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Abstract—Dynamic task allocation is among the most difficult 
issues in multi-robot coordination, although it is imperative for 
a multitude of applications. Auction-based approaches are 
popular methods that allocate tasks to robots by assembling 
team information at a single location to make practicable 
decisions. However, a main deficiency of auction-based methods 
is that robots generally do not have sufficient information to 
estimate reliable bids to perform tasks, particularly in dynamic 
environments. While some techniques have been developed to 
improve bidding, they are mostly open-looped without 
feed-back adjustments to tune the bid prices for subsequent 
tasks of the same type.  Robots’ bids, if not assessed and 
adjusted accordingly, may not be trustworthy and would indeed 
impede team performance. To address this issue, we propose a 
closed-loop bid adjustment mechanism for auction-based 
multi-robot task allocation, with an aim to evaluate and 
improve robots’ bids, and hence enhance the overall team 
performance. 
 
Each robot in a team maintains and uses its own track record as 
closed-loop feedback information to adjust and improve its bid 
prices. After a robot has completed a task, it assesses and 
records its performance to reflect the discrepancy between the 
bid price and the actual cost of the task.  Such performance 
records, with time-discounting factors, are taken into account to 
damp out fluctuations of bid prices. Adopting this adjustment 
mechanism, a task would be more likely allocated to a 
competent robot that submits a more accurate bid price, and 
hence improve the overall team performance.  Simulation of 
task allocation of free-range automated guided vehicles serving 
at a container terminal is presented to demonstrate the 
effectiveness of the adjustment mechanism. 
 
 
Index Terms—Multi-robot, task allocation, auction, bid 
adjustment, dynamic environments  
 
 

I. INTRODUCTION 

Multi-robot task allocation addresses the problem of how to 
assign tasks to the corresponding robots while achieving the 
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specific objectives of team performance.  Research in this 
field dates back to the late 1980s.  Task allocation of multiple 
autonomous robots in dynamic environments is core to 
multi-robot control for a number of real world applications, 
such as military [1], transport services [2], search and rescue 
[3], etc.  

  
The working environments of task allocation can be static or 
dynamic [4].  Static task allocation assumes completely 
known information about the environment, such as the 
number of tasks and robots, the arrival time of tasks, and the 
process of task execution.  Traditionally, applications in 
multi-robot domains have largely remained in static 
scenarios, with an aim to minimise a cost function, such as 
total path length, or execution time of the team.  Obviously, 
static approaches cannot adapt to changes in a dynamic and 
uncertain working environment.  Dynamic task allocation, on 
the other hand, makes decisions based on real-time 
information and is therefore more adaptive to changes.  This 
paper assumes a set of dynamically released tasks to be 
completed by a team of robots, and the conditions of the work 
process keep changing during task execution. This kind of 
dynamic working environment is ubiquitous in real-life 
applications, such as exploring and mapping by robots in an 
unknown environment, unexpected adversarial targets in a 
combat, stochastic pickup and delivery transport services, 
etc. [5]. 
 
According to the taxonomy of Gerkey and Mataric [6], 
multi-robot task allocation problems can be classified along 
three dimensions.  In the dimension of robot, it can be a 
single-task robot or a multi-task one.  A single-task robot is 
capable of executing exactly one task at a time, while a 
multi-task robot can handle more than one task 
simultaneously.  In the dimension of task, it can be a 
single-robot task or a multi-robot task.  A single-robot task 
requires only one robot to execute it, while a multi-robot task 
requires more than one robot to work on it at the same time.  
In terms of planning horizon, task allocation can be 
instantaneous assignment and time-extended assignment.  
Instantaneous assignment only considers the tasks currently 
available.  Time-extended assignment elaborates the effect 
of current assignment on future assignment, involving task 
dependency and schedule.  Instantaneous assignment is 
commonly used since it needs less computation on task 
sequencing algorithms, and is particularly practicable in 
dynamic situations where tasks are randomly released [7].  
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The task allocation problem in this paper is restricted as a 
single-task robot, single-robot task, and instantaneous 
assignment. 
 
The problem of multi-robot task allocation is typically 
NP-hard.  The challenges become even more complicated 
when considering operations in dynamic and uncertain 
environments, such as unexpected interference between 
robots, stochastic task requests, inconsistent information, and 
various component failures [4].  In these cases, it is not worth 
spending time and resources to secure an optimal solution, if 
that solution keeps changing as operations go on.  Also, if 
there are time-window constraints, there may not be enough 
time to compute an exact and global solution.  The basic 
objective of a multi-robot task allocation problem is to have 
tractable planning that produces efficient and practicable 
solutions.  Auction-based, or market-based, approaches 
manage this by assembling team information at a single 
location to make decisions about assigning tasks over the 
team to produce practicable solutions quickly and concisely 
[5].  
 
