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ABSTRACT:  1 

This paper introduces the development of a dynamic parallel algorithm for conducting 2 

hydrological model simulations. This new algorithm consists of a river network 3 

decomposition method and an enhanced master-slave paradigm. The decomposition 4 

method is used to divide a basin river network into a large number of subbasins, and the 5 

enhanced master-slave paradigm is adopted to realize the function of this new dynamic 6 

basin decomposition method through using the Message-Passing Interface (MPI) and 7 

C++ language. This new algorithm aims to balance computation load and then to 8 

achieve a higher speedup and efficiency of parallel computing in hydrological 9 

simulation for the river basins which are delineated by high-resolution drainage 10 

networks. This paper uses a modified binary tree codification method developed by Li 11 

et al. (2010) to code drainage networks, and the basin width function to estimate the 12 

possible maximum parallel speedup and the associated efficiency. As a case study, with 13 

a hydrological model, the Digital Yellow River Model, this new dynamic parallel 14 

algorithm is applied to the Chabagou basin in northern China. The application results 15 

reveal that the new algorithm is efficient in the dynamic dispatching of simulation tasks 16 

to computing processes, and that the parallel speedup and efficiency are comparable 17 

with the estimations made by using the basin width function. 18 

Keywords: Basin width function; Digital drainage network; Domain decomposition; 19 

Dynamic parallelization; Master-slave paradigm; Modified binary tree codification 20 

21 
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Software availability 1 

Program title: MPI control 2 

Description: A graphic user interface for the MPI-based parallel hydrological model, 3 

including the setup of parameters, the start/stop control of simulation, and 4 

the performance and progress displays of the simulation 5 

Developer: Dr. T. Li and Prof. G. Wang 6 

Platform: PC with Microsoft Windows 7 

Source language: Visual C++ 8 

Program size: 2 MB 9 

Cost: Free 10 

Availability: Contact the developers 11 

Program title: DWM.main 12 

Description: The platform for parallel hydrological simulation, which dynamically 13 

decomposes a basin river network into a number of subbasins and 14 

dispatches them to slave computing processes 15 

Developer: Dr. T. Li, H. Wang, and Prof. G. Wang 16 

Platform: PC 17 

Source language: C++ 18 

Program size: 1 MB 19 

Cost: Free 20 

Availability: Contact the developers 21 

22 
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1. Introduction 1 

Computation capacity has been rapidly advanced since the emergence of parallel 2 

computation techniques. Generally, parallel computing can be achieved at four levels, 3 

i.e., bit-level, instruction level, data level and task level (Culler et al., 1999). Bit-level is 4 

achieved by increasing processor word size, and instruction level is realized by using 5 

instruction pipelines and superscalar processors. Data level and task level refer to 6 

distributing the data and the execution processes (threads), respectively, across different 7 

parallel computing cores. For data and task parallelization, a program is executed 8 

simultaneously by multiple processes on a computer system. Usually, each process is 9 

conducted by one processor core. In recent years, the number of cores of a computer 10 

processor can be a few hundred, which has encouraged more extensive implementation 11 

of parallel computation. 12 

The parallel computing can be used to shorten computation time through 13 

exploiting the concurrency of a simulation problem. The concurrency refers to that the 14 

simulation problem can be decomposed into several subtasks, which can be handled 15 

simultaneously. However, during numerical simulation, dependency usually coexists 16 

with concurrency. Dependency refers to the execution of some subtasks is subject to the 17 

accomplishment of some other subtasks. Therefore, different parallelization problems 18 

have different implementation schemes for shortening the simulation duration. 19 

In water and environmental research fields, the algorithms for realizing parallel 20 

computing can be categorized into two types; one is for the optimization of model 21 

parameters, and the other is for the model simulation through using domain 22 

decomposition. For example, Vrugt et al. (2006) developed an optimization algorithm 23 

for application of parallel computing to stochastic parameter estimation in 24 

environmental models. Sharma et al. (2006a, b) and Muttil et al. (2007) proposed 25 
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parallel schemes for calibrating model parameters. For the usage of domain 1 

decomposition, parallel algorithms are used to partition the temporal/spatial domain 2 

into sub domains; however, because almost all natural processes are temporally 3 

successive, domain decomposition is mostly realized spatially. This paper focuses on 4 

the development of a technique used in hydrological simulations based on spatial 5 

domain decomposition. 6 

The different forms of a basic hydrological simulation unit, such as a river reach, a 7 

hydrological response unit, a grid cell and a finite element cell, can be used by different 8 

hydrological models. A basin can be partitioned into a number of subbasins. A subbasin 9 

usually consists of a number of the basic hydrological simulation units, which are inter-10 

connected since stream water flows from a subbasin’s upper reach and converge to its 11 

downstream subbasin via its outlet reach. River network connectivity is controlled by 12 

the basin topography. It is worth noting that groundwater is normally treated as 13 

following the direction of streamflow, though the simulation of the groundwater flow is 14 

more complex than that of streamflow. It can, therefore, enhance the efficiency of 15 

parallel computing remarkably to decompose a basin into a number of subbasins. This 16 

has been proved effective by several studies (e.g. Apostolopoulos and Georgakakos, 17 

1997; Vivoni et al., 2005; Cui et al., 2005; Kolditz et al., 2007). The study of 18 

