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Abstract 13 

There is a known bias in C/N, δ13C and δ15N values of organic matter (OM) due to pre-14 

analysis acid treatment methods. We report here, for the first time, the results of a pre-15 

analysis acid treatment method comparison of measured C/N, δ13C and δ15N values in bulk 16 

OM from a sedimentary sequence of samples to illustrate this bias. Here we show that acid 17 

treatment significantly reduces the accuracy (between method biases) and precision (within 18 

method bias) of C/N, δ13C and δ15N values of OM, suggesting a differential response of 19 

sample OM between methods and sample horizons, and in some cases inefficient removal of 20 

inorganic carbon. We show that different methods can significantly influence environmental 21 

interpretation in some of our sample horizons (i.e. interpretation of aquatic vs. terrestrial OM 22 

source; C3 vs. C4 vegetation). Specifically, there are unpredictable and non-linear differences 23 

between methods for C/N values in the range of ~ 1 – 100; δ13C values in the range of 0.2 – 24 

6.8 ‰ and; δ15Nvalues in the range of 0.3 – 0.7 ‰. Importantly, these ranges are mostly 25 

much greater than the instrument precision (defined as the standard deviation of replicate 26 

analysis of standard reference materials; for this study, ± 0.5 for C/N values, ± 0.1 ‰ for 27 

δ13C values and; ± 0.1 ‰ for δ15N). The accuracy and precision of measured C/N, δ13C and 28 

δ15

 33 

N values of bulk OM is not just dependent upon environmental variability, but on acid pre-29 

treatment, residual inorganic carbon and organic matter state and composition. Collectively, 30 

this makes the correlation between samples prepared in different ways, including those from 31 

down core reconstructions, highly questionable. 32 
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1.1 Introduction 37 

Bulk organic matter (OM) in lacustrine sediments is a heterogeneous composition of organic 38 

materials derived from aquatic (e.g. phytoplankton; macrophytes) and terrestrial origins (e.g. 39 

trees; shrubs; grasses; animals; see reviews in Meyers and Ishiwatari, 1993; Meyers, 1997; 40 

Sharpe, 2007). A number of factors contribute to the structure and isotopic composition of 41 

OM in lake sediment: the contribution of C and N from different source end-members; the 42 

state and availability of C and N in the environment; carbon fixation pathways; lake 43 

productivity; pre- and post-burial diagenetic processes (aerobic and anaerobic); dissolved 44 

CO2 concentration, pCO2

 54 

, light, temperature, changes in palaeoenvironmental controls on 45 

OM C and N budget, and species composition (e.g. Stuiver, 1975; Meybeck, 1982; Hedges et 46 

al., 1986; Ehleringer and Monson, 1993; Hayes, 1993; Meyers and Ishiwatari, 1993; Meyers, 47 

1994, 1997; Ehleringer et al., 1997; Krishnamurthy et al., 1999; Turney, 1999; Lehmann et 48 

al., 2003; Lucke et al., 2003; Perdue and Kopribnjak, 2007). Prima facie, these factors make 49 

the evaluation of the palaeoenvironmental and palaeoclimatic influence on sedimentary OM 50 

difficult. However, the investigation of lake sediment sequences with highly resolved age-51 

depth models and high signal-to-noise ratios can still provide high amplitude 52 

palaeoenvironmental information (e.g. Lucke et al., 2003; Wei et al., 2010). 53 

Despite the complexity of these processes on sediment OM, weight ratios of elemental carbon 55 

to nitrogen (C/N), and stable isotope ratios of C and N (δ13C and δ15N) from bulk OM, have 56 

been widely used to interpret OM provenance (e.g. aquatic versus terrestrial source) and 57 

vegetation type (e.g. C3 versus C4

 67 

 plants; Meyers and Ishiwatari, 1993; Thornton and 58 

McManus, 1994; Meyers, 1997; Sampei and Matsumoto, 2001; Lamb et al., 2004, 2007; 59 

Street-Perrott et al., 2004; Wilson et al., 2005; Zong et al., 2006; Mackie et al., 2007). These 60 

proxies have subsequently underpinned palaeoenvironmental research and been used as a tool 61 

for understanding biogeochemical processes in a range of sedimentary sequences (Talbot and 62 

Johannessen, 1992; Street-Perrot et al., 1997; Holmes et al., 1997; Turney, 1999; Huang et al., 63 

2001; Fuhrmann et al., 2003; Lucke et al., 2003; Baker et al., 2005;  Lamb et al., 2007; Galy 64 

et al., 2008; Mampuku et al., 2008; Domingo et al., 2009; Langdon et al., 2010; Scholz et al., 65 

2010; Yu et al., 2010; Wei et al., 2010).  66 

In general, C/N ratios of OM tend to range from 3 – 9 (dominated by aquatic biomass; protein 68 

rich, lignin poor), 10 – 20 (admix of aquatics, including emergent aquatics, and terrestrial 69 

sources) and > 20 (dominated by terrestrial biomass; protein poor; lignin rich) (e.g. Meybeck, 70 



1982; Hedges et al., 1986; Tyson, 1995; Meyers, 1997; Sharpe, 2007). The δ13C of OM is 71 

broadly used as an indicator for carbon sources, productivity and photosynthetic pathways in 72 

plants. Values for land plants range from ≈ –6 to –35 ‰ (see overviews in Tyson, 1995; 73 

Meyers, 1997; Sharpe, 2007), and can differentiate between C3 plants (δ13C ≈ –22 to –35 ‰) 74 

and C4 plants (δ13C ≈ –6 to –15 ‰) in certain environments (e.g. estuaries, sea floors, lakes, 75 

soils; e.g. Smith and Epstein, 1971; O’Leary, 1988; Tyson, 1995; Meyers, 2003; Street-Perrot 76 

et al., 2004; Sharpe, 2007; Mampuku et al., 2008; Scholz et al., 2010). The δ13C of OM has 77 

also been used for a range of other investigations including (1) assessment of carbon reservoir 78 

turnover times and soil C dynamics (Harris et al, 2001), (2) determination of trophic levels in 79 

environmental systems (Bunn et al., 1995; Pinnegar and Poulnin, 1999; Kolasinski et al., 80 

2008), (3) primary productivity reconstructions and estimation of carbon burial rates and, (4) 81 

to understand mineralisation processes (Midwood and Boutton, 1998; Freudenthal et al., 2001; 82 

Leng and Marshall, 2004). δ 15N has been used to understand trophic pathways in food webs 83 

(Bunn et al., 1995; Pinnegar and Polunin, 1999; Ng et al., 2007; Kolasinski et al., 2008); 84 

animal dietary tracers (e.g. Koch et al., 2007; Lee-Thorpe, 2008); OM provenance and 85 

degradation (Thornton and McManus, 1994; Meyers, 1997; Hu et al., 2006; Barros et al., 86 

2010); denitrification in the water column (Altabet et al., 1995; Ganeshram et al., 2000); 87 

nitrate utilisation (Calvert et al., 1992; Teranes and Bernasconi, 2000); N2-fixation (Haug et 88 

al, 1998) and; eutrophication (Owens, 1987; Vob et al., 2005). In addition, C/N values are 89 

used to support δ13C and  δ15N, for example through bi-plots providing a structure within 90 

which OM provenance and type can be broadly identified (e.g. Talbot and Johannessen, 1992; 91 

Thornton and McManus, 1994; Meyers, 1997; Meyers and Teranes, 2001; Krull et al., 2002; 92 

Lucke et al., 2003; Wilson et al., 2005; Lamb et al., 2006; Zong et al., 2006; Mackie et al., 93 