In an auction, a set of tasks are offered by an auctioneer in the 
announcement phase, and the robot bidders submit offers to 
the auctioneer.  Once all bids are received or a pre-specified 
deadline has passed, the auction is cleared.  In the winner 
determination phase, the auctioneer decides which robot wins 
which task.  This paper considers the case of cost 
minimisation in that an auctioned task is awarded to a robot 
offering the lowest bid price.  A simple yet commonly used 
kind of auction is single-item auction in which only one task 
is offered at a time [8].  On the other hand, combinatorial 
auctions are more complex in that multiple tasks are offered 
and each participant can bid on any combination of these 
tasks.  Since there are an exponential number of 
combinations to consider, auction administration such as bid 
valuation, communication, and auction clearing would soon 
become intractable [5].  Sequential single-item auction is a 
practicable approach when tasks are dynamically released, 
and is adopted in this paper.   
 
The earliest example of auction-based multi-robot 
coordination appeared about thirty years ago, called contract 
net protocol [9].  Auction-based multi-robot coordination 
approaches have been growing in popularity in recent years. 
They have been successfully implemented in a variety of 
domains, such as robotic transport [10], mapping and 
exploration [11], house cleaning [12], and reconnaissance 
[13].  Auction-based approaches are preferable in on-line 
applications, in that they can quickly and concisely assemble 
team information at a single location to make decisions, 
significantly reducing the combinatorial nature of task 
assignment problems.  The solution quality, although not 
optimal, is guaranteed in most cases.  Auction-based 
approaches are suitable for dynamic and uncertain 
applications since they can accommodate new information 
through frequent auction of tasks [4]. 
 
However, some issues of auction-based task allocation have 
yet to be further investigated [5]. Firstly, a clear conceptual 
understanding of auction-based coordination approaches is 
needed.  Further works should be devoted to studying how 
components, such as performance assessment mechanism, 

bidding strategy, and auction clearing mechanism, can be 
implemented effectively in different multi-robot applications.  
Secondly, the fundamental premise of success in an auction 
relies on the ability of individual robots to make reasonable 
cost estimation and submit acceptably accurate bid prices.  
However, robots generally do not have sufficient information 
for reliable cost calculation, which requires an accurate 
model of the environment and computation-expensive 
operations.  Thus, heuristics and approximation algorithms 
are commonly used, such as the first-come-first-served and 
the shortest-distance-first.  Some progress has been made to 
improve the accuracy of bid price.  In the work of [14], two 
physical robots executed distributed sensing tasks in a 
cell-based map.  Path costs were estimated using the D* path 
planning algorithm with optimistic cost of unknown 
map-cells. It was demonstrated that auction-based 
approaches could improve team efficiency if cost estimation 
considered the environmental and mission characteristics.  
Duvallet and Stentz [15] applied an imitation learning 
technique to bias the bid prices in auctions to make better 
solutions.  Two simulated scenarios were presented to 
demonstrate applicability of this technique, including three 
fire-fighting agents putting out fires in buildings, and eight 
players in an adversarial game trying to score more points 
than their opponents.  This approach needed a considerable 
amount of training samples and time to reach a reasonable 
solution, and the learning rate should be skilfully tuned. 
 
Nevertheless, the above-mentioned approaches to improving 
cost estimation, like most of the current auction-based 
methods, are open-looped. They cannot assess whether a 
bidder has kept its commitment to a task or not, because they 
do not have a mechanism to evaluate the bidder’s 
performance after winning the task.  Human bidders are 
self-interested in auctions, and would sometimes deliberately 
offer over-optimistic bid prices.  Robots, on the other hand, 
are assumed to be honest in estimating the costs before 
offering the bid prices.  However, there are often 
discrepancies between the bid prices and the actual costs in 
real-life applications, particularly in dynamic working 
environments.  Discrepancies between the bid prices and the 
actual costs are usually caused by the uncertainties of a 
dynamic environment, such as unexpected task requests, 
changing traffic conditions, communication delay, 
inconsistent information, and stochastic component failures 
[4]. Unfortunately, these uncertainties are difficult to 
explicitly model in advance. By submitting either 
over-estimated or under-estimated bids, robots may not be 
able to deliver on their task promises. As a result, the overall 
team performance would be significantly hampered. 
 
