reduced convergence rate. On the other hand, an efficient 
technique to increase the convergence speed with only a 
modest increase in complexity is to employ a variable step-
size (VSS). The VSS algorithms aim to employ large step-
sizes to speed up the convergence rate initially and gradually 
decrease the step-size in order to achieve a low excess mean 
square error (EMSE). This is often accomplished by varying 
the step-size values according to a certain measure of the 
convergence status [5-9]. 

In this paper, a new family of sequential partial update 
switch-mode noise-constrained NLMS (S-SNC-NLMS) 
algorithm is proposed. It exploits prior knowledge of the 

additive noise variance as in the NCLMS approach [7] to 
achieve simultaneously fast convergence speed and low 
steady-state error. The mean convergence behavior of the 
proposed algorithm is investigated and it suggests that 
improved performance can be obtained if the maximum step-
size is employed at initial convergence and during tracking. 
On the other hand, the noise constrained (NC) adaptation is 
more suitable to be used near convergence to reduce the 
steady-state misadjustment. Hence, a new switch-mode 
adaptation scheme, which employs a maximum step-size 
mode (MSM) during initial convergence and tracking together 
with a noise-constrained mode (NCM) near convergence, is 
proposed to simultaneously improve the convergence speed 
and steady-state performance of the PU algorithms. The mean 
squares convergence behavior of this new S-SNC-NLMS 
algorithm is also studied so as to characterize its steady-state 
EMSE. Based on the theoretical results, a new and automatic 
threshold selection method for mode switching is developed. 
General recommendations for choosing other parameters are 
also proposed to facilitate engineers in applying this algorithm 
to achieve a desired EMSE or accuracy in practice. 
Simulation results show that the S-SNC-NLMS algorithm has 
better performance than other PU algorithms tested and the 
validity of the theoretical analysis is also verified. The 
concept is also applicable to other LMS-based algorithms. 

The rest of the paper is organized as follows: in Section II, 
the sequential PU algorithms are reviewed and the S-SNC-
NLMS algorithm is derived. In Section III, the mean and 
mean square convergence performance of the proposed 
algorithm are presented. In Section IV, simulation results and 
comparisons with other conventional algorithms are presented. 
Finally, conclusion is drawn in Section V. 

II. THE S-SNC-NLMS ALGORITHM 

A. Review of the S-NLMS Algorithm 
Consider the identification of a linear time-invariant (LTI) 

finite duration impulse response (FIR) system with an impulse 
response coefficient vector *w  with L taps by an adaptive 
filter with weight vector of the same length. The unknown 
system and adaptive filter are both excited by an input x(n). 
The measured output of the system is d(n), which is assumed 
to be corrupted by a zero-mean white Gaussian noise )(nη  
with variance 2

ησ . d(n) is applied to the desired input of the 
additive filter. Hence 
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)()(*)()( nnnd T η+= xw , (1) 
where TLnxnxnxn )]1(,),1(),([)( −−−= �x  is the input 
signal vector.  For the sake of presentation, we collectively 
call the conventional sequential PU (S-), the sequential block 
(SB-) and the stochastic partial update (SPU-) NLMS 
algorithms as the S-NLMS family of algorithms. The general 
update equations can be written as 
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where T
L nwnwnwn )](,),(),([)( 110 −= �w is the coefficient 

vector of the adaptive filter, μ  is a constant step-size 
parameter controlling the convergence rate and steady-state 
EMSE of the algorithm, ε  is a small positive value used to 
avoid division by zero, and )}(,),({diag)( 1 nsnsn L�=XS  is 
the selection matrix, where }1,0{)( ∈nsi , Li ,,2,1 �= . At 
time instant n, when )(nsi  is equal to one, the corresponding 
element )(nwi  in )(nw  will be updated. When ISX =)(n  is 
an identity matrix, (2) will reduce to the conventional NLMS 
algorithm. In the PU algorithms, )(nw  is divided into C non-
overlapping groups which are updated sequentially and C is 
called the decimation factor. Each column of )(nXS  contains 
P  ( CL /= ) equally spaced 1’s and 0’s elsewhere and 
consecutive columns are obtained shifting cyclically. Con-
sequently, only P coefficients need to be updated per iteration. 

