
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010 1077

Feedback-Based Scheduling for Load-Balanced
Two-Stage Switches

Bing Hu, Student Member, IEEE, and Kwan L. Yeung, Senior Member, IEEE

Abstract—A framework for designing feedback-based sched-
uling algorithms is proposed for elegantly solving the notorious
packet missequencing problem of a load-balanced switch. Unlike
existing approaches, we show that the efforts made in load bal-
ancing and keeping packets in order can complement each other.
Specifically, at each middle-stage port between the two switch
fabrics of a load-balanced switch, only a single-packet buffer for
each virtual output queueing (VOQ) is required. Although packets
belonging to the same flow pass through different middle-stage
VOQs, the delays they experience at different middle-stage ports
will be identical. This is made possible by properly selecting
and coordinating the two sequences of switch configurations to
form a joint sequence with both staggered symmetry property and
in-order packet delivery property. Based on the staggered symmetry
property, an efficient feedback mechanism is designed to allow
the right middle-stage port occupancy vector to be delivered to
the right input port at the right time. As a result, the performance
of load balancing as well as the switch throughput is significantly
improved. We further extend this feedback mechanism to support
the multicabinet implementation of a load-balanced switch, where
the propagation delay between switch linecards and switch fabrics
is nonnegligible. As compared to the existing load-balanced switch
architectures and scheduling algorithms, our solutions impose a
modest requirement on switch hardware, but consistently yield
better delay-throughput performance. Last but not least, some
extensions and refinements are made to address the scalability,
implementation, and fairness issues of our solutions.

Index Terms—Load-balanced switch, feedback-based switch,
two-stage switch.

I. INTRODUCTION

D UE to the wide use of wavelength division multiplexing
(WDM) technology in fiber, the transmission capacity

increases sharply, while the processing capacity of current
commercial switches/routers increases slowly. This speed mis-
match makes the need for building high-speed routers urgent
[1]. A major bottleneck of high-speed router design is its switch
architecture, which is concerned with how packets are moved
from one linecard to another. For switches that employ output
queuing, each output can receive up to the maximum of
packets in each time slot, where is switch size. The switch
fabric and output ports must operate at times the link rate.
This makes output-queued switches difficult to scale.

Manuscript received November 28, 2008; revised June 12, 2009 and August
25, 2009; approved by IEEE/ACM TRANSACTION ON NETWORKING Editor C.
S. Chang. First published December 28, 2009; current version published August
18, 2010. This work was supported in part by the Cisco Research Center.

The authors are with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong (e-mail: binghu@eee.hku.hk;
kyeung@eee.hku.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2009.2037318

Fig. 1. A load-balanced two-stage switch.

For an input-queued switch, each input can send at most one
packet, and each output can receive at most one packet in every
time slot. The switch fabric only needs to run at the same speed
as each input link. Input-queued switches are thus more suitable
for high-speed routers. However, input-queued switches suffer
from the head-of-line (HOL) blocking. To eliminate the HOL
blocking, virtual output queuing (VOQ) is proposed [2], where
each input port maintains a separate queue for each output. A
centralized scheduler is needed to maximize the throughput of
a VOQ switch. It is shown that for any admissible traffic pat-
terns, 100% throughput can be achieved by maximum weight
matching [3]. However, maximum weight matching algorithm
has a high time complexity of . Algorithms with
lower computation overheads, notably PIM [4], iSLIP [5], [6]
and DRRM [7], are then proposed. They share a common fea-
ture of trading more communication overheads for less compu-
tation overheads. However, the communication overheads scale
up very quickly as the link speed and switch size increase.

Load-balanced switches have received a great deal of atten-
tion recently [8]–[19] because they are more scalable and can
provide close to 100% throughput. A load-balanced switch con-
sists of two stages of switch fabrics, as shown in Fig. 1. Each
switch fabric is configured according to a predetermined and pe-
riodic sequence of switch configurations. This removes the need
for a centralized scheduler. As a load-balanced switch provides
multiple paths for packets belonging to the same flow to arrive
at the same output port, packets may arrive out of order due to
different middle-stage port delays experienced en route. Many
efforts [9]–[19] are then made to address this notorious packet
missequencing problem (reviewed in Section II). It is not diffi-
cult to see that higher switch throughput is usually at the cost
of poorer delay performance. This is because throughput is im-
proved by better load balancing, but better load balancing tends
to deteriorate the packet mis-sequencing problem.

In this paper, we show that the efforts made in load balancing
and keeping packets in order can complement each other in im-
proving both delay and throughput performance of the switch.
We adopt a simple switch architecture where each middle-stage

1063-6692/$26.00 © 2009 IEEE

1078 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

port between the two stages of switch fabrics only has a single-
packet buffer for each VOQ. Although packets belonging to the
same flow will pass through different middle-stage VOQs, the
delays they experience at different middle-stage ports will be
identical. This is made possible by properly selecting and co-
ordinating the two sequences of switch configurations to form
a joint sequence with both staggered symmetry property and
in-order packet delivery property. Based on the staggered sym-
metry property, an efficient feedback mechanism is designed to
allow the right middle-stage port occupancy vector to be deliv-
ered to the right input port at the right time. Accordingly, the
performance of load balancing as well as switch throughput is
significantly improved.

The rest of the paper is organized as follows. In the next sec-
tion, we review the existing work for solving the packet mis-
sequencing problem of load-balanced two-stage switches. In
Section III, our proposed feedback-based scheduling framework
is introduced. In Section IV, we extend it to support the multi-
cabinet implementation. The delay and throughput performance
of our proposed solutions is compared to other existing algo-
rithms in Section V by simulations, and the stability analysis is
carried out in Section VI. In Section VII, some possible exten-
sions and refinements of our proposed solution are discussed.
We then compare our work with some closely related work in
Section VIII. Finally, we conclude the paper in Section IX.