2007; Sharpe, 2007; Yu et al., 2010). Investigators have subsequently deduced changes in 94 

environmental and/or climatic processes through interpretation of changing states of the 95 

system under investigation (e.g. terrestrial vs. aquatic biomass; C3 vs. C4

 97 

 vegetation). 96 

However, interpretations of C/N, δ13C and δ15N are predicated on the production of reliable 98 

proxy data, and the ability to disentangle the complex processes leading to OM preservation 99 

in the sedimentary record. This necessitates a complete understanding of the precision on the 100 

measured data, which, for C/N, δ13C and δ15N values from bulk sediment OM, are not widely 101 

discussed in the literature beyond instrument precision (reported as one standard deviation 102 

(1σ) of replicate runs of elemental and isotopic reference materials). Further, the instrument 103 

precision on C/N values is rarely (if at all) discussed.  104 



 105 

The accurate determination of C/N and δ13C composition of OM requires the complete 106 

removal of any IC from the total carbon, commonly achieved through acid treatment. There is 107 

a variety of pre-analysis acid treatment methods that have been used in the published 108 

literature, from which it is clear there is no consensus on standard practice (see Brodie et al., 109 

2011a for an overview). Research has shown significant non-linear bias on measured C/N, 110 

δ13C and δ15N values directly associated with these pre-analysis acid treatment methods, 111 

which can undermine an environmental interpretation of the data (Froelich, 1980; Yamamuro 112 

and Kayanne, 1995; Bunn et al., 1995; King et al., 1998; Lohse et al., 2000; Schubert and 113 

Nielsen, 2000; Ryba and Burgess et al., 2002; Kennedy et al., 2005; Schmidt and Gleixner, 114 

2005; Galy et al., 2007; Fernandes and Krull, 2008; Brodie et al., 2011a). For example, 115 

Brodie et al. (2011a) noted a C/N value range of ~ 6 – 13, a δ13C range of –27.0 ‰ to –28.4 ‰ 116 

and a δ15

 122 

N range of 0.8 ‰ to 1.8 ‰ for a terrestrial land plant (Broccoli) across pre-analysis 117 

acid treatment methods. These C/N values suggest OM derived largely from aquatic sources, 118 

or from an admixture of aquatic and terrestrial sources. More importantly, all of these offsets 119 

were shown to be non-linear and unpredictable within and between pre-analysis acid 120 

treatment methods (Brodie et al., 2011a; 2011b).  121 

Differences in %C measured from modern and ancient, terrestrial and aquatic organic 123 

materials, as a function of acid treatment, have been reported at 5 – 78 % and for %N at 0 – 124 

50%, either as a loss of C and N (Froelich, 1980; Yamamuro and Kayanne, 1995; Bunn et al., 125 

1995; King et al., 1998; Lohse et al., 2000; Schubert and Nielsen, 2000; Ryba and Burgess, 126 

2002; Schmidt and Gleixner, 2005) or as an artificial gain in C and N (Brodie et al., 2011a). 127 

Shifts in δ13C are variable, ranging from enrichment in δ13C of 0.2 – 8.0 ‰ (e.g. Schubert and 128 

Nielsen, 2000; Kolasinski et al., 2008; Brodie et al., 2011a), a depletion in δ13C of 0.1 – 1.9 ‰ 129 

(Kennedy et al., 2008; Komada et al., 2008; Brodie et al., 2011a) and no change (e.g. 130 

Midwood and Boutton, 1998; Kennedy et al., 2005). This is similar for δ15N, where results 131 

range from an enrichment of 0.1 – 3 ‰ (Bunn et al., 1995; Brodie et al., 2011b), to a 132 

depletion of 0.2 –1.8 ‰ (Bunn et al., 1995; Harris et al., 2001; Kennedy et al., 2005; Ng et al., 133 

2007; Fernandes and Krull, 2008), and no significant change (Serrano et al., 2008). The bias 134 

on OM from acid treatment, alongside the complex processes that can influence OM prior to, 135 

and during, sedimentary preservation, suggests that reliance on the commonly reported 136 

instrument precision alone is unrealistic for robustly interpreting measured C/N, δ13C and 137 

δ15N values. 138 



 139 

1.1.1 Unresolved Issues 140 

Despite the considerable potential for acid treatment method to alter the bulk OM signal prior 141 

to C/N, δ13C and δ15N analysis, the potential bias in a sedimentary sequence of samples has 142 

hitherto never been investigated. In addition, the influence of inorganic carbon (IC) and 143 

inorganic nitrogen (IN; Hoefs, 1973; Sharpe, 2007); sample homogenisation (Baisden et al., 144 

2002; Hilton et al., 2010) and sample size (Brodie et al., 2011a) can contribute additional 145 

inaccuracy and imprecision to measured data. There is an increase in the application of “dual-146 

mode” isotope analysis (where C/N, δ13C and δ15N are measured simultaneously from the 147 

same pre-treated sample), implying an acidification of sample material prior to analysis. We 148 

note it is not common to acidify samples prior to δ15N analysis, but acidification is required 149 

for dual δ13C and δ15N analysis. It is clear, therefore, that the assumption that instrument 150 

precision alone accounts for the absolute imprecision on measured C/N, δ13C and δ15N values 151 

is questionable. Moreover, assumptions on the accuracy of the measured C/N, δ13C and δ15

 154 

N 152 

are also questionable. 153 

The aim of this study was to compare, for the first time, the effect of pre-analysis acid 155 

treatment methods on C/N, δ13C and δ15

1. Are there significant differences between the results of pre-analysis acid treatment methods 162 

for C/N, δ

N of OM from a sedimentary sequence. We 156 

investigate an ancient lake cored sequence using the capsule and rinse methods alongside that 157 

of untreated materials (after Brodie et al., 2011a; 2011b). We test the null hypothesis that 158 

there is a significant difference between methods on the same sample horizon, implying that 159 

data precision exceeds the commonly discussed instrument precision. Specifically, the 160 

following research questions are addressed: 161 

13C and δ15

2. Can different pre-analysis acid treatment methods influence environmental interpretation 165 

of C/N, δ

N of bulk OM on a stratigraphical sequence of samples? (i.e. above 163 

instrument precision) 164 

13C and δ15

 167 

N of bulk OM? 166 

1.2 Materials and Methods 168 

1.2.1 Core material 169 

A sedimentary sequence was extracted from Lake Tianyang (20o31’1.11” N, 110o18’43.02” 170 

E), south China, in January 2008, for multi-proxy palaeoenvironmental reconstruction, 171 

including C/N, δ13C and δ15N of OM. For this comparison, we sub-sampled 20 horizons in 172 



the core from 7.00 – 10.24 m (16 cm resolution). This section of the core material was 173 

selected due to the significant change in the lithology (Figure 1) from a brown clayey silt bed, 174 

with few very fine sands and silts, and a low organic content (~0.3 – 1% OC; 10.24 m to 8.06 175 

m), to an organic rich (amorphous) clay bed (~28 – 32% OC; 8.06 m to 7.09 m). In addition, 176 

the δ13C of bulk OM derived from some pilot samples showed that this section produced an 177 

overall δ13C range of ~ 15 ‰ and, in particular, there is a ~ 12 ‰ shift across the lithologic 178 

boundary. Unfortunately, low levels of N precluded a full δ15N record across all of our 179 

selected sample horizons so we only report δ15

 181 

N values from 7.00 m to 7.46 m.  180 

Figure 1: Lake Tianyang core lithology and description from 7.00 m to 10.20 m. The 14C age 182 

is reported in 14

 184 

C yrs BP (uncalibrated). 183 

1.2.2 Cleaning Protocol 185 

Prior to sample treatment, all sub-sampling equipment and glassware were thoroughly 186 

washed in 1% nitric acid, rinsed in deionised water, followed by a wash in 2% soap solution 187 