B. The S-SNC-NLMS Algorithm 
It can be seen that the PU algorithms reduce considerably 

the computational complexity at the expense of a slower 
convergence speed. In order to compensate for the reduced 
convergence speed, we propose to adopt the following NC-
based variable step-size update [7] in the S-NLMS algorithms 

))(1()( nn γλαμ += , (4) 
))())((()()1( 22

2
1 nnenn λσβλλ η −−+=+   

 )(ˆ)()1( 2
1 nJn βλβ +−= , (5) 

where γβα ,,  are constant parameters and 22 )()(ˆ
ησ−= nenJ  

is the instantaneous EMSE. It can be seen that the variable 
step-size )(nμ  has large values when the algorithm is far 
from convergence in order to speed up the convergence rate 
since the convergence measure )(nJ  is comparatively large. 

)(nμ  is then gradually decreased to achieve a low steady-
state EMSE. 

As suggested in [7], after fixing the nominal step-size α , 
γ  should be chosen as a value as large as possible to obtain a 
fast convergence speed, while β  should be chosen as a small 
value to achieve a desired EMSE. However, the values of γ  
and α  are still constrained so that the step-size and hence the 
convergence speed will be significantly limited. From the 
mean convergence analysis, to be presented in Section III, we 

found that the mean weight error vector will converge faster if 
a maximum possible step-size is employed. On the other hand, 
the NC adaptation is very useful when the adaptive filter 
nearly converges to the designed steady-state EMSE. 

Because of the above observations and possible 
advantages, we propose below a novel switch-mode scheme 
for the variable step-size. It employs 
1)  the maximum step-size mode (MSM), where a designed 

maximum step-size maxμ  is employed to achieve a faster 
convergence speed during initial convergence or tracking, 
and 

2)  the noise constrained mode (NCM), where the step-size 
is adjusted as in the NC algorithms, shown in (4) and (5), 
to achieve the desired EMSE after the maximum step-size 
mode is nearly converged. 
Consequently, the corresponding updates for the step-size 

can be summarized by the following equations 
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�
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2/)(ˆ)()(1)1( nJnn βλβλ +−=+ , (7) 

2/)(ˆ)()1()1( nJnn βλβλ +−=+ , (8) 
where maxμ  is the designed maximum step-size. To switch 
between the two modes, we also employ the noise power 
estimate as in the NC algorithm to measure the convergence 
status. However, to achieve a fast switching response, a large 
value of β , denoted as β , is used to estimate a short-term 
EMSE )(nλ  as shown in (7). When )(nλ  is larger than a 
certain threshold T, the MSM is invoked. On the other hand, 
when )(nλ  is smaller than T, the adaptive filter is close to 
convergence and the NCM is invoked, where a small β  is 
used to estimate a long-term EMSE )(nλ  as shown in (8) to 
reduce the estimation variance. The value of )(nλ immediately 
after mode switching is obtained from )(nλ . Eqns. (2), (3) 
and (6)-(8) constitute the S-SNC-NLMS algorithm. 

In cases of noise variance mismatch, the true noise variance 
in (7) and (8) has to be replaced by 22ˆ ηη σσ a=  where a is the 
mismatch factor. 

As mentioned earlier, the key issue with the switch-mode 
approach is the proper selection of the switching threshold T 
between the two modes and the other related parameters. In 
this paper, a novel threshold parameter selection scheme is 
proposed based on the theoretical analysis proposed recently 
for the NLMS algorithm in Gaussian noise [10] by the authors. 
The selection of related parameters will also be discussed 
shortly after the performance analysis in the next section. 

III. PERFORMANCE ANALYSIS 

In this section, we analyze the convergence performance 
of the proposed S-SNC-NLMS algorithm. The following 
assumptions are made: 
(A1)  the step-size )(nμ  is independent of the input and error 
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sequence; 
(A2)  the additive noise { )(nη } is white Gaussian-distributed 
with zero-mean and variance 2

ησ , which is uncorrelated with 
the input signal { )(nx }; 
(A3)  the weight vector )(nw  is independent of { )(nx } and 
{ )(nη } (the independent assumption);  
(A4)  { )(nx } is an independent identically distributed (i.i.d) 
Gaussian random sequence with zero-mean and covariance 
matrix xxR . 

(A1) is an approximation commonly used in most analysis 
of VSS LMS algorithms to make it mathematical tractable. 
(A3) is the independence assumption, which is also 
commonly used in analyzing the LMS family of algorithms. It 
is quite accurate for small to medium step sizes. 