II. PACKET MISSEQUENCING IN LOAD-BALANCED SWITCHES

A load-balanced two-stage switch architecture consists of two
stages of switch fabrics. Each fabric is configured according
to a predetermined and periodic sequence of switch configu-
rations, with the only requirement that each input connects to
each output exactly once in the sequence. The two fabrics can
use different sequences. There are many ways to generate such a
sequence, e.g., a sequence can be constructed by cyclic shifting
the set of input/output connections used in each time slot, such
that at time slot , input (for) is con-
nected to output , where is given by

(1)

Consider a generic two-stage load-balanced switch archi-
tecture shown in Fig. 1. We use to represent the
VOQ at input port with packets destined for output , and

to denote the VOQ at middle-stage port with
packets destined for output . We define as packets
arriving at input and destined for output . Packets from

are buffered at . Packets (from different
inputs) destined for output are buffered at
for . Aiming to convert the incoming
nonuniform traffic to uniform, the first-stage switch fabric
spreads packets evenly over all middle-stage ports. Then,
the second-stage switch fabric delivers the packets from
middle-stage ports to their respective outputs. From the above,
we can see that in each time slot, there are two switch configu-
rations, one at each fabric. We call them a joint configuration.
The sequence of joint configurations forms a joint sequence.
Three possible joint sequences are shown in Fig. 2. In Fig. 2,
each port is abstracted as a circle, and the configurations used
by the first-stage switch fabric are shown by lines from the left
side to the center. As an example, in Fig. 2(a), the sequence

Fig. 2. Some joint sequences for a 4� 4 two-stage switch. (a) Staggered sym-
metry � in-order packet delivery. (b) Staggered symmetry only. (c) In-order
packet delivery only.

of configurations used by the first-stage switch fabric is con-
structed based on the cyclic shifting in (1). It is important to
point out that all three joint sequences in Fig. 2 meet the basic
requirement of a load-balanced two-stage switch, but they
have different properties, namely, in-order packet delivery and
staggered symmetry. These two properties will be discussed in
detail in Section III, which form the basis of our feedback-based
switch design.

Due to the two-stage nature, packets may ar-
rive at output via different middle-stage ’s (for

) and thus may experience different amounts
of middle-stage port delay. This leads to the problem of packet
missequencing. Two main approaches can be followed to solve
this problem, using resequencing buffers at outputs or pre-
venting packets from becoming missequenced in the first place.

A. Using Resequencing Buffers

When out-of-order packets arrive at an output port, they
are stored in the resequencing buffer (not shown in Fig. 1),
waiting to be read out and written onto the output link in the
correct order. To this end, each packet header should have a
sequence number field (or timestamp), which is added to the
packet at an input port. With the original two-stage switch
architecture [8], packets can be missequenced by an arbitrary
amount, thus a finite resequencing buffer is not possible. Efforts
are made to bound the delay at additional costs, such as
writes to memory in one time slot [9] and a 3-D resequencing
buffer [10]. Recently, a three-stage load-balancing switch [11]
is also proposed. Although the switch is proved to be stable,
this design requires additional hardware as well as global
information exchange for buffer reservation. The high imple-
mentation complexity may defeat the original purpose of using
a load-balanced switch.

B. Preventing Packets From Becoming Missequenced

Instead of reordering packets at each output, we can pre-
vent packets from becoming missequenced in the first place

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1079

[12]–[19]. This not only removes the resequencing buffers, but
also the corresponding resequencing delay. The majority work
along this direction [13]–[16] adopts the notion of “frame.” For
an switch, a frame consists of packets belonging to
the same flow. At each input port, incoming packets join their
respective VOQs. If the size of a VOQ is larger than packets,
the flow is said to have a full frame of packets. With the Uni-
form Frame Spreading (UFS) algorithm [13], an input port is
allowed to send only from flows/VOQs with at least a frame of
packets. Once the sending starts, packets from the selected
flow will be sent in the next slots, where each packet arrives
at a distinct middle-stage port.

A downside of the UFS algorithm is that when traffic load
is light, it takes time to form a full frame of packets, thus the
delay performance suffers. To cut down the delay, Full Ordered
Frames First (FOFF) [14] is proposed. FOFF allows the sending
of partial frames, which is at the cost of controlled packet mis-
sequencing. Nevertheless, resequencing buffer at each output is
required.

Padded Frame (PF) algorithm [15] also improves the delay
performance of UFS, and without resequencing buffer. The idea
is that when no full frames are available for sending, a partial
frame can be sent as a “faked” full frame by padding the partial
frame with dummy packets. Contention-and-Reservation (CR)
algorithm [16] can further improve the performance of PF by
supporting two modes of frame transmission: contention and
reservation. As long as an input has a full frame of packets
when connects to middle port 0, enters the reservation mode,
and the transmission in the next slots is governed by UFS.
Otherwise, input enters the contention mode, where the packet
sent in each slot is selected using a round-robin scheduler, and
must be acknowledged at the end of each time slot. A packet is
removed from the input VOQ only if a positive ACK is received.

CR algorithm requires dedicated ACK from each middle-
stage port in each time slot. The feedback path construction is
not discussed in [16]. To this end, the Mailbox switch [17] is de-
signed with a rather efficient feedback path. The feedback path
is constructed by adopting the joint sequence of switch config-
urations in Fig. 2(c), where input and output are always con-
nected to the same middle-stage port. When a packet arrives at
a middle-stage port (from, say, input), the middle-stage port
calculates its departure time based on its location in the VOQ.
Then, the departure time is sent to the connected output port
using the second switch fabric. As input and output reside on
the same switch linecard, output can relay the departure time to
input at negligible cost. A feedback path for reporting middle-
stage packet departure time is thus created. Based on the re-
ceived packet departure time, the next packet in the flow will be
dispatched and inserted in a middle-stage VOQ if it will depart
no earlier than the previous packet of the same flow. Although
the packet order is maintained by Mailbox switch without the
frame notion, the overall switch throughput is limited. By mod-
ifying each middle-stage of the Mailbox switch to
just accommodate a single packet, the in-order packet delivery
property of the joint sequence in Fig. 2(c) is discovered by Lee
[19]. Our work in this paper, developed independently, is most
closely related to [19]. Please refer to a more focused compar-
ison in Section VIII-A.