Apostolopoulos and Georgakakos (1997) proposed a general parallel algorithm to 19 

divide a drainage basin into subbasins for hydrological simulation. Vivoni et al. (2005) 20 

developed a parallel version of a distributed hydrological model, tRIBS, by using 21 

subbasin decomposition. Cui et al. (2005) parallelized a distributed hydrological model, 22 

r.water.fea, by partitioning a river basin into subbasins and distributing them to 23 

different computing processes with the control of computation load balance. Kolditz et 24 

al. (2007) used an approach to conduct parallel computing of a hydrological soil model 25 
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over subbasins. 1 

However, the size of the subbasins and the degree of their related drainage 2 

network complexes, which affect the computation time in hydrological simulation, 3 

within a basin may vary greatly. Therefore, the control of computation load balance is 4 

challenging. In a parallel simulation, a static parallel algorithm refers to that one 5 

computing process conducts only one subbasin, and a dynamic parallel algorithm refers 6 

to that a computing process can undertake several subbasin simulations one by one. For 7 

a static parallel algorithm, a partition method is required to separate a basin equally into 8 

a number of subbasins. If the number of subbasins is sufficiently larger than the number 9 

of computing processes, a dynamic parallel algorithm can be applied, and load balance 10 

control can be achieved effectively. However, because of the complicate logic 11 

relationships among the river reaches in a drainage network, dynamic parallel 12 

algorithms for hydrological simulations have not appeared in the literature yet. This 13 

paper investigates the dynamic decomposition of a drainage network into a large 14 

number of subbasins with effective control of load balance, and then develops a 15 

dynamic parallelization algorithm for hydrological simulation. 16 

The emergence of the parallelization of hydrological models is supported by the 17 

easy-to-use parallel programming standards, such as the Message-Passing Interface 18 

(MPI) (MPI Forum, 2008) and Open Multi-Processing (OpenMP) application program 19 

interface (Chapman et al., 2007). These programming standards make it possible to 20 

obtain a new program running in a parallel environment simply by adding functions, 21 

compiler directives and inter-process communications to the original serial program 22 

code. However, since the parallel programs and simulation models are blended, neither 23 

the frameworks nor the codes for parallelization can be reused by other models. 24 

Moreover, the simulation proceeding status using these programming standards is not 25 
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usually user-friendly. To overcome the above limitations, this paper uses the MPI and 1 

C++ language to develop a user-friendly interface for parallel computing, which is 2 

reusable by different hydrological models. 3 

For the dynamic parallelization of hydrological simulations, the decomposition of 4 

a basin into a large number of subbasins is necessary. Therefore, an effective method 5 

for coding a basin drainage network, which can mark the logical relationships among 6 

the river reaches, is indispensable. Due to the tree-like shape of drainage networks, 7 

complex logical operation is needed to divide a drainage network into subbasins 8 

associated with different priorities, which represent the dependency in parallel 9 

simulation. Li et al. (2010) developed a modified binary-tree-based method for coding 10 

drainage networks, which enhances the efficiency of logical operations on the structure 11 

of a drainage network, and this paper uses the codification method to develop the 12 

dynamic decomposition method. 13 

2. Dynamic decomposition of simulation tasks 14 

2.1 Dynamic basin decomposition 15 

A basin can be decomposed into as many subbasins as there are computing 16 

processes when a static parallel algorithm is used. However, for a static parallel 17 

algorithm, the computing processes for conducting the flow routing of downstream 18 

subbasins have to wait for the results from the related upstream subbasins, and the idle 19 

time for waiting is difficult to predict and control, which results in lower parallel 20 

efficiency. Therefore, a dynamic algorithm for domain decomposition is more able to 21 

gain higher parallel efficiency for hydrological simulations. This study develops a 22 

dynamic algorithm (see Fig. 1) for dividing a drainage network into a number of 23 

subbasins and dispatching them to each computing process. From Fig. 1, it can be seen 24 
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that a subbasin, for example subbasin 7 in the figure, can be decomposed from the 1 

whole drainage network and dispatched to an idle process, for example, computing 2 

process 1. At the last step of the simulation, the subbasin at the basin outlet, subbasin 3 

16 (see Fig. 1), is dispatched and solely simulated. 4 

From the example given in Fig. 1, it can be observed that there are two types of 5 

subbasins. One type is the headwater subbasins, which do not need the input data from 6 

the upstream. The other type is those subbasins which need the input data from their 7 

related upstream subbasins, and their simulation sequences and the data transferring 8 

paths must follow the routes from the upper to downstream subbasins (see the arrow 9 

lines in Fig. 1). Intuitively, to minimize the simulation time, the farthermost subbasin 10 

(e.g., subbasin 1 in Fig. 1) from the basin outlet should be simulated first. 11 

To achieve the dynamic decomposition of a basin, the binary-tree-based structural 12 

method for coding river reaches in a drainage network developed by Li et al. (2010) is 13 

adopted in this study. This codification method treats a drainage network as a binary 14 

tree, and each river reach as a tree node. The basin outlet reach is the root node, and all 15 

the tree nodes are preferentially arranged to the left for indicating mainstem-tributary 16 

relationships. In this classification, a left node is primary, which indicates that the 17 

associated reach is the local mainstem, and the corresponding right node is the 18 

secondary reach, which is the local tributary (see Li et al. (2001) for details). Each river 19 

reach associated with its hillslopes is designated by a code with two components, 20 

denoted as (L, V). The value of component L represents the level of a node in a binary 21 

tree, which is the topological distance of the reach to the basin outlet. For the nodes 22 

with the same level of L, their components of V are numbered by a series of sequential 23 

integers from left to right, and the series starts with zero and takes vacant nodes into 24 

account. According to the way of assigning codes, for any given river reach (L, V), its 25 
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primary and secondary upper reaches are (L+1, 2V) and (L+1, 2V+1), respectively, and 1 

its downstream reach is (L-1, V\2), where “\” denotes the integer division. By such a 2 

method, a river reach, with its associated hillslopes, can be logically coded from the 3 

basin outlet to the headwaters. 4 

With the application of the modified binary tree codification, the dynamic basin 5 

decomposition method is developed (see Fig. 2 for its flow chart). At the beginning of 6 