A. Mean Convergence Analysis 
First, let the weight error vector at time n be )()( nn wv =  
*w− . By using (2), (3), (6)-(8)  and the assumptions above, 

the evolution equations of the mean weight error vector, mean 
step-size and mean multiplier )]([ nE λ  can be derived as 

)]()([)]([)]([)]1([ nneEnEnEnE xvv μ−=+   
                 )]([))]([( nEnE vRI xxμ−= , (9) 

)])([1()]([ nEnE λγαμ += , (10) 
)(][)1(]1[ nJnEnE bβλβλ +)(−=)+( , (11) 

where ]|))()(/()()()([},{ vxxxxSR x nnnnnE TT
Xxx += εη  with 

][},{ ⋅ηxE  denoting the expectation over the sequences { )(nx , 
)(nη } conditioned on )(nv . It has been shown in [11] that 

T
Cxx UDUR ΛΛ= 1 , where TUUΛ  is the eigendecomposition of 

xxR  for some orthogonal matrix U , and diagonal matrix Λ  
containing the eigenvalues of xxR , and ΛD is a diagonal matrix 
with its i-th diagonal element given by the generalized 
Abelian integral [10]: ])12()[exp()( 0 1

2/1� ∏ +−=Λ ∞
=

−L
k kiI βλβε   

ββλ di
1)12( −+⋅ . For notational convenience, let 1−= ab , 

and 22 −=−= ηη σσ bnJaneEnJb )()]([)( 2 , where =)(nJ  
2− ησ)]([ 2 neE . When 0=b , there is perfect knowledge of the 

variance of channel noise, i.e. no noise mismatch exists, and 
)](ˆ[)()( nJEnJnJb == . 

We shall only focus on the NC adaptation mode, as the 
maximum step-size mode is equivalent to the S-NLMS 
algorithms running at a fixed maximum step-size. The latter 
can be obtained by assuming )(nμ  to be a constant and the 
details can be found in [12]. 

Based on (9) and expressing the weight error )(nv  in the 
canonical coordinate, )()( nn TvUV = , we get the following 
difference equation for the i-th element of )]([ nE V  

iiiCi nEInEnE )]([))()]([1()]([ 1 VV Λ−= λμ , (12) 
where iλ  is the i-th eigenvalue of xxR . Note, the convergence 

rate is slowed down by a factor of C due to the decimation.  It 
can be seen that the mean weight vector of the adaptive filter 
will converge to the true value if 

)(/2))]([0 Λ<< ii ICnE λμ . (13) 
In other words, the maximum step-size can be increased 

by a factor of C to achieve the same convergence rate as the 
full update (FU) algorithm for damping down the mean error.  
If )(nμ  is fixed as in the fixed step-size PU algorithms, the 
steady-state EMSE will be significantly increased. On the 
other hand, the use of VSS allows us to achieve both a fast 
initial convergence speed and a low EMSE. 

B. Mean Square Convergence Analysis 
To evaluate the mean square behavior, multiplying )(nv  

by its transpose and taking expectation on both sides, one gets 
a difference equation of the weight error covariance matrix 

)]()([)( nnEn Tvv� =  as follows 

xxxx R��R�� )()]([)()]([)()1( 11 nnEnnEnn CC μμ −−=+  
           ]~[)]([ 3}{

2 svEnE μ+ , (14) 

where
]|))()(/()()()()()([~ 22

},{3 vxxSxxSs XXx nnnnnnneE TT += εη . 
Using a similar approach as in [11] to evaluate 3

~s  yields [12] 
)(~

3
1

3 Ω= �ss C , (15) 
where ]|))()(/()()()([ 22

},{3 vxxxxs x nnnnneE TT += εη , “ � ” 
is the element-wise product of matrices, and Ω  is a L×L 
matrix with L2/C elements equal to 1 and zero otherwise.  For 
example, in S-LMS/NLMS algorithms [11], ),( / I1 ⊗=Ω CL  
where “ ⊗ ” is the Kronecker product, CL /1 is a )/()/( CLCL ×  
matrix with all entries equal to 1 and I is a CC × identity 
matrix. 