(neutracon®), a final deionised water rinse and then fired at 550oC for 3 hours. Ag capsules 188 

were fired at 550o

 192 

C for 3 hours prior to use and Sn capsules were submerged in methanol for 189 

24 hours and then air dried. Cleaned capsules were then sealed in pre-cleaned containers and 190 

stored until use. 191 

1.2.3 Acidification methods  193 

1.2.3.1 Rinse method 194 

We compared the capsule and rinse methods using 5% w/w and 20% w/w HCl as the 195 

acidifying reagents based on Brodie et al (2011a) who showed HCl tended to produce the 196 

most coherent and reliable data. For the rinse method, approximately 250 mg of sample was 197 

acidified in 50 ml of the chosen acid reagent for 24 h. Depending on the IC content additional 198 

acid was added to maintain an acidic solution (checked with litmus paper) and left for a 199 

further 24 h if necessary. After digestion, the sample material was sequentially rinsed 3 times 200 

with deionised water, allowing 24 h between rinses to allow the sample to settle, using an 201 

overall minimum of 1200 mls of deionised water. After the final decanting, the excess water 202 

(50 – 100 mls) was allowed to evaporate off in a drying oven at ~50oC. Once dry, the sample 203 

was loosened from the base of the beaker with a clean plastic spatula and transferred to an 204 

agate pestle and mortar, ground, and a known quantity weighed into a Sn capsule (to provide 205 



~500 μg C after acid treatment). Capsules were then crimped ready for elemental and δ13

 208 

C 206 

analysis. 207 

1.2.3.2 Capsule Method 209 

Sample material was weighed into open Ag capsules and recorded (to provide ~500 μg C 210 

after acid treatment). The capsules were then transferred on a metal tray to a cold hotplate 211 

and 10 μl of distilled water was added to moisten the samples, reducing the potential of an 212 

initial vigorous reaction from IC bearing materials. After moistening, 10 μl of the chosen acid 213 

reagent was added to the cold sample before the hotplate temperature was slowly increased to 214 

~50oC. Additional acid was then added in steps of 10 μl, 20 μl, 30 μl, 50 μl and 100 μl 215 

without allowing the sample to dry out between additions. The samples were monitored for 216 

IC reaction by visual inspection but as the effervescence reduced, the reaction was checked 217 

using a binocular microscope at 50x magnification. The stepped addition of acid described 218 

here reduced problems associated with the ambiguous effervescence end-point, however, we 219 

also added a final 200 μl of acid to act as a “fail safe”. After the addition of the final aliquot 220 

of acid the capsules were left on the hotplate for c.1 hour to dry thoroughly. Once dry, the 221 

capsules were removed from the hotplate, left to cool before being crimped. 

 225 

All capsule 222 

method samples (traditionally analysed in Ag capsules only) were further wrapped in Sn 223 

capsules to ensure complete combustion (see Brodie et al., 2011b). 224 

1.2.3.3 Untreated 226 

Sample δ15N is traditionally measured on untreated sample material (e.g. Muller, 1977; 227 

Altabet et al., 1995; Schubert and Calvert, 2001; Sampaei and Matsumoto, 2008), assuming a 228 

negligible influence from inorganic nitrogen (e.g. nitrates, ammonia; e.g. Sampei and 229 

Matsumoto, 2008). Therefore, in addition to the rinse and capsule methods we also prepared 230 

untreated sample materials for C/N, δ13C and δ15N analysis, which involved directly weighing 231 

an untreated sample aliquot (500 µg for C/N and δ13C and 15 µg for δ15

 234 

N) into a prepared Sn 232 

capsule, crimping and analysing.  233 

1.2.4 Analytical Methods 235 

The %C, %N and δ13C values of sample OM were analysed using an online system 236 

comprising a Costech ECS4010 elemental analyser (EA), a VG TripleTrap, and a VG Optima 237 

mass spectrometer at the NERC Isotope Geosciences Laboratory (NIGL), with data reduction 238 



carried out using DataApex Clarity ver 2.6.1 software package. Each analytical run contained 239 

three control materials: external standard SOILB (2 replicates), internal NIGL standard 240 

BROC (10 replicates) and independent external standard SOILC (2 replicates). All standards 241 

returned values that were statistically indistinguishable from known sample values (p-value > 242 

0.05) indicating the instrument measurements were accurate (in comparison to the long term 243 

values) and precise (within reported σ of known values), where C/N is ≤ 0.2 and δ 13C ≤  244 

0.2 ‰. From knowledge of the laboratory standard’s δ13C value versus V-PDB (derived from 245 

regular comparison with international calibration and reference materials NBS-18 and NBS-246 

19 and cross checked with NBS-22). 13C/12C ratios of the unknown samples were converted 247 

to δ values versus V-PDB as follows: δ = [(Rsample/Rstandard) – 1] x103 

 250 

(‰), where R = the 248 

measured ratio of the sample and standard respectively (for carbon and nitrogen).  249 

Nitrogen isotope analyses were performed using a FlashEA 1112 elemental analyser linked to 251 

a Delta+XL isotope ratio mass spectrometer (EA-IRMS) via a Conflo III interface. Samples 252 

were combusted at 900oC with all samples acidified in the capsule method further wrapped in 253 

Sn capsules. Limits on analytical precision are mainly determined by conditions of 254 

combustion and chromatography in the elemental analyser. Within-run precision for δ15

 257 

N is ≤ 255 

0.13 ‰ (1σ for n = 13 samples).  256 

Measurements of background C and N concentrations from capsules and acid reagents were 258 

below instrument detection limits suggesting contamination did not contribute to variability 259 

within our results (e.g. see Brodie et al., 2011a, 2011b for further details on acid methods and 260 

analytical methods). 261 

 262 

1.2.5 Data Analysis 263 

We compare our data using a one-way ANOVA, at the 95% confidence limit, to determine 264 

differences within (i.e. acid reagent) and between (i.e. untreated versus capsule method 265 

versus rinse method) the pre-analysis acid treatment methods, and take a p-value < 0.05 to 266 

indicate a significant difference. All data were tested for normality using an Anderson-267 

Darling normality test, and tested for homogeneity of variances using a Bartlett’s test (which 268 

assumes data are normally distributed) and a Levene’s test (which assumes data are non-269 

normally distributed). ANOVA comparisons for C/N and δ13C were carried out on data 270 

derived from acid treated samples but are not compared with untreated samples (untreated 271 



measurements for C/N and δ13C is not a common approach due to the potential for inorganic 272 

carbon contamination, hence the necessity for acid pre-treatment). For δ15

 277 

N, comparisons 273 

were made on data derived from acid treated samples and untreated samples as there is no 274 

consensus on the most appropriate method for N analysis (see Brodie et al, 2011b for an 275 

overview).  276 

1.3 Results 278 

The %C, %N, C/N and δ13C data are presented in Figure 2 and ANOVA comparisons for C/N 279 

and δ13

 282 

C data from each pre-treatment method and reagent investigated are presented in 280 

Table 1. 281 

1.3.1 %C and %N 283 

From 7.00 to 7.52 m, the core material is characterised by high %C and %N values relative to 284 

the sample horizons below 7.52 m, where %C and %N are very low. For %C and %N, the 285 

rinse method samples above 7.52 m are consistently ~ 20% higher than capsule and untreated 286 

method samples. With the exception of the 5% HCl rinse method samples at 8.76 m for %C 287 

(probably a residual inorganic C signal), and 20% HCl capsule method sample from 7.80 – 288 

8.60 m for %N, the data below 7.52 m are relatively coherent. 289 

 290 

1.3.2 C/N and δ13

C/N values between methods are highly variable within specific sample horizons, especially 292 

within the capsule method samples (e.g. 7.48 m, 8.76 m, 9.24 m for 5 % HCl capsule method; 293 

8.12 m, 8.60 m for 20 % HCl capsule), and between the capsule method samples and rinse 294 

method samples. An overall range of ~1 – 100 was evident between methods on some sample 295 

horizons. For example, at 8.76 m the capsule method samples returned C/N values of 81 to 296 