In [18], a distributed and iterative scheduling algorithm,
Concurrent Matching Switch (CMS), is introduced. Despite the

fixed uniform identical mesh in both stages of switch fabrics,
its logical configurations are the same as the joint sequence in
Fig. 2(c). For every arriving packet, input port sends a request
to the current (logically) connected middle-stage port. Each
middle port records the requests in its matrix , where

denotes the number of requests from . Every
slots, each middle-stage port concurrently and independently
finds a matching based on its own . In the following
slots, the packets matched are transmitted to the middle-stage
ports and are immediately forwarded to the output ports. Since
the packets selected in each slot traverse the two switches in
parallel and without conflicts, there is no out-of-order problem.
However, the packet delay can be quite large, where the best
case is three time slots when a parallel optical mesh is used.
Nevertheless, the delay performance of [8] is on the order of

if it is implemented using an optics abstraction.

III. FEEDBACK-BASED SCHEDULING FRAMEWORK

A. Observations and Motivations

The delay and throughput performance of a load-balanced
two-stage switch hinges on how well the load-balancing and
in-order packet delivery are implemented. Obviously, if the in-
coming traffic is well balanced by the first-stage switch, the
throughput performance will be improved as the second-stage
switch can maximize the number of packets sent in each time
slot. Consequently, the packet delay will also be reduced due to
higher throughput.

But how to measure the load-balancing performance? Many
scheduling algorithms (e.g., [10] and [12]) try to ensure all
middle-stage VOQs have the same queue size. However, as
far as the throughput performance is concerned, we only need
to ensure each middle-stage (in Fig. 1) does not
suffer from either buffer underflow or overflow problem. A
buffer underflow occurs if there are packets waiting in some
input ports for a particular output , but is empty
at the time that middle-stage port is connected to output ,
yielding an idle transmission slot on the second-stage switch.
On the other hand, buffer overflow is equally undesirable as
the overflowed packet is dropped, and the transmission slot in
the first-stage switch is wasted. Indeed, as long as no buffer
underflow and overflow at each is ensured, the
actual buffer size for each has no impact on the
throughput performance of the switch. Therefore, it may not
be appropriate to increase the buffer size of for
boosting throughput performance.

In a load-balanced switch, the HOL packet in each middle-
stage VOQ will experience an average delay of slots (due to
the deterministic nature of the configurations), and each addi-
tional packet in the line will experience an additional delay of
slots. To minimize delay, a small buffer size at each
is preferred.

In general, mechanisms for ensuring in-order packet delivery
tend to penalize the packet delay performance more than
throughput. If resequencing buffers are used for solving the
missequencing problem, packets suffer from the additional
resequencing delay. Since packet missequencing is due to
packets of the same flow experiencing different delays at
different middle-stage ports, a smaller buffer size at each

is favored because middle-stage packet delay can

1080 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

be reduced, and thus the missequencing problem can be eased.
Consequently, a smaller resequencing buffer/delay is also
possible. In fact, buffering a packet at an input port (instead of a
middle-stage port) gives more flexibility in sending because an
input can retry in the subsequent slots at different middle-stage
ports (which may even have a shorter queue size).

If the frame notion is used for ensuring in-order packet
delivery, the time required for forming a frame dominates the
delay performance especially when the load is light. Besides,
frame-based transmission tends to make the traffic to down-
stream switches more bursty, resulting in poor delay jitter
performance. Although PD [15] and CR [16] improve the delay
performance of UFS [13], the use of fake frames/packets un-
dermines the load-balancing performance. In this paper, we are
interested in designing a scheduling algorithm without using
resequencing buffers for in-order packet delivery and without
incurring the frame-based scheduling overheads.

From our observations above, we can see that a smaller buffer
size at each is preferred if we can ensure: 1) no
underflow and overflow at each ; and 2) no packet
missequencing. The smallest buffer size at each is
1. In the rest of the paper, we shall focus on using a single-packet
buffer at each .

B. Designing Scalable Feedback Mechanism

Now the issue is how to ensure each single-packet-buffered
is free of either buffer overflow or underflow. If an

input port knows the occupancy of its connected
before sending a packet to it, the buffer overflow problem can
be easily solved. Then, do we have an efficient feedback mecha-
nism for reporting the occupancy of to input ports?

We propose a simple yet novel feedback mechanism based
on a joint sequence with staggered symmetry property. A joint
sequence of switch configurations has the staggered symmetry
property if middle-stage port is connected to output port at
time slot , then at next slot input port is connected
to the same middle-stage port . In essence, for each given se-
quence in the first-stage switch, the second-stage sequence (and
thus the joint sequence) can be obtained directly from the prop-
erty itself. In Fig. 2(a), the first stage sequence is constructed
from (1) by cyclic shifting the set of connections used in each
slot. Each configuration in the second stage is obtained from the
staggered symmetry property. We can see that for every pair of
staggered configurations, e.g., the second switch configuration
at and the first switch configuration at , they are
mirror images of each other.

As each only has a single packet buffer, a single
bit is sufficient to denote its occupancy. For the ’s
at middle-stage port (for), their joint oc-
cupancy can be denoted by an -bit occupancy vector. Since
each pair of input and output reside on the same linecard,
the occupancy vector at middle-stage port can be piggybacked
on the data packet sent to output , which is then made avail-
able to input at negligible cost. Due to the staggered sym-
metry property of the joint sequence used, input will be con-
nected to middle port in the next time slot. This gives a very
efficient feedback path, allowing the occupancy vector from the
right middle-stage port to be delivered to the right input at the
right time. In the next time slot, each input port scheduler will

Fig. 3. Feedback operation based on joint sequences with staggered symmetry
property.

select a packet for sending based on the received occupancy
vector. If the packet is properly selected, both buffer overflow
and underflow at a middle-stage can be avoided. (In
Section III-E, three simple input port schedulers are designed.)