The expectation 3s  can be evaluated to be [12] 
][ 3,21}{3 IIs += vE , (16) 

where � �= ∞ ∞
0 1221 1

)(2 β βββγ ddTBBvvI  and � �= ∞ ∞
0

2
23,2 1
)(β σβγ eI  

12 ββ ddB⋅  with ∏ +−= =
−L

i i1
2/1)12()exp()( αβλβεβγ , =B  

11)2( −−+ xxRIαβ  and 22
ησσ += BvvT

e . 1I  can be integrated as 
T

v EE UDUI ][][ 11}{ = , where ΛΛΛ= )]())([(2][ 1 IUU�D �TnE , 

)()]([ , Λ=Λ ijji II , =Λ)(ijI ])12()[exp(0 1
2/1

� ∏ +−∞
=

−L
k kβλβεβ  

ββλβλ dji
11 )12()12( −− ++⋅ . On the other hand, note that 

2
}{

2
}{ ][][ ησσ += Bvvvv

T
e EE  is upper bounded by ][}{ vRvv xx

TE  

)]([)( 222 neEne ==+ σση , which is the MSE at time instant n. 
Thus T

ev nE UD'UI )()(][ 2
3,2}{ ΛΛ≈ σ , where )(Λ′D  is a 

diagonal matrix with the i-th diagonal element give by 
=Λ′ )(iI ββλβλβεβ di

L
k k

1
0 1

2/1 )12]()12()[exp( −∞
=

− +� ∏ +− . 
Using T

�Cxx UDUR Λ= 1  and the above approximation, Eqn. 
(14) can be simplified to 

)()]([)()1( 1 nnEnn T
C �UDU�� ΛΛ−≈+ μ   
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C nnE UDU� ΛΛ− )()]([1 μ   

           TT
C nnE UIUU�U ΛΛΛ+ )]())([(2)]{([ 21 �μ   

      ΩΛΛ+ �)})()((2 T
e n UD'Uσ . (17) 

By pre- and post-multiplying (17) by TU  and U , 
respectively, it can be further simplified to 
 )()]([)()1( 1 nnEnn C �D�� ΛΛ−≈+ μ   

ΛΛ− D� )()]([1 nnEC μ   
TT

C nnE UI�UU ΛΛΛ+ ))()((2{[)]([ 21 �μ   
UUD'U })])()((2 ΩΛΛ+ �T

e nσ . (18) 
It can be shown that a sufficient condition for 

convergence is 
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2

)]([
)]([
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2
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−
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 (19) 
To evaluate the steady-state EMSE, )]([ 2 nE μ and )]([ 2 nE λ  

are evaluated from (10) and (11) as follows 
)])([)]([21()]([ 222 nEnEnE λλαμ ++= , (20) 

)()](([)1()]([)1()]1([ 222 nJnEnEnE λββλβλ −+−=+  

)2
ησb− ))(]))()([(( 4

2
2

1
4

4

2

ηη
β σσ bnJbnnE T +++ xv , (21) 

where )2(21 bb −= and 2
2 )1(1 bb ++= . With the use of MSM 

and the switching threshold, it can be shown that condition 
(20) is satisfied if γ is appropriately bounded, which is easy 
to be satisfied in practice.  Due to page limitation, the details 
will be reported elsewhere.  Under this circumstance, )]([ 2 nE λ  
converges and using (9), (20) and (21), the limiting value of 

)]([ 2 nE μ  is 
)])([)]([21()]([ 222 ∞+∞+=∞ λλαμ EEE , (22) 

)()()]([ 4
2*

2
1)2(4

22
*)2(2

)1(2
ηηβ

β
ηβ

β σσσλ bJbbJE ++−≈∞ −−
− . (23) 

where ))(())((* ∞Λ=∞= ��Rxx TrTrJ is the steady-state 
EMSE. 

Consequently, at the steady state, Eqn. (18) reduces to the 
following cubic equation by ignoring 1I , since from the 
numerical results 1I  is much smaller than 3,2I  

*
2

* )2/)(1(2 JbJ ησγ −+   

�LMS
2

*
2
*2*10 ))(( φσα η+++= JJAJAA , (24) 

where ))(( '1
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Λ DDTrφ  , )1( 4
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γ(1 =A )2
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)1(42 1
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ββ σγ −
−−+ bb , and )2(2