This paper therefore presents a closed-loop bid adjustment 
mechanism for auction-based multi-robot task allocation, 
with which a robot can evaluate and improve its bids, and 
hence enhance the overall team performance. Each of the 
robots maintains and uses its own track record as closed-loop 
feedback information to adjust and improve its bid prices. 
After a robot has completed a task, it assesses and records its 
performance to reflect the discrepancy between the bid price 
and the actual cost of the task.  Such performance records, 
with time-discounting factors, are taken into account to damp 
out fluctuations of bid prices. As such, tasks are likely 
allocated to competent robots that offer more accurate bids, 
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resulting in significant improvement in the overall team 
performance.   
 
Section 2 introduces the details of the proposed bid 
adjustment mechanism in auctions. Section 3 presents its 
implementation in a task allocation algorithm for simulation 
of free-range automated guided vehicles serving at a 
container terminal to demonstrate the effectiveness of the 
adjustment mechanism.  Section 4 draws conclusion and 
discusses some future work. 
 

II. THE CLOSED-LOOP BID ADJUSTMENT MECHANISM 

This paper restricts task allocation to a single-task robot, 
single-robot task, and instantaneous assignment problem. 
Hence, we adopt sequential single-item auction for situations 
where tasks are dynamically released and not known in 
advance.  
 
Fig. 1 shows the task auction architecture.  During operation, 
different types of stochastic tasks may appear for auction.  A 
central processor is the auctioneer that auctions the tasks one 
by one.  Idle robots bid for a task being auctioned, and the 
one that submitted the lowest bid price wins the task.   

 
Each of the robots maintains an array of records of different 
types of tasks it has ever executed. After a robot has 
completed a specific type of task, it evaluates its own 
performance and records a reward or a penalty accordingly. 
This track record facilitates adjustment of the bid price that 
the robot in question will subsequently submit for another 
task of the same type.  Fig. 2 shows a block diagram of this 
bid adjustment mechanism. 
 
 
  
 
 
 
 
 

Fig. 2.  The closed-loop bid adjustment mechanism 
 

The algorithm of the adjustment mechanism is presented as 
follows.  For a specific type of tasks, we denote kActual  as 

the k th record of actual cost, and kBid as the k th record of bid 

price. Adjustments are in the form of either rewards or 
penalties: 
 

k k kAdjust Actual Bid  ………………..(1) 

 

kAdjust  is a penalty when positive, and a reward when 

negative.  When a robot bids for a next task of the same type, 
it first estimates the cost, and then tunes the bid price based 
on the previous adjustment: 
 

1 1k k kBid Cost Adjust   ……………….(2) 

 
where 1kCost   is the (k+1) th estimated cost, which can be 

acquired by other heuristics or approximation methods. 
  
To damp out huge fluctuations and to reflect more reliable 
estimations, a series of previous adjustments should be taken 
into account.  Moreover, since the working environment is 
dynamically changing, older track records are deemed 
relatively obsolete as time elapses. Hence, a time-discounting 
factor , where 0< <1, is introduced to weigh the track 
records.  The averaged bid adjustment is: 
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In practice, the latest three terms are sufficient for adjustment 
of the bid price.  The complete form of the proposed bid 
adjustment mechanism is given in equation (3). 
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The task being auctioned is therefore assigned to the robot 
that submitted the lowest adjusted bid price, based on 
equation (3). As such, this closed-loop adjustment 
mechanism can improve bidding accuracy, considerably 
enhancing the overall team performance. 
 

III. IMPLEMENTATION AND CASE STUDY 

The adjustment mechanism is incorporated with a 
multi-robot task allocation algorithm in a simulator 
developed to validate dynamic motion planning of a fleet of 
range free-range automated guided vehicles serving at a 
container terminal.  For the approach to motion planning, 
readers are referred to [16]. 

 

This simulator is developed in the Player/Stage [17] and C++ 
programming language.  The Player/Stage is an open-source 
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package widely used for multi-robot control and simulation. 
It runs in a Linux-based operating system called Fedora 13, 
and consists of two sub-packages, namely Player, and Stage.  
Player provides a network interface to a variety of physical 
robots and sensors.  Player's client/server model allows robot 
control programs to be written in a number of programming 
languages and to run on any computer with a network 
connection to physical robots. Control program 
communicates with Player over TCP sockets, reads data 
from sensors, and writes commands to actuators.  Stage is a 
Player plug-in simulation package which simulates a 
population of mobile robots moving and sensing in a 2D 
bitmapped environment.  Various sensor models are 
provided, including sonars, laser rangefinders, pan-tilt-zoom 
cameras and odometers.  Virtual devices of Stage present a 
standard Player interface, and hence few or no changes are 
required to move between simulation and hardware. 
Controllers designed in Stage have been demonstrated to 
work on various physical robots.   