The timing diagram in Fig. 3 summarizes the feedback
operation, while assuming each switch reconfiguration involves
certain overhead. We can see that switch reconfiguration takes
place in parallel with relaying the occupancy vector from
output to input and the execution of the scheduling algo-
rithm. The occupancy vector is created by taking both packet
arrival/departure in the current slot into account. In creating the
vector, the occupancy bit of is always set to 0 if
middle port will connect to output in the next slot. This is
because the packet (if any) in is guaranteed to be
sent in the next time slot. Besides, when a buffered packet in

is being sent, can receive another
packet simultaneously. Due to parallel packet transmission in
the two switch stages, a packet cannot be delivered from an
input to an output in a single time slot, i.e., the minimum delay
a packet experienced at a middle-stage port is one slot.

From Fig. 3, we can also see that the feedback operation re-
quires accurate timing synchronization within a time slot. We
notice that accurate synchronization of less than 10 ns is re-
ported in [33], and a scheme to achieve 1-ns synchronization is
proposed in [34]. Therefore, synchronization within a time slot
of, say, 40 ns would not be a major issue.

Note that the joint sequence in Fig. 2(c) does not have the
staggered symmetry property. If it is used for implementing
feedback path (as in [17] and [19]), occupancy vector cannot
be piggybacked onto data packet. Instead, a dedicated feedback
packet must be sent from each middle-stage port to its connected
output in each time slot. This incurs not only extra propagation
delay for sending the feedback packet, but also extra packeti-
zation and synchronization overhead. As a result, the duration
of a time slot in [17] and [19] would be much longer than that
shown in Fig. 3. If the switch performance is studied using the
number of time slots, the inefficiencies of using a “larger” time
slot could be easily overlooked.

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1081

C. Solving Packet Missequencing Problem

If the load-balanced switch in Fig. 1 is configured by the joint
sequence in Fig. 2(a), will we face the packet missequencing
problem? We know that packet order will be preserved if every
packet of a flow experiences the same amount of delay when
passing through any middle-stage port. This is obviously true if
middle-stage ports are bufferless, thereby every packet experi-
encing the same zero-slot delay. Will it still be true for the case
of single-packet buffer per ?

Surprisingly, a closer examination at the joint sequence in
Fig. 2(a) reveals that packets of the same flow do experience
the same middle-stage port delay. Take flow(0,1) in Fig. 2(a) as
an example. If a packet is sent (from input 0) to middle-stage
port 0 at , it will be buffered at (0,1) for two slots
until (0,1) is connected to output 1 at . If the next
packet of the flow is sent to middle-stage port 1 at , it will
be buffered at (1,1) for, again, two slots until (1,1)
is connected to output 1 at .

In the following, we prove that this is true for each and every
flow and for any switch size . Consider the joint sequence
in Fig. 2(a). The sequence used by the first stage switch is con-
structed from (1). The sequence used by the second stage switch
is constructed according to the staggered symmetry property,
which can be represented by (2). That is, at time (for

), middle-stage port is connected to output , where is
given by

(2)

Statement 1: (Anchor Output). Input is always connected
to output , where , via one of the
middle-stage ports.

Proof: At time , input is connected to output via
middle-stage port . Substitute from (1) into (2), we can
express in terms of .

We can see that depends only on . Thus, for a given input ,
it is always connected to the same anchor output .

Statement 2: (Deterministic Delay at Middle-stage Ports).
Let be the anchor output of input . For every packet of

, it experiences the same slots delay in one of the
middle-stage ports, where is given by

if
if
if

(3)

Proof: Suppose at slot , input is connected to its anchor
output via middle-stage port and a packet is sent to join

. From (2), middle port is connected to each output
in descending order of the output port number. Assume output
port , the destination of packet in , is ports away
from the anchor output (counted in descending order of port
number). This packet will experience exactly slots delay in

and is bounded by .

Statement 3 (In-order Packet Delivery). In-order packet de-
livery is guaranteed if the joint sequence of configurations is
constructed using (1) and (2).

Proof: Assume packets A and B of join
and at time and (where

), respectively. Let and be their respective
delays experienced in . Missequencing occurs only
if packet B reaches output earlier than packet A, i.e.,

. However, this will never happen because
and from Statement 2.

It can be easily seen that the delay a packet experienced at
a middle-stage port is bounded between slots, and the
average middle-stage packet delay is merely slots
for uniform traffic.

D. Alternative Joint Sequence Design

The total number of possible joint sequences for a load-bal-
anced two-stage switch can be found by solving the classic Latin
square problem [20], or , where is the
number of reduced Latin squares. Among them, some joint se-
quences have the staggered symmetry property only, some have
the in-order packet delivery property only, and some have both
properties.

For instance, the joint sequence in Fig. 2(b) has the staggered
symmetry property but cannot ensure in-order packet delivery.
Consider packets from flow(0,1). Two different middle-stage
delays will be experienced, two-slot via middle port 3 and four-
slot via middle port 1. This causes out-of-order packet. On the
other hand, the joint sequence in Fig. 2(c) can provide in-order
packet delivery but lacks the staggered symmetry property. It
is shown [21] that there are joint sequences having
both staggered symmetry and in-order packet delivery proper-
ties. However, our proposed feedback-based scheduling frame-
work can be applied to any of them. For a specific traffic pattern,
an optimal joint sequence can be found from this group for mini-
mizing the delay performance. As far as this paper is concerned,
we only focus on the joint sequence in Fig. 2(a).

E. Port-Based Scheduling Algorithms

Based on the received occupancy vector, each input port se-
lects a packet for sending. Such an input port scheduler should
be designed to avoid both buffer overflow and underflow at the
connected middle-stage VOQ.

Suppose input is connected to middle-stage port at slot ,
and its anchor output is . Based on the -bit occupancy
vector received from middle-stage in the previous slot ,
we find candidate set , i.e., the set of (for

) with 0-occupancy. Input can only
choose a HOL packet from a VOQ in for sending. This
avoids buffer overflow at .

From Fig. 2(a), we can see that middle port is connected
to each output in descending order of the output port number.
Therefore, we know a priori that in the next slot , port
will be connected to output (wrapped around by). If

is empty and is not, we will
face an underflow in at slot . As such, the
scheduling algorithm should always give the highest priority to
schedule the HOL packet of at slot .

1082 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

With the above considerations in mind, we present three
simple input port schedulers.