122, the rinse method samples returned C/N values of ~ 34, and untreated values were ~174. 297 

At 9.08 m, samples in the capsule method return C/N values of ~19, and rinse method 298 

samples ~ 11. In general, data from the rinse method appear more coherent than data from the 299 

capsule method.  300 

C 291 

 301 

δ13C data from samples between 7.00 m and 7.64 m across all methods tested are 302 

indistinguishable from one another (i.e. appear to be within instrument precision limits). 303 

Between 9.00 m and 9.24 m, all measured values (i.e. within and between all acid treatment 304 



methods) converge over a significant shift in the data, but are divergent above 9.00 m and 305 

below 9.24 m. However, our data also show sample horizons with incoherency between the 306 

methods (i.e. greater than instrument precision by a minimum of ~0.2 ‰), in particular from 307 

7.64 m to 8.12 m and 8.60 m to 9.00 m. The greatest divergence in the data are from 7.64 m 308 

to 8.12 m and between the 20% HCl capsule method and 20 % HCl rinse method (~ 2.5 ‰ 309 

(7.64 m)), and from 8.60m to 9.00m which is caused by the 5 % HCl capsule method (~6 – 7 ‰ 310 

(8.60 m)). Between the remaining three methods at 8.60 m, the difference range is between 311 

0.4 – 3.5 ‰. We note that the divergence in δ13C data, within and between methods, appear 312 

to become more evident in samples with relatively lower OC, but not in all instances (e.g. 313 

9.00 m to 9.24 m). Given the evident differences between methods on any one sample 314 

horizon, a general trend in C/N and δ13

 317 

C values between methods remains apparent, though 315 

the amplitude of the signal is variable. 316 

Figure 2: Down-core plots of %C, %N, C/N and δ13C for data derived from the capsule 318 

method, rinse method and untreated samples. Instrument precision is not visible on these 319 

scales, but is 0.3% for %C, 0.3% for %N, 0.5 for C/N and 0.2 ‰ for δ13

 322 

C. The embedded 320 

legend indicates the data for each method.  321 

Table 1: ANOVA comparison results for C/N and δ13

 328 

C for acid treated sample horizons only. 323 

P-values and r-squ values are based on comparisons of all measurements from a specific 324 

sample horizon after acid treatment, with a p-value < 0.05 deemed to represent a statistically 325 

significant difference. “nd” indicates no significant difference in measured values within and 326 

between acid treatment methods. 327 

1.3.3    δ15

δ

N 329 
15N values were only measureable between 7.09 m and 7.46 m due to extremely low %N. 330 

The δ15N data and ANOVA comparisons for each method and reagent are shown in Figure 3 331 

and Table 2 respectively. Our results show that all acid treated samples produced lower δ15N 332 

in comparison to untreated samples, with the largest range in values between methods of ~ 333 

0.8 ‰ (at 7.16 m). In general, capsule method samples produced lower values than rinse 334 

method samples, with the exception of 5 % HCl capsule samples at 7.09 m and 7.16 m 335 

(Figure 3). Overall, the rinse method samples produced more coherent results than the 336 

capsule method (< 0.2 ‰ overall range for all rinse method samples). ANOVA results 337 



indicate statistically significant differences within the capsule method and between the 338 

capsule and rinse method data. In addition, all data derived from acid treated samples 339 

produced lower δ15N  in comparison to untreated values for all sample horizons, but 340 

highlighted no differences within the rinse method (i.e. no difference between samples 341 

acidified in 5% HCl or 20% HCl within the rinse method). We note a fractionation in δ15

 344 

N in 342 

all sample horizons, within and between methods, but no concomitant change in mass %N.  343 

Figure 3: Down-core plots of δ15

 348 

N for data derived from the capsule method, rinse method 345 

and untreated samples. The scale bar in the plot represents instrument precision (1σ = 346 

0.13 ‰), and the embedded legend indicates the data for each method. 347 

Table 2: ANOVA comparison results for δ15

 352 

N for all tested sample horizons. P-values and r-349 

squ values are based on comparisons of all measurements from a specific sample horizon 350 

after acid treatment, and also in comparison to untreated samples.  351 

1.4 Discussion 353 

1.4.1 Method differences 354 

The pre-analysis acid treatment approach is underpinned by the assumption that the OM 355 

fraction is either unaltered during the process, or that any changes are at least systematic and 356 

proportional (i.e. predictable), and that all IC present is completely removed. This clearly 357 

suggests that, within instrument precision, results from any method followed should be 358 

indistinguishable from one another. Our results from the Lake Tianyang sedimentary 359 

sequence indicate an inconsistency in the application of any single pre-analysis acid treatment 360 

method in a down-core context for C/N, δ13C and δ15N. There is evidence for significant 361 

differences in measured C/N, δ13C and δ15N values within and between pre-analysis acid 362 

treatment methods (Table 1 and 2). Differences between each acid treatment method in C/N, 363 

δ13C and δ15N values within and between sample horizons are highly variable, and not always 364 

in the same direction. For some sample horizons, differences between acid treatment methods 365 

for C/N values can be as high as ~90 (e.g. at 8.76 m) and as low as 0.2 (e.g. at 7.32 m; 8.44 366 

m). Likewise, differences in δ13C between acid treatment methods can be as high as 6.8 ‰ 367 

(e.g. 8.76 m) but for other horizons be within instrument precision (e.g. < 0.2 ‰; 7.09 m – 368 

7.48 m). This may, in part, be a function of the overall %C and %N of the sample material, 369 

including organic and inorganic components. For example, our δ13C data are generally in 370 



good agreement with high %C. However, the imprecision on the data tends to increase within 371 

and between methods as %C in the sample material becomes lower (e.g. 7.64 m to 9.00 m), 372 

but this is not always the case (e.g. 9.00 m to 9.24 m). This suggests sample materials with 373 

low %C may be more susceptible to acid method bias (and of greater magnitude), but this is 374 

not a general rule (Brodie et al., 2011a, 2011b).  375 

 376 

Where there is a high range of C/N values apparent between treatment methods, this can 377 

fundamentally alter the support for δ13C and δ15N from cross-plots of these data. For example, 378 

at 7.80 m, the 5% HCl capsule method points towards an environment dominated by 379 

terrestrially sourced OM (C/N value ~ 32), whereas C/N values from all other methods 380 

suggest an environment with a significant aquatic biomass contribution to total OM (C/N 381 

value ~ 12). This contradictory position clearly indicates a serious discrepancy regarding the 382 

interpretation of elemental and isotopic C and N proxies derived from bulk OM, both from 383 

these cross-plots and in a down-core context. It also suggests that the assumptions 384 

underpinning pre-analysis methods are invalid (Brodie et al., 2011a, 2011b). In addition, 385 

there are known biases from IN contamination, which can lower C/N values below the true 386 

organic C/N value (e.g. Muller, 1977; Schubert and Calvert, 2001; Sampei and Matsumoto, 387 

2001; Meyers, 2003; Mampuku et al., 2008). For example, Muller (1977) reported C/N 388 

values <4 from deep sea sediments as a consequence of inorganic ammonia. Furthermore, the 389 

range of C/N values, as discussed in the context of marine versus terrestrial OM provenance, 390 

is also more complex than the standard interpretation suggests; for example, C/N values 391 

(weight ratio) of submerged aquatic macrophytes have documented ranges of 6 – 60 (e.g. 392 