 
An automated guided vehicle (AGV), with autonomous 
control and sensing devices, can be regarded as an 
autonomous robot.  A team of AGVs at a container terminal 
transporting containers from the quay-side to the yard-side is 
used to verify the practicability of the proposed task 
allocation approach, as shown in Fig. 3.  There are two 
vessels berthed at the quay-side.  Each vessel is served by 
five quay cranes which unload the containers from the 
vessels.  Small rectangles in black represent containers.  
Containers beside the vessel are ready to be picked up, while 
those being handled by the quay cranes are not shown in the 
figure.  Racks at the quay-side are labelled as 1, 2, …, 10, 
while racks at the yard-side are labelled as A, B, …, J.  The 
AGVs are transporting containers from the quay-side to the 
yard-side. 
 

 
Fig. 3.  Simulated working environment of free-range AGVs 

at a container terminal 
 
There are two possibilities for the transfer of a container from 
a quay crane to an AGV. The first possibility is that the quay 
crane places a container directly onto the AGV. The second 
one, which we adopt in this paper, is that the quay crane 
places a container onto a buffer rack, from which an AGV 
will later picks up the container and transports it to the yard 
side [18].  
 
Traditionally, most AGVs use fixed guide-paths, such as 
loops, and networks.  The fixed routing approaches allow for 
reliable automation of vehicles.  Such AGVs are however 
less manoeuvrable.  Routes are unnecessarily long, incurring 
considerable transportation time and low system throughput.  
Route segments are shared for multiple vehicles, leading to 

potential congestion and deadlocks.  With the advent of 
more powerful onboard processors and advanced sensors, it 
is now possible for AGVs to navigate without physical 
guide-paths. Some experimental systems have indeed been 
developed [19].  Preliminary simulation results showed that 
free-range routing was on average 19% shorter than 
traditional mesh-based routing, and 53% shorter than 
loop-based routing.  Huge potentials are therefore seen for 
free-range routing to improve transport capacities of AGV 
systems at container terminals. 
 
The AGVs work in an area of 600m × 150m.  Each AGV 
measures 12m × 4.5m × 1.5m and weighs 25 tonnes.  The 
maximum velocity and the maximum acceleration of an AGV 
are 1

max
7V ms-=  and 2

max
1a ms-= , respectively.  Inertial 

measurement units (IMU) and sonars are used in this paper.  
An IMU is a device that utilises measurement systems such 
as gyroscopes and accelerometers to estimate the relative 
position, velocity, and acceleration of a vehicle in motion 
[20].  Sonars are common range sensors in mobile robotics. 
The general principle is that the system emits sound pulses 
and picks up the echoes bounced off from objects in range, if 
any.  Knowing the transmission speed of sound in the 
medium and the time of flight, it is possible to compute the 
distance.  This method is widely used due to the low cost of 
sensors with adequate performance [21].  The sensing field of 
view is 180°, and the range of sonar scan R is derived as 
follows.  Consider an extreme case where two AGVs, 
heading directly towards each other without yaw steering, are 

braking from the maximum velocity 
max
V with the maximum 

acceleration
max
a .  According to kinematic 

equations: 2

max max

1

2 2

R
V t a t= - ,   and    max

max

V
t
a

= ,    R is 

derived as:    
2

max

max

V
R

a
=  

that is, R=49m, approximately four times the length of an 
AGV.  With a proper yawing angle, this sensing range can 
sufficiently safeguard motion safety. 
 
There are two major operational uncertainties for AGVs at 
container terminals, namely, dynamic task requirements, and 
uncertain traffic conditions.  Dynamic task requirements are 
mainly due to the variation of vessel arrival time, and the 
handling time of quay cranes.  Uncertain traffic conditions 
are mainly due to stochastic interferences between AGVs 
[22].  It is assumed that each AGV can only carry one 
container at a time, and obviously a container should only be 
transported by one AGV.  Whenever a container is put onto a 
rack from a quay crane, it is ready for auction.  This is a 
single-task robot, single-robot task, and instantaneous 
assignment problem.  Hence, this scenario of a team of 
decentralised free-range AGVs working at a dynamic 
container terminal is a good test-bed to validate the proposed 
bid adjustment mechanism for dynamic multi-robot task 
allocation. 
 