• Round-Robin (RR): If is selected in the pre-
vious slot, then the next nonempty is selected
with . Comment: RR gives fair access to
each , and RR is amenable to hardware implemen-
tation [22].

• Longest Queue First (LQF): Among all the nonempty
’s with , the one with the

longest queue size is selected. Comment: LQF is good for
nonuniform traffic, but requires comparisons. We
can replace it by Quasi-LQF [23], a very efficient subop-
timal LQF algorithm requiring only a single comparison
per time slot.

• Earliest Departure First (EDF): Among all the nonempty
’s with , the one with the

earliest departure time at the middle-stage port is selected.
The departure time is calculated from (3). Comment:
EDF should not be confused with the classic Earliest
Deadline First. Our EDF aims at minimizing the chance
of buffer overflow at each , which is achieved by
always giving priority to the with the minimum
middle-stage delay to send first.

To give a scheduler more time to execute, batch scheduling
[24], [25] can be used, where a single scheduling decision is
made over a batch of time slots (instead of per slot). Packets
arrived in the current batch of slots will be considered in the next
batch. Indeed, the multicabinet implementation of the feedback-
based switch in the next section belongs to this category.

IV. MULTICABINET IMPLEMENTATION

To accommodate the growth of the Internet traffic, high-speed
packet switches consist of a large number of linecards, resulting
in larger physical space and power requirement. Consequently, a
multicabinet implementation of packet switches is needed [26],
where the distance between linecards and (central) switch fab-
rics can be tens of meters.

In a single-cabinet implementation, the propagation delay be-
tween linecards and switch fabrics is negligible. In a multi-
cabinet implementation, due to the nonnegligible propagation
delay, the requirement that occupancy vectors must arrive at
input ports within a single time slot will significantly lower the
switch efficiency. This is illustrated in Fig. 4. Since the occu-
pancy vector needs to take the in-flight packet (in the first switch
fabric) into account, it can only be generated when the packet (at
least partly) arrives. A dedicated feedback packet is required as
piggybacking occupancy vector onto data packet is not possible.
Finally, an input port must wait for the occupancy vector to ar-
rive before another packet can be scheduled for sending. From
Fig. 4, we can see that the duration of a slot must be at least twice
the propagation delay between linecards and the switch fabrics.
However, in each slot, only a single packet can be sent. Since
a switch fabric cannot be reconfigured while there are in-flight
packets, the slot duration is (roughly) the duration that a switch
configuration lasts.

To increase the switch efficiency, we can send multiple
packets in a slot. The minimum duration of a slot is the
round-trip propagation time between linecards and switch fab-
rics, or seconds. Let the (maximum) number of packets
that can be sent in each slot be . The value of depends on

Fig. 4. Feedback operation with large propagation delay between linecards and
switch fabrics.

Fig. 5. Feedback operation in multicabinet implementation.

packet size (bytes), , and the line rate (bps). Roughly,
we have

For a typical distance of 20 m between linecards and switch fab-
rics, the (minimum) slot duration is ns. To transmit
a packet of 100 bytes on a 20-Gbps line, 40 ns are required. Re-
serving some guard times for control, we can transmit
packets in a slot, as shown in Fig. 5.

However, can we still keep the in-order packet delivery and
high-throughput properties of a single-cabinet implementation
of the feedback switch? With the following modifications, the
answer is yes. First of all, the buffer size at each middle-stage
port is increased to to accommodate up to
packet arrivals in each time slot. The occupancy vector is ex-
panded to bits, as the size of each VOQ requires
bits.

The feedback operation is also revamped. Refer to Fig. 5. As-
sume at time slot , input port connects to output via middle
stage port . At the beginning of slot , (based on the occupancy
vector received in the previous slot) input uses a local batch
scheduler (to be detailed) to select up to packets for sending. A

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1083

special header (destination report) is appended to the first packet
sent, which contains the destinations of the packets (to be) sent
in this slot. As each destination requires bits to denote, the
destination report consists of bits.

While input ports are sending packets to middle-stage
ports, middle-stage ports are sending packets to output ports
in parallel. When a middle-stage port is connected to an
output port , all backlogged packets in (at
most packets) will be cleared. (Backlogged packets refer to
packets arrived in the previous time slots.) In fact, due to the
predetermined sequence of configurations used, middle-stage
port knows beforehand which will be cleared at
which time slot.

Middle-stage port generates the occupancy vector upon re-
ceiving the destination report from input . The destination re-
port contains the destinations of all the packets to arrive in the
following slot duration. Therefore, at the time the occupancy
vector is generated (in the middle of slot), it already foresees
the VOQ status at the time the last packet sent in slot arrives at
middle-stage port (see Fig. 5). The occupancy vector is then
appended to the next packet sent in the second switch fabric for
transmission.

When the occupancy vector arrives at output and is made
available to input at the beginning of slot , the input port
batch scheduler selects and sends up to packets to middle-
stage port . It should be emphasized that the scheduling is
based on what will happen when the selected packets arrive
at middle-stage port (i.e., the information in the occupancy
vector received). Notably, the first packet from input will ar-
rive at middle-stage port right after the last packet from input .
The bandwidth of switch fabric is fully utilized.

Without loss of generality, we assume a LQF batch scheduler
at input port . Specifically, input identifies the set of ’s
at middle-port that has room for new packets; denote this set by

. Find the longest queue such that
belongs to . Then, the HOL packet at is sched-
uled for sending. Update and the size of . Then,
the above process is repeated until packets are scheduled (or
no more packets are available).

Based on the staggered symmetry and in-order packet de-
livery properties of the joint sequence in Fig. 2(a), the delay
a packet experiences at a middle-stage port is again bounded
by slots. The in-order packet delivery is also ensured as
every packet belonging to the same flow will always experience
the same delay at any middle-stage port. In Fig. 5, when the
last bit of the th packet arrives at the middle-stage port, the
first-stage switch fabric can start to reconfigure. When the last
bit of the th packet departs the second switch fabric, the second
switch fabric can start to reconfigure. In other words, the recon-
figuration of second fabric can start before the last bit of the th
packet arrives at the output port. For optical switch fabrics with
nonnegligible amount of reconfiguration overheads [37], such a
pipelined packet transmission and reconfiguration can be very
efficient.