Atkinson and Smith, 1983) and macroalgae ranges from 16 – 68 (brown macroalgae; Fenchel 393 

and Jørgensen, 1977). Brodie et al (2011a) also report a C/N range of ~ 6 – 13 for broccoli (a 394 

terrestrial plant) which has a “typical” C3 δ13

 396 

C value of –27.4 ‰.  395 

In addition, we also find that %C and %N are artificially concentrated (but not proportionally) 397 

in samples from 7.00 m to 7.52 m analysed from the rinse method relative to untreated values 398 

and capsule method samples. Brodie et al (2011a) suggested that this was likely a function of 399 

the loss of fine grained inorganic material (e.g. clays) in the supernatant relative to the 400 

amount of sample material treated with respect to that in other methods, despite the potential 401 

losses of C and N through solubilisation (e.g. Schubert and Nielsen, 2000; Galy et al., 2007) 402 

and absorption onto fine grained particles. We note that there is no concomitant shift in δ13C 403 



values, though C/N values are disproportionally increased. Within the 20% HCl rinse method, 404 

and for %N only (from 8.12 m to 8.60 m), the %N values are substantially higher (Figure 3). 405 

Given the very low amounts of N within sample material, and the biasing effect of the acid 406 

treatment, the results are likely to be unreliable as %N is very close to instrument baseline 407 

conditions. Collectively, these factors point to a serious problem in the general theory on OM 408 

provenance as interpreted through C/N. 409 

 410 

1.4.2 Residual inorganic carbon 411 

In addition to the problems highlighted for C/N values, at 8.76 m, the 5 % HCl capsule 412 

method returned a δ13C value of –12.5 ‰, ~ 6.8 ‰ more enriched than data from all other 413 

acidification methods (the overall δ13C range between treatment methods is –21.3 to –414 

12.5 ‰). Our measurements on untreated material from this sample horizon suggests the 415 

presence of a major IC component (~1.8% inorganic carbon by weight with δ13C = –1.6 ‰), 416 

suggesting the 5% HCl capsule method is less efficient at IC removal in comparison to other 417 

methods for this sample, although it is widely assumed 5% HCl should efficiently remove 418 

calcite. Between all other methods at 8.76 m, the difference in δ13C value was ~ 2 – 3 ‰. 419 

However, in the context of the overall data  trend (e.g. the ~12 ‰ shift from 7.00 m to 7.52 m; 420 

see Figure 2), the value returned for the 5 % HCl capsule method would not look out of place 421 

had this been the only method followed. This, subsequently, could have led to a 422 

misinterpretation of the core data in the context of sample OM: the 5 % HCl capsule data at 423 

8.76 m suggest an environment dominated by C4 type vegetation (both high C/N and δ13C 424 

values) and could be interpreted as being representative of a more arid environment, whereas 425 

the 3 other acid treatment methods tested produced more consistent results (though still 426 

potentially imprecise), suggesting a C3 dominated environment, which could be interpreted 427 

as being representative of a more humid environment. We therefore do not recommend the 428 

use of 5 % HCl in the capsule method. These differences between the acid reagents and 429 

methods investigated here have three possible explanations: (i) the different effect of acid 430 

treatment on the IC component(s) within the sample material and (ii) non-linear and 431 

unpredictable offset on the OC component(s) within the sample material, or (iii) a 432 

combination of both. At 8.76 m, the offset in δ13C value in the 5% HCl capsule method is 433 

caused by inefficient removal of IC (see above), an offset not recorded in the other methods. 434 

This suggests that different methods and reagents (even at 5% HCl) have differential rates of 435 

removal of what is probably calcite (i.e. 5% HCl appeared to remove the IC in the rinse 436 



method, likely due to the increased time of exposure of the sample to the acid in this method 437 

relative to the capsule method). Therefore, this problem is likely to be exacerbated where less 438 

soluble forms of IC exist in sample materials, such as dolomites and siderites, which can 439 

produce as large an offset to the δ13

 444 

C value as calcite.  Moreover, an admixture of different 440 

IC components can further complicate the digestion process due to different rates of removal 441 

(i.e. stoichiometry of each IC component and combined stoichiometry, relative to dissolution 442 

reagent) and IC component grain size (Al-Aasm et al., 1990; Yui and Gong, 2003).  443 

Where there is an IC contamination on δ13C values, enrichment is usually expected in the 445 

δ13C value due to the assumed relatively high δ13C values of IC material; however, some 446 

freshwater, marine, authigenic, diagenetic and detrital carbonates can have very negative δ13C 447 

values (Hoefs, 1973; Hangari et al., 1980; Mozley and Carothers, 1992; Mozley and Burns, 448 

1993; Chow et al., 2000; Coniglio et al., 2000; El-ghali et al., 2006; Sharpe, 2007; Pierre et 449 

al., 2009). The δ13C values of different forms of IC have been reported in the range of +30 ‰ 450 

to –51 ‰, a range which completely overlaps with the commonly cited δ13C ranges for OM. 451 

For example, Pierre et al (2009) reported values as low as –51 ‰ for calcite/aragonite and –452 

38 ‰ for dolomite measured in marine authigenic carbonate, Chow et al (2000) reported a 453 

range of –22 ‰ to +8 ‰ for early diagenetic Mn-Fe carbonates, Hangari et al (1980) reported  454 

δ13C  values of between –12 ‰ to –30 ‰ for freshwater siderite, and Mosley and Burns 455 

(1993) provide an overview of δ13C values of marine calcite, dolomite and siderite minerals 456 

illustrating the common nature of very depleted δ13

 458 

C values (≤ –15 ‰). 457 

If we take a hypothetical sample material, containing 3% OC with a δ13C value of –14 ‰, 459 

and 1% IC with a δ13C value of –30 ‰, then, by mass balance, the overall sample δ13C value 460 

would be –18 ‰ (i.e. a 4 ‰ depletion in δ13C due to IC contamination, not an enrichment 461 

that is commonly assumed), tending an interpretation towards C3 vegetation (e.g. more 462 

humid environment). Given the potential for more robust forms of IC to have very low δ13C 463 

values, such as dolomite and siderite which are not readily digested by acid, then the potential 464 

for the depletion of measured δ13

 467 

C values as a result of residual IC is real, but largely 465 

unrecognised! 466 

Our data illustrate a depletion of the δ13C value, e.g. 7.64 m – 7.80 m, which suggests that the 468 

data may not only be affected by the inefficient (and disproportional) removal of IC from the 469 

sample (assuming an enrichment in δ13C within this core from residual IC), but also by the 470 



effect of acidification on the OC component (assuming the untreated values at these depths 471 

are not representative of IC contamination). We therefore suggest that the sample IC 472 

component should be identified and quantified to ensure no residual IC remains after 473 

treatment, or, where the IC exists as a more robust form (e.g. dolomite, siderite), the size of 474 

the offset can at least be partly accounted for and an investigation into the bias associated 475 

with the OC component can be undertaken. Sample OC must be understood in the context of 476 

IC within the same sample and alongside acid treatment biases: data presented without this 477 

explicit quantitative understanding are potentially unreliable. In addition, differences in 478 

interpretation of δ13C from OM as an indicator for changes in C3 and C4 vegetation are also 479 

questionable, where the δ13C of C3 plant tissue has been reported in the range of –13 to – 29 ‰ 480 

(e.g. Hedges et al, 1986), and C4 plants in the range of –7 to –23 ‰ (e.g. Schilowski, 1987). 481 