)1(
2

2

β
βγ

−
−=A . From (24), it 

follows that 
*NLMS0

2
12

12
2 ))(1( JAAb φσασ ηη
γ +−−  

3
*NLMS2

2
*NLMS1

2
22

1
2 ))(( JAJAA φαφσα η
γ −+−+  

NLMS
2

0 φσα ηA= . (25) 
Assuming *J  is small, which is the usual case for VSS 

algorithms, the terms involving 2
*J  and 3

*J  can be dropped to 
obtain a good approximation of *J  as 

NLMS0
2

12
12

2

NLMS
2

02
1

* )(1 φσασ
φσα

ηη
γ

η

AA
A

J
b +−−

≈ )(1NLMS
2

2
1 δφαση +≈ , (26) 

where )1/()1( 2
2
12

2
1

0 ηη σγσγδ bbA −−+= . It can be seen that the 
steady-state EMSE of the PU algorithms is approximately 
identical to that of the FU NC-NLMS algorithm [9]. 

To prevent (26) from being unbound when the 
denominator is equal to zero, we get the following 
approximated condition on the maximum possible nominal 
step-size for mean squares convergence 

max
NLMS

2
10

2

)(
2

α
φσ

σγ
α

η

η ≡
+

−
<

AA
b . (27) 

C. Switching Threshold and Parameter Selection 
1) Selection of T: From [10], the steady-state EMSE of the 

NLMS is approximately given by NLMS
2

2
1 φμση . It can be 

shown that for small step-size the S-NLMS has a similar 
EMSE as the NLMS algorithm [12] and hence its EMSE is 
also  approximately  NLMS

2
2
1 φμση .  In addition, when the 

MCM converges, 22 )])([()]([)](var[ ∞−∞=∞ λλλ EE  
4

max_maxmax8
1

)2(2 )1)1(( ηβ
β σμμ +−= − ff cc  with b=0 and 

NLMSφ=fc . Assuming  )(∞λ  is Gaussian distributed, T can 
be chosen as the “κ σ ” upper bound of )(∞λ , i.e. 

2
max_maxmax8

1
)2(2max4

1 ))1)1((( ηβ
β σμμκμ +−+= − fff cccT . κ can 

be adjusted experimentally and appropriate values are around 
4 to 5.  In practice, NLMSφ  is found to vary between 1 and 2.5, 
which can be employed if the eigenvalues of the input 
covariance matrix are unavailable.   

2) Choice of β  and β : Generally, we observe that the 
parameter )1( β−  (or )1( β− ) acts as a forgetting factor and 
controls the averaging process of the instantaneous MSE. The 
best value of β  (or β ) depends mildly on the convergence 
speed and hence on the correlation of the input signal. For 
white (colored) input signals, the convergence rate of the 
algorithm is faster (slower). Consequently, a larger (smaller) 
value of β can be chosen for white (colored) input signals. 
For MSM, the convergence speed is usually fast. Thus, a 
larger β  should be used.  

 3) Choice of α , δ  and γ : According to (26), the product 
of α  and )(1 δ+  is fixed for a desired EMSE. Since α  
contributes more to the convergence speed during the noise-
constrained mode, it is advantageous to increase α  and 
decrease δ . A typical value of δ  is 0.1. Finally, γ  can be 
computed from the definition of δ  in (26). If 2

ησ  is not 
exactly known, we recommend to use the upper bound of 

2
max_ησ  in (26) to compute a conservative γ . 

IV. SIMULATION RESULTS 

In this section, computer simulations are conducted to 
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evaluate the convergence behavior of the proposed algorithm 
and verify the analytical results obtained in section III. As a 
comparison, we also consider the NLMS and NCLMS [7] 
algorithms and their PU counterparts. For simplicity, we only 
focus on the sequential PU algorithm [11], where the i-th 
diagonal element of the selection matrix is shifted as follows: 

1)( =nsi  if 0mod)( =+ Cin , or 0)( =nsi  otherwise. To 
investigate the effect of the decimation factor, C is chosen to 
be 1 and 5. Note when C=1, the algorithms actually 
correspond to their respective conventional FU algorithms. 

All simulations below are performed using the system 
identification model and the unknown system to be estimated 
is an L-order (L=15) FIR filter. Different signal-to-noise ratios 
(SNRs) at the system output (SNR = 0 dB, 20 dB and 40 dB) 
are used to examine the performance of the parameter 
selection scheme proposed in IIIC. In all the simulations, the 
parameters for deciding the switching threshold of the S-
SNC-NLMS are chosen as 5=κ  and NLMSφ=fc . The 

maximum step-size used is 1max =μ . All results are obtained 
by averaging over 300 independent runs. 