Fig. 2, a binary tree data structure for describing the basin drainage network is 7 

constructed in the computer memory, RAM (Random-access memory), and two 8 

simulation status flags, Ntask and Ncalculating, are initialized for each reach so as to control 9 

the scale of split-off subbasins and to indicate the upstream-downstream dependency, 10 

respectively. Ntask of a reach indicates the number of waiting reaches (for conducting 11 

the simulation) in its contributing area, and its initial value is the number of all the 12 

contributing reaches. Ncalculating of a reach denotes the number of subbasins undertaking 13 

simulation in the reach’s associated upper subbasins, and its initial value is 0. 14 

After the initialization, Fig. 2 shows that the split demands from idle computing 15 

processes, which are the computing processes just initialized or completing a 16 

simulation task, are repeatedly checked. Once a split demand is received, the search 17 

procedure is executed to find out an available subbasin. This sequence ensures that a 18 

bunch of river reaches (i.e., an available subbasin) far from the basin outlet are split off 19 

with high priority. The flag of Ncalculating determines whether a reach is available for 20 

simulation. If Ncalculating of a reach in a subbasin is greater than 0, which indicates that 21 

some reaches in this reach's upper contributing area are still under simulation, the split 22 

off of its associated subbasin is not allowed. In addition, the scale of a split-off subbasin 23 

is controlled by the comparison of the flag Ntask with two parameters, namely Nmin and 24 

Nmax (see Fig. 2). How to determine these two parameter values is discussed in Section 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Page 10 of 32 

3. When Ncalculating of a reach is zero and its flag Ntask is between Nmin and Nmax, the 1 

reach, with some of its associated upper reaches, can be grouped as a subbasin, which is 2 

available to split off from the river network for simulation. 3 

From Fig. 2, it can be observed that once an available subbasin is detected, it is 4 

disconnected from the binary tree data structure and converted to an array, where the 5 

reaches are arranged in the order of calculation, namely the descending order of the 6 

component L of the binary-tree-based river code. Meanwhile, the Ntask and Ncalculating of 7 

each reach which is downstream of the split-off subbasin are updated; the value of the 8 

Ntask of each reach is subtracted by the number of reaches in the split-off subbasin, and 9 

the value of the related Ncalculating is increased by 1. When the simulation of this 10 

subbasin is complete, the Ncalculating of each of downstream reaches is subtracted by 1, 11 

which makes those downstream reaches available for simulation later on. In the above 12 

algorithm, the movement of the search cursor is efficient, since the topology of the 13 

drainage network is represented by the binary tree data structure (see Li et al. (2010) for 14 

details). 15 

2.2 Task scheduling and data transfer 16 

The new algorithm for decomposing a drainage network is dynamic, and a master-17 

slave paradigm (see Fig. 3) introduced by Li et al. (2006) for task scheduling is adopted 18 

to fulfill the functions of the new algorithm. The master process takes charge of basin 19 

decomposition and task dispatch, and the slave computing processes only conduct 20 

hydrological simulation. This study enhances the master-slave paradigm by adding a 21 

data transfer process, which temporarily stores intermediate simulation results on the 22 

interface of subbasins in RAM and then passes them to slave processes when requested. 23 

Therefore, there are three types of processes in the new parallel paradigm, namely, the 24 

master process, slave process and data transfer process. Moreover, a relational database 25 
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server is included (see Fig. 3), which is used to manage input and output data in 1 

hydrological simulations. With the database server, high efficient manipulation of 2 

hydrological simulation data can be exploited, and simulation results from different 3 

slave computing processes can be saved into the database. 4 

Fig. 3 shows the flow chart of three types of processes. The master process 5 

decomposes the drainage network after receiving a split demand from a slave process 6 

(see Fig. 2). The master process controls the slave processes through receiving the split 7 

demands and dispatching the available subbasin reach codes. Receiving a completion 8 

message from a slave process, the master process updates the status flag Ncalculating and 9 

returns to check the next split command.  10 

In Fig. 3, the kernel of all the multiple slave computing processes is a hydrological 11 

model. After the initialization or the completion of a simulation task, a slave computing 12 

process sends a split demand to the master process, and then receives the reach codes of 13 

a subbasin. Accordingly, if the reach codes are valid, the slave process communicates 14 

with the data transfer process to obtain simulated inflow results of the subbasin, and 15 

reads the reach parameters of the hydrological model from the database server. Then, 16 

the slave process conducts the hydrological simulation, and transfers the simulation 17 

results to the database. After that, the slave process sends a completion message to the 18 

master process, and sends the simulation results (e.g., runoff) of the outlet reach of the 19 

subbasin to the data transfer process (i.e., inflow of its downstream subbasin). 20 