This is counterintuitive relative to the widely used C3 v C4

 484 

 interpretation, suggesting an 482 

additional environmental consideration, inter alia, in interpretation. 483 

The structure and composition of C and N in OM from a down-core sedimentary sequence 485 

can vary substantially (e.g. relative proportions of lipids, lignins, proteins, amino acids, and 486 

cellulose; Fernandes and Krull, 2008), and may subsequently respond disproportionately 487 

under different acid treatment methods (i.e. differences in proportions of refractory and labile 488 

organic components). This suggests that C/N, δ13C and δ15N values are likely to be a relative 489 

proxy for the overall chemistry of the core material, but the degree with which it reflects the 490 

true OM value of the core, and thus a specific process, after acid treatment is highly variable 491 

and makes interpretation more difficult. In addition, where sample material is low in %C 492 

and %N, the effect of acidification on δ13C and δ15

 499 

N could be significantly magnified (e.g. 493 

Brodie et al., 2011a, 2011b) which may be due to C and N isotopes becoming highly 494 

heterogeneous within the OM at these low levels. These factors add unpredictable, non-linear 495 

biasing to the dataset within sample horizons and with varying magnitude and proportions 496 

between sample horizons (i.e. suggesting the underlying trend of the data can be biased in a 497 

non-systematic fashion).  498 

For δ15N, we note a fractionation between untreated and acid treated samples (~0.8 ‰), and 500 

between acid treated samples but with no concomitant loss in %N (no difference in %N 501 

values between treated and untreated data). The mechanisms for this are unclear; however, 502 

there seems to be a systematic shift across all acid treated samples towards lower δ15N with 503 



samples in the rinse method tending to produce the lowest δ15N. This shift towards more 504 

depleted δ15N values may reduce the certainty on interpretations of water column 505 

denitrification, for example, and biases of the order of ~0.8 ‰, or ~1.7 ‰ (Brodie et al., 506 

2011b), can account for between ~15 and 40 % of the variability in some records with an 507 

overall range of ~5 ‰ (e.g. Altabet et al., 1995). Additionally, the isotopic signature of IN is 508 

not significantly dissimilar to that of organic N, making the overall interpretation of the δ15

 513 

N 509 

of OM in the presence of IN difficult (e.g. Knies et al., 2007). This illustrates the importance 510 

of fully understanding OM structure and composition, and the IC and IN components, within 511 

the system under investigation where a bulk organic matter approach is adopted. 512 

These findings have significant implications for the comparison of records that are (i) derived 514 

in different laboratories following differing pre-treatment methods (or variations of the same 515 

method), and (ii) derived from different environments where the amounts and relative 516 

proportions of C and N in sample OM varies, and the amount, type and nature of OM, IC and 517 

IN varies. The assumption that data are reliable (and the subsequent interpretation robust) 518 

because of our ability to produce extremely high instrument accuracy and precision is a non 519 

sequitur. Our data suggest the necessity to account for the acid treatment bias in full and 520 

determine the size of the offset to ensure that the interpretation is more robust and 521 

acknowledge the full range of “error” in the analysis (see section 1.6 for more detail). We 522 

suggest that the biasing of the true OM signature during pre-analysis acid treatment is 523 

inevitable, but unpredictable. The environmental interpretation of elemental and isotopic 524 

values of OM is not necessarily dependent upon an environmental shift, but can be 525 

significantly affected by both IC and IN, pre-analysis acid treatment method and the structure 526 

and composition of OM across the land-sea gradient. It is imperative that the effect of pre-527 

analysis acid treatment methods on δ13C and δ15

 531 

N values be pursued at the molecular level to 528 

improve our understanding of the mechanisms controlling the bias evident in our data (and 529 

most likely in other down-core records).  530 

1.5 Implications for interpretation of C/N, δ13C and δ15

 533 
N of bulk OM 532 

Our findings have significant implications for the interpretation of measured C/N, δ13C and 534 

δ15N values of bulk OM in the context of the established theory in the literature (e.g. OM 535 

provenance and vegetation type), the estimation of organic and inorganic carbon burial and/or 536 

accumulation rates (e.g. Twichell et al., 2002) and interpretation of carbon bi-plots (e.g. 537 



Thornton and McManus. 1994; Meyers, 1997; Meyers, 2003; Lamb et al. 2006; Zong et al. 538 

2006; Mackie et al, 2007; Yu et al., 2010). We show that the interpretation of C/N and δ13C 539 

data is not just dependant on an environmental shift, but can also be dependent on the bias 540 

due to pre-analysis acid treatment method. This is likely to be underpinned by the 541 

complexities in the structure and composition of OM within and between environments. 542 

Specifically, it suggests that small changes in the down-core records (i.e. < 4 ‰) may provide 543 

less reliable interpretations in comparison to much larger  shifts (i.e. of the order of 10 ‰, or 544 

greater).  Interpretations of C/N, δ13C and δ15N values have been underpinned by the 545 

assumption that we can reliably determine C/N, δ13C and δ15N of sample OM. We have 546 

shown that this assumption is highly problematic, and that a detailed discussion and 547 

investigation on the potential source of bias, above that of the standard instrument precision, 548 

is essential for a robust interpretation of the data. It is clear that additional bias on C/N, δ13C 549 

and δ15

 553 

N measurements in OM can derive from inorganic carbon (IC) and inorganic nitrogen 550 

(IN) content, pre-analysis acid treatment method followed and OM composition of the 551 

sample material.  552 

However, our data also show sample horizons with no difference in results within and 554 

between methods, highlighting the inconsistency in any one method down-core.  This 555 

suggests that the accuracy and precision with which C/N, δ13C and δ15N values from any one 556 

acid treatment method reflects sample OM is highly variable and unpredictable. Therefore, 557 

instrument precision should be interpreted as an absolute minimum precision on measured 558 

data (e.g. Brodie et al., 2011a, 2011b). The fact that pre-analysis treatment method can 559 

significantly influence the environmental interpretation of sedimentary OM is worrying, and 560 

cautions against the over interpretation of the minutiae of the data acquired. For example, we 561 

report differences within and between methods on our down-core record in the region of 2 – 562 

3.5 ‰ for δ13C (excluding the excursion at 8.76 m which has a substantial IC contamination 563 

signal). A precision range of this magnitude can account for the overall range of some down-564 

core studies (e.g. Turney et al., 1999; Zong et al., 2006; Mackie et al., 2007; Bertrand et al., 565 

2010; Scholz et al., 2010; Yu et al., 2010). It is therefore critical the extent of bias due to acid 566 

treatment on elemental and isotopic measurements in OM is understood to ensure that any 567 

interpretation is grounded on a robust dataset reflecting sample OM, especially where 568 

inferences on climate variability and mechanisms are being proposed. In addition, these 569 



findings suggest that the correlation of C/N and δ13

 572 

C values of bulk OM derived from 570 

different sedimentary archives is highly problematic. 571 

Given the current drive in the community to derive annual – centennial resolution from 573 

down-core records of past environmental change, and in the context of increasing use of data 574 

transformation techniques, such as spectral and wavelet transforms used to understand 575 

periodicities (e.g. Baker et al., 2005), it is imperative that the inaccuracy and imprecision of 576 

the data is fully understood and the subsequent limitations to interpretation acknowledged. 577 

For example, differences within and between methods of the order of ~ 2 – 3.5 ‰ would 578 

significantly alter the amplitude and potentially change the frequency of a down-core record, 579 

which may be misinterpreted as being environmentally significant (i.e. the amplitude of 580 

environmental variability compared with the amplitude of variability in the data caused by 581 

inaccuracy and imprecision of the data). It may artificially cause high-frequency signals to 582 

manifest as significant periodicities in the core data during analysis, which may lead to 583 

incorrect interpretation. In addition, the bias due to acid treatment can also affect the 584 

underlying trend in the record, which can further undermine data analysis.  585 

 586 

This suggests C/N and δ13

 595 

C values from bulk OM are a less reliable tool for reconstructing 587 

environmental events with low amplitude variability. This is likely to have implications for 588 

the high resolution, high frequency reconstructions favoured in the recent literature. We did 589 

not carry out time-series analysis on our data – the analysis itself, in addition to the acid 590 

treatment bias, would have been undermined by the low resolution sampling and poor dating 591 

constraint across the data in the first instance, and made a priori assumptions about the 592 

system and climatic processes responsible for the geochemical OM signature (e.g. Wunsch, 593 