A. Experiment 1: White Gaussian (WG) Input 
The input signal { )(nx } is a zero-mean white Gaussian- 

distributed process with IRxx = . In order to achieve a similar 
steady-state EMSE for all the algorithms to be compared, the 
input statistics is assumed to be known. The parameters of 
NCLMS algorithm are chosen in a trial and error manner to 
obtain its best performance, while for the S-NLMS and S-
SNC-NLMS algorithms, their parameters are respectively 

chosen according to the theoretical analyses in [10] and 
Section IIIC. The corresponding parameters are summarized 
in Table I. The learning curves of EMSE for various 
algorithms are shown in Figs. 1(a), (b), and (c). It can be seen 
that the S-NLMS and S-NCLMS algorithms with C=5 
converge at a relatively lower rates, as compared with C=1. 
The S-SNC-NLMS algorithm with C=5, however, speed up 
the convergence speed more significantly over other 
algorithms as the SNR increases. Also, it can be seen from 
Fig. 1 that the estimated steady-state EMSE of the S-SNC-
NLMS algorithm with C=5 agrees well with simulation 
results. 

B. Experiment 2: Colored Gaussian Input 
In this experiment, the following first order autoregressive 

(AR) process is employed as the input: )1(5.0)( −= nxnx  
)(ng+ , where )(ng is a zero-mean white Gaussian noise with 

variance 2.02 =gσ . The algorithm parameters are selected in 
a similar manner as in experiment 1 and they are summarized 
in Table I. The learning curves of EMSE are shown in Figs. 
1(d), (e), and (f). It can be seen that the estimated steady-state 
EMSE of the S-SNC-NLMS algorithm (C=5) agrees well with 
simulations. Moreover, it can be seen that the convergence 
speed of the S-SNC-NLMS algorithm with C=5 is generally 
much faster than other PU algorithms except in Fig. 1(d), 
where the S-NCLMS algorithm with C=5 has a slightly faster 
convergence rate. It should be noted that the optimal selection 
of the parameters in the S-NCLMS algorithm requires 
considerable human intervention so that the improved 
performance for AR inputs at low SNR may not be realized in 
practice, especially when the input statistic is unknown.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)

 
(f) 

Fig. 1  Learning curves of EMSE for the time-invariant channel identification problem with white Gaussian input in experiment 1 at SNR = (a) 0dB (b) 20dB (c) 
40dB, and with first-order AR input in experiment 2 at SNR= (d) 0dB (e) 20dB (f) 40dB. 
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Nevertheless, according to extensive computer simulations, 
the proposed S-SNC-NLMS algorithm together with 
parameter selection rules described in Section IIIC always 
outperforms other algorithms for medium and high SNRs. 
Simulation results with longer filter lengths also show the 
effectiveness of the parameter selection rules. However, they 
are not presented here for simplicity. 

V. CONCLUSION 

A new family of S-SNC-NLMS algorithm is proposed. It 
accelerates the convergence speed significantly at the expense 
of moderately increased complexity. The mean and mean 
square convergence analysis is developed. The effectiveness 
of the proposed algorithm and its theoretical analysis is 
verified by computer simulations as presented in Section IV. 
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TABLE I 
PARAMETERS OF THE FU AND PU ADAPTIVE ALGORITHMS  

IN EXPERIMENTS 1 AND 2 

Algorithms Parameters 
Set SNR=0 SNR=20 SNR=40 

S-
NLMS 

WG :μ   0.026 0.026 0.026 
AR  0.025 0.025 0.025 

S-
NCLMS 

WG 

)01.0(
:
:

=β
γ
α

 
0.0017 
1 

0.002 
20 

0.002 
25 

AR 0.0017 
0.4 

0.002 
10 

0.002 
15 

S-SNC-
NLMS 

WG 

)1.0(
:
:
:

=β
γ
β
α

 

0.026 
0.03 
0.14 

0.026 
0.03 
14 

0.026 
0.03 
1400 

AR 
0.025 
0.01 
0.27 

0.025 
0.01 
27 

0.025 
0.01 

  2700 
WG: White Gaussian; AR: 1st  Order Autoregressive 

 

440