Afterwards, the slave process issues a new split demand to the master process for 21 

conducting the next task. Upon receiving a void reach code, the slave process quits 22 

parallel computing. 23 

In parallel simulation, a single slave process does not conduct the simulation for 24 

the whole drainage network. Nevertheless, the simulation procedure is driven by the 25 
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dialog between the master process and slave processes through the iterative loop of 1 

request—split—new request—new split. When the simulation procedure approaches 2 

the basin outlet, the number of the slave processes used in the simulation gradually 3 

decreases because of the decreasing number of available subbasins, and the last slave 4 

process, which is the key slave process mainly for determining the total simulation 5 

duration, simulates the subbasin at the outlet (e.g., subbasin 16 in Fig. 1). 6 

The basin decomposition dynamically divides the whole drainage network into a 7 

number of subbasins, resulting in the necessity of transferring the intermediate results 8 

from an upstream subbasin to its connected downstream subbasin. Once the simulation 9 

of a subbasin is completed, the simulation results of the outlet reach of the subbasin are 10 

transferred to its next downstream subbasin. However, during parallel computation, this 11 

downstream subbasin usually has not been decomposed and dispatched to a slave 12 

computing process, and, therefore, those intermediate simulation results are temporarily 13 

stored in the RAM of the data transfer process until they are requested by its 14 

downstream subbasin (see Fig. 3). Consequently, the logical connections among split-15 

off subbasins in the proposed parallel algorithm can be achieved dynamically and 16 

efficiently. 17 

3. Estimation of parallel simulation performance 18 

Compared with static parallel algorithms (e.g. Vivoni et al., 2005; Kolditz et al., 19 

2007), the new algorithm for dynamic decomposition of a drainage network ensures the 20 

flexibility and scalability of parallel hydrological simulation. Furthermore, to better 21 

make use of the concurrency for parallel hydrological simulation, it is necessary to 22 

optimize the parameters of Nmin and Nmax for obtaining a suitable split-off subbasin size. 23 

To this end, this study develops a method for estimating the performance of the new 24 

parallel algorithm through using the basin width function (Veitzer and Gupta, 2001). 25 
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The performance of a parallel algorithm is generally evaluated by two 1 

measurements, namely speedup and efficiency (Scott et al., 2005). The speedup, Sp, of 2 

an algorithm, which reflects the speed advantage of using a parallel algorithm, is 3 

defined as follows: 4 

Sp=T1/Tp          (1) 5 

where T1 and Tp are the simulation durations obtained by using one and p computing 6 

processes, respectively. The efficiency, Ep, measures the fraction of time that a 7 

computing process is effectively used and is calculated below: 8 

Ep=Sp/p          (2) 9 

It is expected that a parallel simulation can be finished promptly with 10 

minimization of wastage of computation resources, and will also maximize the speedup 11 

to result in higher efficiency. However, there is a tradeoff between speedup and 12 

efficiency; normally, in parallel simulation, the higher the speedup the lower the 13 

efficiency. Therefore, the optimization of parallel simulation is necessary. 14 

In this study, to evaluate the speedup and efficiency of the new algorithm, three 15 

conditions in hydrological simulation should be clarified. The first is that the resolution 16 

of a drainage network used in the hydrological simulation is determined by the 17 

resolution of terrain data (e.g., digital elevation model (DEM) data) and the simulation 18 

objectives. Therefore, the total number of the river reaches in a drainage network, 19 

denoted as n, is fixed, and the hydrological simulation is conducted over each river 20 

reach, which is denoted as a basic simulation unit (or a minimum subbasin). 21 

The second condition is that a coarse drainage network should be extracted from 22 

the same terrain dataset. Using the dynamic basin decomposition, a number of 23 

subbasins are obtained from the simulated drainage network. This coarse drainage 24 

network approximately represents the topological relationship of these dynamic split-25 
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off subbasins, and then the estimation of parallel speedup and efficiency can be 1 

performed. The resolution of this coarse network is based on the two parameters Nmin 2 

and Nmax (see subsection 2.1 and Fig. 2), which determine the number of split-off 3 

subbasins. Fig. 4(a) shows the drainage network of the Chabagou basin in northern 4 

China, which consists of 4912 reaches (Li et al., 2010) and is used to conduct 5 

hydrological simulation. Fig. 4(b) displays the relevant coarse drainage network of the 6 

same basin with 171 river reaches to represent the topology of the subbasins split off 7 

from Fig. 4(a) for conducting hydrological simulation, when Nmin and Nmax are set as 17 8 

and 35, respectively. 9 

The third condition is that the number of slave computing processes, p, is 10 

determined by the capacity of computer hardware. Generally one processor core 11 

executes one computing process, and then the available p cannot be larger than the total 12 

number of available processor cores. 13 

The tradeoff between speedup and efficiency is mainly determined by the number 14 

of computing processes and the number of split-off subbasins. With the given number 15 

of computing processes, if the number of subbasins simulated by each slave computing 16 

process is large, the total simulation duration will decrease, which leads to high parallel 17 

efficiency. However, if the number of subbasins is too large, the time used for 18 

transferring message and data among slave processes, the data transfer process and the 19 

database server (see Fig. 3) will increase, resulting in lower parallel efficiency. 20 

Therefore, it is critical to choose the appropriate scale of subbasins in parallel 21 

hydrological simulation, which is mainly determined by Nmin and Nmax. If the average 22 

number of river reaches in all the subbasins is navg, which is between Nmin and Nmax, the 23 

total number of split-off subbasins, N, of a study basin is computed as below: 24 

N=n/navg          (3) 25 
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In parallel simulation, one of the slave computing processes conducts simulation 1 

over the subbasin with the basin outlet reach, and this slave process is named as the key 2 

slave process, whose computation time is normally the longest. Therefore, the working 3 

time of the key slave process can be approximated as the simulation duration Tp, and 4 

the equation of computing Tp can be represented as follows: 5 

Tp=(tcalnavg+tcomm)Nd        (4) 6 

where tcal is the average time to run the hydrological model over one river reach, 7 

including obtaining basic information from the database server,  conducting simulation, 8 

and saving the required results to the database when necessary (see Fig. 3).  Nd is the 9 

number of subbasins handled by the key slave computing process. tcomm is the time for 10 

transferring (i.e., sending and receiving) simulation results for one river reach between 11 

a slave process and the data transport process. The last river reach of each subbasin is 12 

the boundary unit, and its simulation results need to transfer to the downstream. 13 