2010).  594 

1.6 Implications for accuracy and precision 596 

 597 

Based on our findings, we preliminarily assess the sources of inaccuracy and imprecision on 598 

C/N (ΣE), δ13C (ΣC) and δ15N (ΣN

 600 

) values from sample bulk OM as follows: 599 

ΣE (on individual C/N values) = ed +epic + epin + esh + ess + ean

 602 
  601 

ΣC (on individual δ13C values) = cd +cic + csh  + css + can  603 



 604 
ΣN (on individual δ15N values) = nd + nin + nsh + nss + nan

 606 
  605 

The inaccuracy and imprecision associated with each component of the above equations are 607 

summarised in Table 3. The diagenesis component (ed; cd; nd) can contribute a significant 608 

bias relative to the organic signal of the original source OM from pre- and post deposition 609 

processes, such as oxidation and microbial reworking, the extent of which will vary 610 

depending on the length of time OM takes to reach the sediment, the productivity in the water 611 

column and dissolved oxygen concentrations (Meyers, 1994; Krull et al., 2002; Lehmann et 612 

al., 2003). For example, Meyers and Ishiwatari (1993) noted that a diagenetic decrease in C/N 613 

values could occur in lake sediments of the order of ~ 26. A loss of non-lignin compounds 614 

from a C4 marsh plant depleted δ13C by ~ 4 ‰ (Benner et al., 1987), though in sediments 615 

evidence for diagenetic bias is contradictory. Spiker and Hatcher (1984) noted a 4 ‰ 616 

depletion in lake sediments which they attributed to the loss of 13C-rich carbohydrates, 617 

whereas Rea et al (1980) and Jasper and Gagosian (1989) noted no bias due to diagenesis. 618 

For δ15N, the effect of diagenetic processes on the primary sedimentary OM signal is also 619 

contradictory. Altabet and Francois (1994) reported a 5 ‰ enrichment in δ15N and Sigman et 620 

al (1999) noted an increase of ~ 4 ‰ in δ15N from Southern Ocean sediments. However, de 621 

Lange et al (1994) reported a decrease of ~1 ‰ in δ15N, and Freudenthal et al (2001) noted a 622 

~ 1 ‰ bias in eastern Atlantic Ocean sediments with no clear trend towards an increase or 623 

decrease in δ15N. The degradation of organic compounds, which have distinctive isotopic 624 

signatures, appears to be non-discriminatory, implying that diagenetic processes must be 625 

accounted for on a system by system basis. For example, the loss of readily degradable amino 626 

acids and hydrocarbons, relative to terrestrially sourced compounds such as lignins and lipids, 627 

would deplete δ15N (loss of 15N and 13C). These contradictory results clearly imply that there 628 

is no emergent generalised affect on the δ13C and δ15

 632 

N signature of bulk OM, and this can 629 

differ markedly between oxic and anoxic conditions (Tyson, 1995). However, a detailed 630 

molecular level investigation may allow the estimation of this bias on bulk OM.  631 

The influence of IC and/or IN (epic; epin; cic; nin) is dependent upon the efficiency of removal 633 

during acid treatment, and the structure and composition of the inorganic component (e.g. Al-634 

Aasm et al., 1990; Yui and Gong, 2003; Knies et al., 2007). The bias on bulk δ13C in this 635 

study was shown to be an enrichment of ~ 6.8 ‰ at 8.76 m, though it was noted that residual 636 

IC could result in an overall depletion of the bulk δ13C value (e.g. Hoefs, 1973; Hangari et al., 637 



1980; Mozley and Burns, 1993; Pierre et al., 2009). Additionally, and similar to δ13C,  the 638 

extent of the bias on δ15N is less obvious owing to the similar values in both organic and 639 

inorganic N (Knies et al., 2007). The homogeneity of the sample material (esh; csh; nsh) can 640 

also contribute additional imprecision, likely increasing substantially on samples poorly 641 

homogenised or with significantly low amounts of C and N (e.g. Basiden et al., 2002). 642 

Sample size can also contribute significant bias, particularly those low in C and N before acid 643 

pre-treatment is undertaken (ess; css; nss). Where sample size becomes very small (especially 644 

in conjunction with an acid pretreatment), %C and %N can increase by over 50% (see Brodie 645 

et al., 2011a) and δ13C and δ15N values tend to become more positive, suggesting at least a ~ 646 

1 ‰ deviation in the OM value (our analysis were carried out on sample sizes significantly 647 

above machine baseline conditions and therefore do not carry this additional inaccuracy). 648 

Finally, the analytical term (ean; can; nan), comprising the bias from acid treatment and the 649 

instrument precision. Pre-analysis acid treatment has been shown here, and elsewhere, to 650 

substantially bias the elemental C and N values of sample OM through degradation of the OC 651 

fraction and/or inefficient removal of the IC fraction (and differential rates of removal linked 652 

to IC stoichiometry). For this core, we estimate this error to be in the region of ~ ± 2 – 3.5 ‰ 653 

associated with the OC fraction and ~ 6.8 ‰ (enrichment) associated with the IC fraction. 654 

The instrument precision, which is inherent to all measurements in this study, is of the order 655 

of ± 0.5 for C/N values, ± 0.1 ‰ for δ13C values and ± 0.1 ‰ for δ15

 657 

N values.  656 

We caution, however, that whilst these equations are more representative of the absolute 658 

inaccuracy and imprecision on measured C/N, δ13C and δ15

 666 

N values than instrument 659 

precision alone, the terms are by and large inherently non-linear and unpredictable, implying 660 

tht absolute inaccuracy and imprecision is unobtainable. An assumption of linearity of these 661 

terms would be seriously flawed. We conclude that the unpredictable, non-linear biasing to 662 

the data within sample horizons and with varying magnitude and proportions within and 663 

between sample horizons can undermine a robust interpretation of the data, with the size of 664 

bias varying considerably between different cores. 665 

Table 3: Summary of inaccuracy and imprecision on C/N, δ13C and δ15

 670 

N values measured 667 

from bulk OM. The size of bias is estimated from past literature (see section 1.6 for a 668 

discussion and evaluation) and biases due to pre-analysis acid treatment reported in this study. 669 



1.7 Summary and Recommendations 671 
 672 
1. This study has clearly demonstrated significant non-linear bias on bulk C/N, δ13C and 673 

δ15

2. In light of our findings, we recommend that researchers do not interpret the minutiae of 680 

the bulk δ

N values of OM associated with pre-analysis acid treatment method in a stratigraphical 674 

sequence of samples. We show that there is an inconsistency in the use of any one method 675 

within and between sample horizons and that where this bias is evident it is significantly 676 

above instrumental precision. The differences appear to be the result of (i) differential 677 

rates of removal of IC and (ii) disproportionate biasing to OC fraction of the sample 678 

material. 679 

13C and δ15N of OM data, but restrict interpretations and discussions to those 681 

shifts significantly greater than a robust estimate of the inaccuracy and imprecision on the 682 

data (i.e. ~ 4 ‰ on this down-core data). The estimation presented here is considerably 683 

greater than is normally assumed (i.e. standard instrument precision) and underlines the 684 

importance of determining the size of the bias on C/N, δ13C and δ15N data in a down-core 685 

record. Consequently, δ13

3. The biases discussed here make the environmental interpretation of C/N values (e.g. 689 

terrestrial versus aquatic) and δ

C data should be used as a first-order indication of potential 686 

changes in sample OM, which could be further investigated for environmental and 687 

climatic change at the molecular level.  688 

13C values (e.g. C3 versus C4 vegetation) problematic. For 690 

example, at 7.80 m C/N values range from 12 – 32 between methods and at 8.60 m δ13C 691 

values range from –21.3 to –12.5 ‰. In addition, it also makes the interpretation of C/N 692 

versus δ13C, C/N versus δ15N and δ13C versus δ15

4. The rinse method can artificially elevate %C and %N values and significantly undermine 694 

the integrity of C/N values. We recommend including a centrifugation step in this method, 695 

but warn that this will not guarantee resolution of the problems associated with decanting. 696 

N bi-plots questionable. 693 

5. The 5% HCl capsule method appears to be less efficient in the removal of IC leading to 697 

more enriched δ13C values (e.g. 8.76 m), and so we therefore do not recommend the use 698 

of this reagent within the capsule method. However, we warn that the assumption that 699 

residual IC causes an overall enrichment of the measured bulk δ13C value is invalid, 700 

where δ13C values of IC can be very negative. This suggests a comprehensive 701 

understanding of sample IC alongside sample OC is required without which C/N and δ13C 702 

values of OM may be unreliable. 703 
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clayey silt with small amounts of amorphous organic materials. 
Very fine to coarse sand grains throughout.