V. PERFORMANCE EVALUATIONS

In this section, the performance of our proposed feedback-
based scheduling algorithms is compared with some representa-
tive algorithms by simulations. In the following, we only present

simulation results for switch with size , although sim-
ilar conclusions apply to other sizes. Both single- and multicab-
inet implementations of a load-balanced switch are considered.
As the duration of a time slot may be different when different
scheduling algorithms are used (see Figs. 3 and 5), the delay
performance is measured by the number of time units, where
each time unit is equivalent to the transmission time of a packet
at line rate. In our simulations, three traffic models are used:

• Uniform. At each unit of time for each input, a packet ar-
rives with probability and destines to each output with
equal probability.

• Uniform bursty. Bursty arrivals are modeled by the ON/OFF

traffic model. In the ON state, a packet arrives in every
time unit. In the OFF state, no packet arrivals are gener-
ated. Packets of the same burst have the same output, and
the output for each burst is uniformly distributed. Given the
average input load of and average burst size , the state
transition probabilities from OFF to ON is , and
from ON to OFF is . Without loss of generality, we set
burst size packets.

• Hotspot. Packets arriving at each input port in each time
unit with probability . Packet destinations are generated
as follows. For input port , packet goes to output
with probability , and goes to any other output with
probability .

A. Single-Cabinet Implementation

In the single-cabinet implementation of a load-balanced
switch, the propagation delay between linecards and switch
fabrics is negligible. In this case, we focus on studying the
performance of the three proposed port-based scheduling algo-
rithms in Section III-E: round-robin (RR), longest queue first
(LQF), and earliest departure first (EDF). For comparison, we
also implement:

• LQF with byte-focal switch architecture (LQF Byte-
Focal) [10], which outperforms FOFF and, in general,
is the best performing algorithm based on resequencing
buffer;

• CR algorithm [16], which is the best performing frame-
based scheduling algorithm;

• iSLIP algorithm [6], which serves as a benchmark for
single-stage input-queued switches. Specifically, we
implement iSLIP with a single iteration (iSLIP-1), as
multi-iterations involve heavy communication overhead;

• Output-queued switch, which serves as the lower bound.
Fig. 6 shows the delay-throughput performance under uni-

form traffic. We can see that three input port schedulers RR,
LQF, and EDF yield comparable and less-than-20-unit delay
performance for input load up to . When , LQF
gives the best performance (as it always serves the most needed
flow first), followed by EDF and RR. The average packet delay
at middle-stage ports can be easily derived:
time units. If we deduct this portion from the overall delay,
we can see that the (input port) delay of our scheduling al-
gorithms matches the output-queued switch performance very
well. Compared to LQF Byte-Focal, our three schedulers give
significantly smaller delay. When is reasonably large ,
our algorithms also beat iSLIP-1 and CR. When , the
delay of LQF Byte-Focal is 95 time units, iSLIP-1 44, CR 152,
and ours only 20.

1084 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

Fig. 6. Delay versus input load, under uniform traffic.

Fig. 7. Delay versus input load, under bursty traffic.

Figs. 7 and 8 show the delay-throughput performance under
uniform-bursty and hotspot traffic, respectively. In Fig. 7, we
can see that delay builds up quickly with input load, which is
due to the bursty traffic nature. Nevertheless, our RR, LQF, and
EDF still outperform LQF Byte-Focal and CR algorithms. At

, the delay of LQF Byte-Focal is 224 time units, 232
for CR, 156 for our RR/LQF/EDF, and 114 for output-queued
switch. From Fig. 8, again we can see that our three schedulers
are consistently better than others. Among the three, LQF again
gives the best/lowest delay performance. Nevertheless, it is in-
teresting to point out that the performance difference among
the three schedulers is much smaller than that in a single-stage
switch, and this is due to the use of the first-stage switch for load
balancing. For simplicity, we shall only concentrate on LQF.

B. Multicabinet Implementation

In the multicabinet implementation, we assume the propaga-
tion delay between linecards and switch fabrics is time units,

Fig. 8. Delay versus input load, under hotspot traffic.

and we vary from 1 to 2. For simplicity, we ignore the over-
heads for switch reconfiguration, scheduling, etc. Three sched-
uling algorithms are compared:

• LQF without batch scheduling. This is a direct extension
from the single-cabinet case. When propagation delay is
time units, we denote the algorithm by . The oper-
ation of is based on Fig. 4, where only one packet
can be sent in each slot.

• LQF with batch scheduling (as in Fig. 5). When propaga-
tion delay is , we denote the algorithm by .

• SRR (Synchronous Round-Robin) algorithm [27]. When
the propagation delay is , we denote SRR as SRR/ . We
regard SRR as a “generalization” of iSLIP [6] for multi-
cabinet implementation. Therefore, SRR serves as a bench-
mark for single-stage input-queued switches. For more de-
tails of SRR, please refer to [27].

Note that we do not compare with LQF_Byte-Focal [10] and
CR [16] because they cannot be used for multicabinet imple-
mentation.

When our B-LQF is used and the propagation delay is time
units, the number of packets that can be sent in each time slot is

. From Fig. 9, we can see that due to the inefficiency caused by
propagation delay, can only obtain up to 25% and 50%
throughput when and 1, respectively. With ,
close to 100% throughput can be obtained. Note that the average
middle-stage port delay is still 16.5 slots. Since the duration of
a slot is time units, the average middle-stage port delay is
33 time units for and 66 for .

In Fig. 10, our again yields close to 100%
throughput under bursty traffic. Despite of the fact that the
middle-stage packet delay increases with the slot duration, it is
interesting to observe that when input load , B-LQF/2
starts to outperform B-LQF/1, though very slightly. The reason
is as follows. In a time slot, each input port can send up to

packets to a middle port with B-LQF. Therefore, packets
in B-LQF/2 tend to have a higher chance to enter the middle
port than B-LQF/1. The earlier packets enter the middle port,
the less input port delay they experience. Thus, with B-LQF/2,
packets tend to experience less input port delay. Under heavy
bursty loading, the input port delay dominates the overall delay

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1085

Fig. 9. Delay versus input load, under uniform traffic with propagation delay.