Therefore, the average communication time for one subbasin can be noted as tcomm. 14 

If the simulation for a whole drainage network is conducted by one computing 15 

process without any inter computing process communication (i.e., data transfer), the 16 

simulation time is determined by the sequential calculation of all the n river reaches as 17 

follows: 18 

T1=tcaln          (5) 19 

Therefore, by substituting Equations (4) and (5) into (1) and (2), the speedup and 20 

efficiency of the new parallel algorithm can be calculated as follows: 21 

d
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Due to the rather complicated nature of hydrological models, it can be assumed 1 

that the time for data transfer is much less than the average time required for the 2 

hydrological simulation, namely tcomm«tcal. Furthermore, navg can be relatively large, and 3 

then the value of tcomm/tcal/navg can be assumed to be 0, which implies that the influence 4 

of communication time on the speedup and parallel efficiency can be negligible. 5 

However, it is worth noting that when the scale of subbasins navg is too small and the 6 

number of slave processes p is relatively large, the relationship of tcalnavg<tcomm(p-1) can 7 

happen. Then, when a slave process finishes one subbasin simulation task and wants to 8 

communicate with the data transfer process, it is highly likely that the latter is busy in 9 

finishing a round of communication with all the other slave processes. Therefore, Tp 10 

will be determined by the consumption of the data transfer process instead of the key 11 

slave process, which will result in relatively lower speedup and efficiency. 12 

Consequently, the relationship of tcalnavg<tcomm(p-1) should be avoided. 13 

In the right-hand side of Equations (6) and (7), p is known, and N can be 14 

determined by Nmin and Nmax (though this is not explicit). In practice, N is estimated by 15 

a trial parallel computation for a short hydrological simulation duration (e.g. 1 hour) 16 

over a drainage network, and then the related coarse drainage network with N river 17 

reaches, which represent N split-off subbasins from the simulated drainage network, 18 

can be obtained. Nevertheless, the value of Nd in Equations (6) and (7) is difficult to 19 

estimate, since it is influenced not only by the topologic structure of a drainage network 20 

(the dependencies among subbasins) but also by the procedure of dynamic dispatching 21 

subbasins to slave computing processes in the parallel simulation. 22 

In this study, the width function (Veitzer and Gupta, 2001) of the coarse drainage 23 

network is used to estimate Nd. The width function represents the relationship between 24 

the number of river reaches, W(r), and their logical distance, r, (one logical distance is 25 
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one river reach) to the basin outlet. For example, Fig. 5 shows the width function of the 1 

coarse drainage network of the Chabagou watershed (Fig. 4(b)). From Fig. 5, it can be 2 

found that the maximum r, rmax, is 32, and, furthermore, the total sum of W(r) from r = 3 

1 to 32 is 171, which indicates that N in Fig. 4(b) is 171. 4 

From the topological width function (see Fig. 5), it can be learned that no matter 5 

how many slave computing processes are used, the mainstem subbasins have to be 6 

simulated (normally by the key slave process) from the upper reach to downstream one 7 

by one. Consequently, the number of subbasins handled by the key slave process should 8 

not be smaller than rmax, namely Nd≥rmax. Then, from Equation (6), the following 9 

relationship can be derived: 10 

maxmax

avgcal

comm
p r

N
r
N

nt
tS ��

�
� 11

1        (8) 11 

Accordingly, in Fig. 5, for N=171, rmax=32, using Equation (8), the maximum speedup 12 

for the Chabagou watershed basin equals 5.3. 13 

To maximize the parallel efficiency, Ep, for a given p, the Sp should remain near its 14 

maximum value N/rmax. Therefore, the minimum number of slave processes, p, which 15 

permits Nd=rmax, can be determined. In Fig. 5, a straight line representing the number of 16 

slave processes, p, is added. This straight line intersects with the width function, and, 17 

from Fig. 5, it can be observed that areas between this straight line and the width 18 

function are denoted from the right to the left as Ai (one below the straight line) and A’i 19 

(the corresponding one above the straight line) (i = 1, …, m), and Am+1. It is worth 20 

noting that if two (or several) consecutive areas are all below (or above) the p straight 21 

line, they are counted as one area; therefore, the distribution of the areas of Ai and A’i 22 

alternate below and above the straight line. When the p slave computing processes are 23 

used to conduct the simulation from the upper to downstream subbasins following the 24 
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descending order of r (i.e., from right to left of x axis in Fig. 5), the areas under the 1 

straight line would represent the remaining computing capacity, and the areas above the 2 

line represent the task loads beyond the computing capacity. If each task load beyond 3 

the computing capacity (the area above the line) can be handled in advance by the 4 

remaining computing capacity (the area below the line) to its right in Fig. 5, the 5 

minimum value of Nd, which equals rmax, can be maintained. Therefore, if the value of p 6 

is large enough, the following condition can be met: 7 

��
��

�
i

j
j

i

j
AA

j
11

' , for each i from 1 to m      (9) 8 

where m denotes the number of areas above the p straight line. The minimum value of p, 9 

which meets the above condition, can deliver the parallel computation with the 10 

maximum speedup and the corresponding highest efficiency for a given N, and is the 11 

optimized p. For example, in Fig. 5, for N=171, the optimized p, noted as popt, equals 7. 12 