35148 ± 136
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Clayey Silt Black amorphous 
organics
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Material

Sand

Wood Fragment
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 δ13 C/N C 

Depth (m) P-value           
(R-Squ) Difference (‰) Cause P-value         

(R-Squ) Difference Cause 

7.09 0.197 
(20.98) nd - 0.00 

(74.05) 3 – 4 5% and 20% HCl capsule 
higher than 5% rinse  

7.16 0.183 
(22.52) nd - 0.18 

(23.18) nd - 

7.32 0.04 
(49.01) 0.2 

5% HCl more enriched 
than 20% HCl in rinse 

method 

0.29 
(11.69) nd - 

7.48 0.55 
(0.00) nd - 0.143 

(27.67) nd - 

7.64 0.00 
(94.69) 1.0 

20% HCl capsule sample 
more enriched than 20% 

HCl rinse sample 

0.97 
(0.00) nd - 

7.80 0.00 
(98.25) 0.6 – 1.5 

All samples differ over 
1.5 ‰ range, with more 
enriched values in the 

capsule method. 

0.00 
(95.63) 22 5% HCl capsule higher 

than all other samples 

7.96 0.01 
(64.38) 0.3 – 0.7 

5% HCl capsule more 
enriched than all other 

methods 

0.94 
(0.00) nd - 

8.12 0.01 
(60.68) 0.4 

Capsule method samples 
more enriched than rinse 

method samples 

0.02 
(58.67) 4 – 6 

5% and 20% capsule 
method different and 20% 
HCl capsule different from 

rinse samples 

8.28 0.00 
(87.85) 0.2 

Capsule method slighted 
more depleted than rinse 

method 

0.08 
(38.60) nd - 

8.44 0.01 
(65.66) 0.4 – 0.6 20% HCl capsule more 

enriched all other samples 
0.52 

(0.00) nd - 



8.60 0.00 
(98.83) 0.4 

5% HCl capsule more 
enriched than 20% HCl 
capsule, and both rinse 

samples 

0.00 
(87.59) 16 

Capsule method samples 
higher than rinse method 

samples 

8.76 0.00 
(95.72) 1.2 – 6.8 

5% HCl capsule more 
enriched than all other 

samples. 20% HCl capsule 
most depleted. 

0.00 
(66.52) 98 – 103 

5% HCl and 20% HCl 
capsule method higher 

than rinse method samples. 

8.92 0.01 
(81.77) 2.6 – 3 5% HCl more enriched 

than all other samples. 
0.00 

(94.19) 20 – 25 5% HCl capsule higher 
than other samples 

9.08 0.00 
(97.53) 0.6 – 1.0 

Capsule samples more 
depleted than rinse 

samples. 5% HCl rinse 
more enriched than 20% 

HCl rinse. 

0.00 
(87.87) 7 

Capsule method samples 
higher than rinse method 

samples 

9.24 0.00 
(97.71) 1.0 

5% HCl capsule more 
enriched than all other 

samples 

0.04 
(47.69) 20 5% HCl capsule higher 

than other samples 

9.40 0.07 
(40.58) nd - 0.03 

(54.35) 10 5% and 20% HCl capsule 
method samples different 

9.56 0.74 
(0.00) nd - 0.31 

(9.77) nd - 

9.72 0.00 
(88.05) 1.0 – 1.2 

Rinse method samples 
more depleted than capsule 
method samples. 20% HCl 

capsule more enriched 
than all other samples 

0.06 
(41.74) nd - 

9.88 0.09 
(35.93) nd - 0.04 

(49.52) 7 5% HCl capsule different 
from 20% HCl rinse 

10.02 0.00 
(94.86) 1.0 – 1.8 

Rinse samples more 
depleted than capsule 

samples. 5% HCl rinse 

0.04 
(49.95) 8 5% HCl different from 

both rinse samples 



most depleted 

10.20 0.00 
(94.72) 0.3 – 0.6 

Rinse method sample 
more depleted than capsule 

samples 

0.00 
(74.84) 6 – 8 5% HCl capsule higher 

than other samples 

 



 δ15N 

Depth (m) P-value 
(R-Squ) Difference (‰) Cause 

7.09 0.00 
(84.07) 0.46 

Acid treated samples 
lower than untreated 

samples. 20% HCl rinse 
lowest. 

7.16 0.00 
(89.14) 0.77 

Acid treated samples 
lower than untreated 

samples 

7.32 0.02 
(51.33) 0.46 

Acid treated samples 
lower than untreated 

samples. Capsule method 
samples lowest. 

7.48 0.00 
(79.94) 0.42 

Capsule method and 5% 
HCl rinse lower than 

untreated samples and 
20% HCl rinse. 

 



Process  C/N Bias δ13 δC Bias 15N Bias 

Diagenesis 

Bias variable e cd nd d 

Explanation 
Bias associated with 

breakdown, oxidation and 
reworking of initial OM. 

Bias associated with 
breakdown, oxidation and 
reworking of initial OM. 

Bias associated with 
breakdown, oxidation and 
reworking of initial OM. 

Size of Bias ~5 – 26 ~ 0.2 – 4 ‰ ~ 0.1 – 5 ‰ 

Inorganic Carbon 

Bias variable e cpic 

N/A 

in 

Explanation 
Bias associated with the 

structure, composition and 
quantity of sample IC. 

Bias associated with the 
structure, composition and 

quantity of sample IC. 
Size of Bias ± 1 – 60 ± 3.4 ‰ 

Inorganic Nitrogen 

Bias variable e

N/A 

pin nin 

Explanation 
Bias  associated with the 

structure, composition and 
quantity of sample IN. 

Bias associated with the 
structure, composition and 

quantity of sample IN. 
Size of Bias ± 1 – 5 indefinable 

Analytical Bias 

Bias variable e can nan an 

Explanation 
Bias associated with acid 
treatment of sample (and 

instrument precision).  

Bias associated with acid 
treatment of sample (and 

instrument precision). 

Bias associated with acid 
treatment of sample (and 

instrument precision). 
Size of Bias ± 0.5 – 15 (± 0.2) ± 4 ‰ (± 0.1 ‰) ± 0.7 ‰ (± 0.1 ‰) 

Sample Size 

Bias variable e css nss ss 

Explanation 
Bias associated with the 

amount of C and N 
supplied for analysis. 

Bias associated with the 
amount of C and N 

supplied for analysis. 

Bias associated with the 
amount of C and N 

supplied for analysis. 
Size of Bias ± 0.5 – 100 0.5 ‰ (or greater) 0.5 ‰ (or greater) 

Sample Homogenisation 

Bias variable e csh nsh sh 

Explanation 
Bias associated with 

homogenisation of sample 
material prior to treatment. 

Bias associated with 
homogenisation of sample 
material prior to treatment. 

Bias associated with 
homogenisation of sample 
material prior to treatment. 

Size of Bias ± 0 – 0.2 ± 0.0 – 0.1 ‰ ± 0.0 – 0.1 ‰ 
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