Fig. 10. Delay versus input load, under bursty traffic with propagation delay.

performance. For B-LQF/2, the drop in input port delay starts
to outweigh the increase in middle port delay at .
A similar performance trend is observed in Fig. 11 under the
hotspot traffic.

VI. STABILITY ANALYSIS

Simulation results in the previous section allow us to study
the average performance under specific traffic patterns. In this
section, we prove that under a speedup of two, feedback-based
switch using any arbitrary work-conserving port-based sched-
uling algorithms (not just RR, LQF, and EDF) is stable under
any admissible traffic patterns. Without loss of generality, we
only focus on the case of single-cabinet implementation. For
multicabinet implementation with a batch size of packets, we
can treat each batch as a single aggregate packet. Then, the mul-
ticabinet switch is equivalent to a single-cabinet switch. In other
words, the propagation delay between linecards and switch fab-
rics does not affect/reduce the throughput performance of a mul-
ticabinet switch.

Fig. 11. Delay versus input load, under hotspot traffic with propagation delay.

A. Constructing Fluid Model

Like [28]–[30], we first establish a fluid model for scheduling
packets. Let the number of packets in at the begin-
ning of time slot be . Let the cumulative number of
arrivals and departures for at the beginning of slot

be and , respectively. We have

(4)

Let the number of packets in at the beginning
of slot be . Because there is only one packet buffer
for each , we have if is
empty and if is occupied. The cumu-
lative number of arrivals and departures in at the
beginning of slot are and , respectively. The
following relationship holds:

(5)

We assume that the packet arrival process obeys the strong
law of large numbers with probability one, i.e.,

where is the mean packet arrival rate to . The
switch is, by definition, rate-stable if

An admissible traffic matrix is defined as the one that satisfies
the following constraints:

(6)

If a switch is rate-stable for an admissible traffic matrix, then
the switch delivers 100% throughput.

1086 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

The fluid model is determined by a limiting procedure il-
lustrated below. First, the discrete functions are extended to
right-continuous functions. For arbitrary time

Note that all functions are random elements of
. We shall sometimes use the notation

and
to explicitly denote the dependency on the sample

path . For a fixed , at time , we have [28]:
— , the cumulative number of arrivals to

;
— , the number of packets in ;
— , the cumulative number of departures from

;
— , the cumulative number of arrivals to

;
— , the number of packets in ;
— , the cumulative number of departures from

.
For each , we define

It is shown in [29] and [30] that for each fixed satisfying
(4), (5), and any sequence with as ,
there exist a subsequence and the continuous functions

, where con-
verges to uniformly on compacts as for any

(7)

Definition 1: Any function obtained through the limiting pro-
cedure in (7) is said to be a fluid limit of the switch. Thus, the
fluid model equations using our proposed scheduling algorithms
are

(8)

(9)

Definition 2: The fluid model of a switch operating under a
scheduling algorithm is said to be weakly stable if for every fluid
model solution with for almost
every .

From [28], the switch is rate-stable if the corresponding fluid
model is weakly stable. Our goal here is to prove that for every
fluid model solution , using our scheduling algorithms,

for almost every . To prove , we will use
the following Fact 1 from [28]:

Fact 1: Let be a nonnegative, absolutely continuous func-
tion defined on , with . Assume that for
almost every such that . Then,
for almost every .

Note that is the set of positive real numbers, and
denotes the derivative of function at time .

B. 100% Throughput Proof

In the following, we show that our proposed scheduling algo-
rithms give 100% throughput with a speedup of two. The result
is quite strong in the sense that it holds for any arbitrary work-
conserving scheduling algorithms. A work-conserving sched-
uler at input can choose to serve any nonempty
for which is empty.

Theorem 1: (Sufficiency) A work-conserving scheduling al-
gorithm can achieve 100% throughput with a speedup of two
for any admissible traffic pattern obeying the strong law of large
numbers.

Proof: Let denote the joint queue occupancy of
all packets arrived at input port , plus all packets destined for
output . We have

(10)

and are all nonnegative, absolutely continuous
functions, so is nonnegative and absolutely continuous,
too. We can see that , and then we have

Combined with (8) and (9), we get

With a work-conserving scheduling algorithm, packets left
will enter , for , so

, then

From the admissible traffic condition (6), we get

(11)

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1087

For any nonempty , i.e., , then by conti-
nuity of , such that for . Set

For large enough , we have for .
Also, for large enough we have . Thus,

for , which means that holds
at least one packet in the long interval .

With a work-conserving scheduling algorithm,
packets always experience the same fixed middle-stage port
delay of slots, where is given by (3). During the time
interval , when input port is connected to
any middle port , then:

• if is empty, a packet is transmitted from input
port to middle port . is increased by one;

• if is not empty, the packet in will
be transmitted to output port with fixed delay , where

. will be increased by one after
slots. (The packet in will be sent when middle
port is connected to output . If this occurs in the current
time slot, . Otherwise, it takes another slots.)

If the switch is operated with a speedup of , in a long time
interval it fulfills

Note that is monotonically nondecreasing and is
increased at most one in every time slot. Therefore, we have

Combining them together, we have

Since is predetermined and within , its impact is
insignificant in the fluid limit [30]. Dividing the above equation
with and letting , fluid limits are obtained as

Further dividing the above equation by , and letting
, the derivative of the fluid limit is

(12)

Fig. 12. Throughput versus switch size, with a fixed 12-bit feedback.

With a speedup of two (i.e.,), combining (11) and& (12),
we get

Based on Fact 1, for almost every . Due to
(10) and , then for almost every .
Theorem 1 is proved.

It should be noted that existing stability proofs [8]–[17]
adopt a common approach of showing that the delay perfor-
mance of a specific algorithm is within a finite bound of the
output-queued switch. Even under the assumption that buffer
size at each middle-stage port is infinite, the derived bound
w.r.t. output-queued switch is still unrealistically large (e.g.,

in [16]).