For a given N, when the speedup is maximized and the number of slave processes 13 

is optimized, the parallel efficiency can be estimated as follows: 14 
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,         (10) 15 

where the subscript of opt denotes the optimized values. For example, in Fig. 5, Ep,opt 16 

reaches 5.3/7=0.76. Furthermore, the variables in the right-hand side of Equation (10) 17 

can be expressed by the areas in Fig. 5, namely �
�
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max ')( , and the parallel efficiency can be expressed as 19 

follows: 20 
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4. Software realization 2 

According to the new parallel algorithm, the software realization is conducted by 3 

using the MPI standard (MPI Forum, 2008) to achieve point to point message-passing 4 

among all the processes. There are several cost-free implementations of the MPI 5 

standard which are supported by different hardware and software platforms. The MPI 6 

parallel environment is highly flexible and can be implemented not only on high 7 

performance clusters, but also efficiently on cost-effective clusters composed by 8 

personal computers. In this study, the MPICH2 (Gropp et al., 2008) and C++ language 9 

are used to develop the program of DWM.main that conducts the activities of 10 

decomposing a drainage network and scheduling simulation tasks. DWM.main utilizes 11 

the MPI functions for the communication and coordination among computing processes, 12 

and is compiled as a console program running in Microsoft Windows. Moreover, 13 

several Windows application program interface functions are used to acquire indicators 14 

of the performance of simulation. 15 

DWM.main is designed as an object-oriented model. Namely, each river reach and 16 

its associated hillslopes are defined as a basic computation unit (coded as a C++ class). 17 

Therefore, the parallelization, including basin decomposition and task scheduling, will 18 

not affect the properties and simulations of the river reaches. A hydrological model is 19 

generally defined as a set of responses of a river reach, and different hydrological 20 

models can be integrated with DWM.main. Therefore, DWM.main and MPI control 21 

(see the next paragraph for details) can be reusable and constitute a parallel platform for 22 

digital watershed modeling. For example, a set of modules developed to simulate the 23 
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rainfall-runoff, soil erosion and sediment transport in the Yellow River basin, which is 1 

the Digital Yellow River Model (DYRIM) (Wang et al., 2007), has been integrated with 2 

the DWM.main. 3 

Furthermore, to visualize the control of the procedure of parallel computing, a 4 

graphical user interface, named MPI control, is developed. Fig. 6 shows the schematic 5 

of the MPI control. Parallel programs using the MPI functions are all initiated by the 6 

mpiexec command (see Fig. 6(a)), which is a console program for displaying the 7 

proceeding texts of the parallel program of DWM.main without the need for graphical 8 

interfaces (Fig. 6(b) and (c)). 9 

The main function of the MPI control is to convert the proceeding texts to 10 

graphical elements for displaying the simulation status (Fig. 6(d)). The proceeding texts 11 

arranged in predefined formats are transferred from the console to the MPI control, and 12 

then the text messages are interpreted by two categories of the predefined formats, the 13 

performance of hosts and the progress of simulation. Performance indicators displayed 14 

by the MPI control include the usage of resources (i.e., processor, memory and network) 15 

of hosts, time consumption of hydrological simulation, database access and 16 

communication and estimated remaining execution time. The progress of simulation is 17 

dynamically displayed in a map of the simulated drainage network. In this map, 18 

calculated, calculating and uncalculated river reaches are displayed in different colors, 19 

and the reaches calculated by different computing processes are also distinguished by 20 

different colors (Fig. 6(e)). 21 

5. Application 22 

The new parallel algorithm and related software developed in this paper are 23 

applied to the Chabagou River basin (see Li et al. (2010) for details). With an area of 24 

205 km2, the Chabagou River basin is located in Shaanxi Province in northern China 25 
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and it flows into the Wuding River, a tributary of the middle Yellow River (Huanghe in 1 

Chinese). The elevation of the study basin ranges from 920 m to 1300 m and the 2 

landform is the typical rolling Loess Plateau. Numerous gullies and channels incise the 3 

basin area, and, thus, a high-resolution basin delineation is needed for distinguishing 4 

hillslopes and gullies. In this application, a drainage network, with 4912 river reaches 5 

and a mean hillslope area of 1.67 hectare, is extracted from 50 m × 50 m DEM data 6 

(see Fig. 4(a)). Furthermore, floods and soil erosion in this basin are mainly caused by 7 

short duration and high intensity torrential rains, and therefore the transport of water 8 

and sediment are highly unsteady. Consequently, a high temporal resolution is also 9 

needed, and a large amount of computation is required to conduct the simulation of 10 

hydrological responses, soil erosion and sediment transport in the Chabagou basin. 11 

Parallel applications of the DYRIM in the Chabagou basin by using DWM.main 12 

and MPI control have been conducted for several cases over cost-effective computer 13 

clusters (see Wang et al. (2007) and Li et al. (2010) for the hydrological simulation 14 

results). In this paper, the simulation of the whole of August in 1967 is chosen to 15 

analyze the computation time and parallel speedup, while the whole procedure of 16 

calibration, validation and application and the hydrological and sediment results can be 17 

found in Li (2008). The time step adopted in the simulation is 6 minutes, and there are 18 

7440 time steps for 31 days in the August. 19 

In this study, the cost-effective cluster is composed by using a 4-way AMD 20 

Opteron server and several Intel Core multi-core CPU personal computers, which run 21 

the Microsoft Windows operating system and are interconnected by 100 Mbps switch 22 

Ethernet. A Hewlett-Packard rx2600 server is used as the database server running the 23 