A specific type of tasks is described by the pick-up location 
and the destination of delivery, as T(n, x), where n specifies 

vessel vessel 

quay-side 1 2 3 4 5 6 7 8 9 10 
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the label of the pick-up location at quay-side (n=1, 2, …, 10), 
and x specifies the label of the destination at yard-side (x= A, 
B, …, J). For example, T(3, F) is a type of tasks requiring to 
transport containers from rack 3 at quay-side to rack F at 
yard-side.  The cost of a task in the simulation is the time 
consumed to travel and handle a container, which is in the 
unit of minutes.  When a container is up for auction, all idle 
AGVs bid for it. 
 
A simulation of ten AGVs to transport 300 containers was 
carried out.  Fig. 4 shows the track records of fifteen tasks of 
type T(3, F) ever performed by AGV*, which is at the left 
side of Fig. 3.  The time-discounting factor, α, was set to be 
0.5.  For the first time after AGV* executed a T(3, F) type of 
task, the adjustment was a penalty of about two minutes.  It 
meant that AGV* under-estimated the cost of the task and 
submitted a bid price which turned out to be much lower than 
the actual cost incurred afterwards.  With this penalty, AGV* 
adjusted the bid price for task type T(3, F).  It can be 
observed that the subsequent 2nd to 9th adjustments of this 
task type were within the accuracy of ±1 minute band. This 
verifies that, with the closed-loop bid adjustment mechanism 
in auctions, the discrepancies between the actual costs and 
the bid prices were effectively minimised. 
 

 
 

Fig. 4.  Adjustment records of task type T(3, F) 
performed by AGV* 

 
To verify the robustness of the proposed bid adjustment 
mechanism, the characteristic of task type T(3, F) was 
modified, for example, to transport lighter containers.  In this 
case, the actual cost of task fulfilment should be lower than 
before.  Nevertheless, the bidding AGVs still offered the 
previously adjusted bid prices.  Hence, a winning and 
dispatched AGV, like AGV*, was able to complete the task 
earlier than expected, and got a reward of about 2.3 minutes.  
With this reward, the AGV* adjusted the bidding price for 
task type T(3, F).  It can be noted that the subsequent 11th to 
15th adjustments were within the accuracy of ±1 minute band 
again.  It shows that the closed-loop bid adjustment 
mechanism can minimise the discrepancies between the 
bidding prices and the actual costs in a dynamic environment.   

 
Fig. 5 shows a comparison of the overall team performances 
of ten AGVs for transportation of 300 containers, with and 
without the bid adjustment mechanism. It can be seen the 
total operational time with bid adjustment is considerably 
shorter than without. With the proposed bid adjustment 
mechanism, the bidding accuracy was improved, and 
containers were allocated to competent AGVs that submitted 
more reliable bidding prices.  As a result, a significant 
improvement of 31% in overall team performance was 
achieved.  

 

  
Fig. 5.  Comparison of team performances, with and without 

bid adjustment  
 

IV. CONCLUSION AND FUTURE WORK 

This paper has presented an auction-based approach with 
closed-loop bid adjustment to dynamic task allocation in 
robot teams.  The bid adjustment mechanism tunes bid prices 
based on the performance track records of each robot in the 
team. Simulation results show that the bid adjustment 
mechanism can effectively minimise the discrepancy 
between the bid price and the actual cost of a task. This 
enhances the likelihood of allocating tasks to competent 
robots that are able to submit more accurate bids, and as a 
result, improves the overall team performance substantially. 
 
Despite the advance above, some issues of the auction-based 
task allocation approach are worthy of further study.  In 
particular, an allocated-but-not-yet-executed task cannot be 
re-auctioned even if the dispatched robot is locked in a heavy 
congestion or even fails.  Future work will be devoted to 
incorporating some other market-based mechanisms, like 
task trading between robots.  For example, it would be 
preferable if the locked robot can negotiate and trade its task 
to another robot which is more likely to fulfil the task, 
according to real-time working conditions.  Nevertheless, 
adopting such a trade-based approach would cost more local 
communication overheads between robots. Moreover, the 
overall performance of the team would need further 
investigation, in comparison with the proposed auction-based 
approach.  
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