UNIX operating system and the Oracle 9i database system. In this application, at most 24 
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14 slave computing processes (one core for each process) are used to examine the 1 

performance of the parallel simulation. 2 

The parameters, Nmin and Nmax, used in the new parallel algorithm are given in 3 

Section 3, and the corresponding coarse river network of the Chabagou basin is shown 4 

in Fig. 4(b). Table 1 gives the summary of the parallel speedup, efficiency and time 5 

consumption from parallel simulations through using the different numbers of slave 6 

computing processes. From Table 1, it can be observed that, along with the increase of 7 

the number of slave computing processes, the parallel efficiency generally decreases; if 8 

p is less than 13, the simulation duration, Tp, effectively decreases and the speedup 9 

increases steadily. 10 

Fig. 7 illustrates the total computation capacity (i.e., Tp*p), and the different 11 

portions of computer time (see Table 1 also). The total exploited computer time is the 12 

sum of calculation time, database access time, and communication time. The difference 13 

between the total computation capacity and the total exploited time is the total idle time 14 

of all the slave computing processes. The ratio of the total idle time to the total 15 

computation capacity (i.e., (Tp*p-(tcalnavgNd +tcommNd))/(Tp*p)) indicates the time fraction 16 

wasted by those slave processes which are quit simulation before the key slave process 17 

completes its last simulation task, which is named as the idle time portion herein. Fig. 8 18 

shows the parallel efficiency of the simulation and the idle time portion of slave 19 

processes. In Fig. 8, the difference between 1.0 and the real efficiency can be separated 20 

into two parts by the inverted idle time portion line. The upper part is due to the idle 21 

time, and the lower part is caused by the increase of time used in calculation, database 22 

access and communication. 23 

6. Discussion 24 

It is worth noting that the application results of the speedup and efficiency given in 25 
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Table 1, Figs. 7 and 8 in Section 5 do not exactly match the analytical results obtained 1 

by using Equations (8) and (10) in Section 3. Also, in Table 1, the estimated highest 2 

speedup, i.e. 5.3, is obtained when p is 13 instead of 7 (see Section 3). The main reason 3 

causing the difference between the application in Section 5 and the analysis in Section 4 

3 is that during dynamic parallelization the key slave computing process does not 5 

usually conduct the simulation for all of those subbasins along the river mainstem 6 

which result in the largest logical distance, rmax. In addition, for the different numbers 7 

of slave processes, the time for accessing the database and for hydrological simulation 8 

for each river reach, tcal, is not generally equal. Along with the increasing number of 9 

slave processes, tcal will increase (see Table 1), mainly due to two reasons. One is the 10 

heavier executing load imposed on the database server (leading to the increasing values 11 

in Column 5 of Table 1), and the other is the bottlenecks of simultaneous operation of 12 

disk and network on personal computers (leading to the increasing calculation time (see 13 

Column 4 of Table 1)). 14 

Nevertheless, the application results in Section 5 (see Table 1, Figs. 7 and 8) prove 15 

that the analytical results in Section 3 are valuable. From Section 3, a clear picture of 16 

the effects of applying the new parallel algorithm for hydrological simulations can be 17 

established.  According to the simulation objectives, the high-resolution DEM data and 18 

the number of available computing processes, a coarse river network can be obtained 19 

by optimizing the parallel parameters, Nmin and Nmax. Meanwhile, with the basin width 20 

function, the optimized number of slave computing processes, popt, can be obtained, 21 

which can be used to evaluate the possible speedup and efficiency in the parallel 22 

simulation. 23 

In Section 3, from Equations (8), (9) and (11), it can be observed that for a given N 24 

the number of popt can be evaluated by the shape of the topological width function of 25 
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the corresponding coarse drainage network. If the number of available slave processes 1 

is smaller than popt, the speedup can not reach the maximum value (see Table 1), and 2 

the efficiency can not be estimated by Equation (10). Nevertheless, since the remaining 3 

computation capacity (i.e., the areas below a smaller p straight line in Fig. 5) becomes 4 

smaller, the new dynamic parallel algorithm can balance the computation loads among 5 

slave processes more efficiently, and a larger efficiency of parallel computation can be 6 

obtained (see Table 1 and Fig. 8). Therefore, for a given N, to efficiently use the 7 

concurrency in hydrological simulation, if the number of available computing processes 8 

is larger than the current popt, the values of two parameters, Nmin and Nmax, should be 9 

reset smaller to obtain another coarse drainage network which would have a larger 10 

value of N. Then, the maximum available p can be the popt for the new coarse drainage 11 

network, and as a result the computation capacity can be effectively used. Therefore, in 12 

practice, following the above procedure, when the number of maximum available slave 13 

processes is known, an appropriate coarse drainage network and related topological 14 

width function can be obtained by the trial and error method until the maximum 15 

available p is close to or slightly less than the popt.  16 

For the new parallel algorithm, both the high speedup and efficiency can be 17 

achieved by using an appropriate subbasin sizes for the given number of slave 18 

processes. For example, in the application (see Section 5), if the available number of 19 

processor cores used for simulation is assumed as 8, basically, 7 of them can be used 20 

for slave computing processes. By the trial and error method, when Nmin and Nmax are 21 

set as 17 and 35, respectively, for the Chabagou watershed, popt is 7 obtained by using 22 

Equation (9) (see Section 3). Then, the speedup and efficiency of 4.24 and 0.606 (see 23 

Table 1) can be achieved. Comparing with the maximum speedup of 5.34 when p 24 

equals 13 (see Table 1), the speedup for the popt (i.e., 7) obtained by using the width 25 
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function is 4.24, which is -20.6% lower than 5.34. However, the efficiency of using p=7 1 

is 0.606, which is 47.4% higher than that (i.e., 0.411) of using p=13 (see Table 1). It can 2 

be concluded that the analytically estimated popt is acceptable in real application. 3 

7. Conclusions 4 

This paper developed a new parallel algorithm by using the method of dynamic 5 

basin decomposition, which can divide a drainage network into a large number of 6 

subbasins. This new parallel algorithm provides effective and efficient technical 7 

support for hydrological simulation on computer clusters. Furthermore, an analytical 8 

method is proposed to estimate the parallel speedup and efficiency. Based on the 9 

topological width function for drainage basins, this analytical method can be used to 10 

determine the maximum speedup, the optimal number of the parallel computing 11 

processes and related efficiency.  12 

To fulfill the functions of the new parallel algorithm, an enhanced master-slave 13 

paradigm, which includes the data transfer process, is proposed in this paper. The 14 

Message-Passing Interface (MPI) standard is used to program the proposed paradigm, 15 

and the main program, DWM.main, is produced. Then, a graphical user interface, MPI 16 

control, is also developed to make the parallel algorithm more user-friendly. These two 17 

programs are designed to be reusable by different hydrological models. In this study, 18 

both the programs are integrated with the Digital Yellow River Model (DYRIM), and 19 

an application is conducted on a cost-effective computer cluster to investigate the 20 

speedup and efficiency of the new parallel algorithm over the Chabagou basin in 21 

northern China. 22 

The value of the new developed parallel algorithm may be evidenced in other 23 

natural science modeling, especially in the filed of hydro-meteorology. One of the 24 

challenges in hydro-meteorology is the demand of increasing computing capacity for 25 
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making real-time weather and hydrological forecasts. This demand is mainly due to the 1 

fact that the real-time forecast models are run for large river basins with increasing 2 

temporal and spatial resolutions and are forced by several weather predictions 3 

(ensemble forecasts) (e.g., Cloke and Pappenberger, 2009; Van den Bergh and Roulin, 4 

2010; Brown et al., 2010). Model simulations over a large river basin with finer spatial 5 

resolutions can exploit more effective parallel computing by using the domain 6 

decomposition. Ensemble weather and hydrological forecasts need repeat operations of 7 

multiple models, different weather inputs, initial conditions and parameters for 8 

generating multiple predictions. Therefore, the newly developed parallel algorithm will 9 

be an efficient solution to this challenge in the field of hydro-meteorology. 10 

11 
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Table 1  1 

Time consumption, speedup, and efficiency in using the different numbers of slave 2 

computing processes in parallel simulation for the Chabagou watershed in northern 3 

China (see Fig. 4).  4 

Number 
of slave 

processes 
p 

Number of 
subbasins 

N 

Simulation 
time (s) 

Tp 

Cumulative serial times (s) for 

Speedup 
Sp 

Efficiency 
Ep Calculation Database 

access Communication 
tcommNd 

tcalnavgNd 

1 166 1530 465  1063 1.6  1.00  0.999  

2 171 800 318  1238  1.9  1.91  0.955  

3 171 630 317  1509  5.1  2.43  0.809  

4 175 516 353  1572  7.4  2.96  0.740  

5 174 452 351  1706  7.6  3.38  0.676  

6 173 404 375  1739  6.8  3.78  0.630  

7 171 360 389  1693  6.4  4.24  0.606  

8 172 348 428  1714  7.0  4.39  0.549  

9 172 308 422  1726  11.6  4.96  0.551  

10 172 303 444  1773  10.9  5.04  0.504  

11 172 292 458  1795  34.2  5.23  0.476  

12 172 290 471  1799  27.0  5.27  0.439  

13 172 286 490  1867  12.6  5.34  0.411  

14 171 320 496  1899  21.2  4.78  0.341  
 5 

6 
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Figure Captions 1 

Fig. 1. The diagram of dynamic decomposition of a drainage network, where the 2 

subbasins with the boundary line colors of brown, green and pink are dispatched to the 3 

computing processes 1, 2 and 3, respectively. 4 

Fig. 2. The flowchart for dynamic decomposition of a basin. 5 

Fig. 3. Flowchart of the execution of master, slave and data transfer processes, in which 6 

the bold arrow lines denote the transfer of message and/or data. 7 

Fig. 4. The drainage network of the Chabagou watershed in northern China with the (a) 8 

high and (b) coarse spatial resolutions. 9 

Fig. 5. The topological width function, which is derived from a corresponding coarse 10 

resolution drainage network (see Fig. 4(b)) and is used to reflect the inter connection of 11 

subbasins. The straight line reflecting the number of p slave processes. 12 

Fig. 6. Schematic of the realization of the simulation monitor with graphical user 13 

interface, MPI control. The passes of commands and messages are: a) the GUI sends a 14 

mpiexec command to initiate the MPI running environment, b) the mpiexec command 15 

starts the DWM.main program in multiple processes, c) messages from DWM.main 16 

processes are gathered by mpiexec and written in the Windows command console, d) 17 

messages in the command console are passed to the GUI via an anonymous pipe, and e) 18 

Messages are interpreted so as to draw the chart and map to show the performance and 19 

progress of the simulation. 20 

Fig. 7. Different portions of computer time (see Table 1) and the value of the total 21 

computation capacity (i.e., Tp*p) for the different number of slave computing processes. 22 

Fig. 8. Parallel simulation efficiency and the idle time portion of slave computing 23 

processes (see Table 1). 24 
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