VII. EXTENSIONS AND REFINEMENTS

A. Cutting Down Communication Overhead

The occupancy vector in our feedback-based two-stage
switch requires bits. To cut down the communication over-
head, the size of an occupancy vector can be reduced by only
reporting the status of selected middle-stage VOQs. To identify
VOQs of interest, we first partition the VOQs into nonover-
lapped sets, each identified by a set number. In each time slot,
every input port piggybacks its set numbers of interest to the
connected middle-stage port. This “guides” each middle-stage
port to only report the status of selected VOQs.

Without loss of generality, assume the longest VOQ of each
set is identified, and its length denotes the set size. Then, the
top largest sets can be identified with bits, which are
sent in the first switch fabric by exploiting the otherwise wasted
bandwidth in the first switch fabric (see Fig. 3). For the second
switch fabric, middle-stage port only needs to report the status
of VOQs, thus the occupancy vector size is reduced to

bits. For a switch with , and ,
the occupancy vector is reduced from 128-bit to 12-bit, a saving
of 90.6%. From Fig. 12, the throughput is only slightly dropped
from 100% to 94.5% under uniform traffic. In Fig. 12, we have
used and for , and and for

.

1088 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

A batch scheduler (in Section IV) can also be used to cut
down the communication overhead. From Fig. 5, we can see
that only a single occupancy vector of bits is required
for packets sent in a time slot. The per-packet communication
overhead is reduced from bits to bits.

B. Supporting Multicast Traffic

We can modify our feedback-based switch to efficiently sup-
port multicast traffic. At an input port, in addition to the uni-
cast ’s , we can add another
queue for all multicast packets. The input port
scheduler (at input) selects a packet for sending among its

local queues. Priority is given to multicast traffic by examining
first. If the fanout set of its HOL packet (i.e., the set

of output ports for which the multicast packet is destined) over-
laps any empty at the connected middle-port , a copy of
the HOL packet is sent to port together with an -bit dupli-
cation vector (for identifying the overlapped VOQs). Then, the
fanout set of the HOL packet is updated to exclude those in the
duplication vector. If the updated fanout set is empty, the HOL
packet is removed from . If is empty
or the HOL packet of cannot be selected (due to
zero-overlap between its fanout set and any empty), we
select a unicast packet for sending using LQF. In this case, the
duplication vector is set to all 0’s.

When a packet arrives at the middle-stage port, it will be
cloned and stored at the (empty) ’s identified by the
duplication vector.

C. Amenability to Optics

In high-speed switch design, the amenability of the switch
fabric to optics is essential for scalability. In [31], an optical
implementation of our feedback switch leveraging WDM and
arrayed waveguide grating router (AWGR) is proposed. AWGR
is used because of its instinctive properties of no reconfiguration
overhead and almost zero power consumption. Since full con-
nectivity between inputs and outputs can be realized in AWGR,
there are no physical configurations in an AWGR switch. How-
ever, the joint sequence of configurations in Fig. 2(a) can be
logically implemented by sending packets to different outputs
at different times.

It is also possible to construct an -wavelength WDM fiber
ring for connecting linecards together. The ring network can
be engineered such that the amount of time a packet should be
buffered at a middle-stage port exactly matches the propagation
delay that this packet experiences en route. This can ensure all-
optical packet transmission from an input linecard to an output
linecard.

D. Fairness Issue

For any admissible traffic patterns, as long as the switch is
stable, all packets can arrive at the output ports with bounded de-
lays. In this case, fairness in throughput is not an issue. For an in-
admissible traffic pattern where some output ports are oversub-
scribed, the feedback switch will suffer from the ring-fairness
problem, i.e., the “upstream” input ports can flood the band-
width of an oversubscribed output port, and the “downstream”
input ports will be starved. Although different input ports will
have an unfair throughput share of the oversubscribed outputs,

the overall switch throughput performance will not be affected
if a working conserving scheduler is used.

Nevertheless, a throughput-fair scheduler is desirable, and it
can be designed as follows.

• Sending reservation request. Each middle port
maintains two vectors, an overload vector

, and a reservation vector
. For any input port , as long as

the buffer for exceeds a threshold at time
slot , the identity of is piggybacked (using

bits) onto the current packet transmission to middle
port . Middle port records as overloaded in
its overload vector by setting .

• Maintaining reservation status. When middle port con-
nects to an output port , middle port examines its over-
load vector . If all , update

with , which means there is no need for reservation at
. If there are any ,

then randomly select one (and
) and set . This indicates that is

reserved by input port . Then, all
and are reset to for next round of reservation.

• Ensuring a reservation is honored. Before middle port
sends its occupancy vector to output port examines its
reservation vector first. If there is any , where

and , the feedback bit in the occupancy
vector for is overwritten to 1. This is to ensure
that can only be used by input port , which
has made a reservation earlier.

• Input port scheduling. Any sent reservation request
at time slot would be given the highest priority for sched-
uling at time slot . Otherwise, the LQF scheduler is
used.

Fig. 13 shows some simulation results of the above algorithm
under an inadmissible server–client traffic model [32]. At each
time slot for every input, a packet arrives with probability .
Linecards are partitioned into two types: a server and
clients. The server transmits packets with equal probability to
all clients. Among the clients, each transmits of
its traffic toward the server and to the other clients
with equal probability. When , the server’s (linecard 0)
output load is

From Fig. 13, we can see that when traffic is inadmissible
(i.e.,), using the original feedback-based switch, the delay
for flow(2,0) and flow(8,0) grows quickly to infinity, whereas
the delay for flow(1,0) is constant. This is because flow(1,0) is
the traffic hog and it throttles the other two flows. When the
proposed throughput-fair algorithm is used, the bandwidth of
output port 0 is fairly shared among the three flows, indicated
by their comparable delay performance.

VIII. DISCUSSIONS

A. Relationship With the Work in [19]

The joint sequence of switch configurations shown in
Fig. 2(c) is first adopted by the Mailbox switch [17], but its
in-order packet delivery property is first discovered in [19] by
modifying each middle-stage to accommodate a

HU AND YEUNG: FEEDBACK-BASED SCHEDULING FOR LOAD-BALANCED TWO-STAGE SWITCHES 1089

Fig. 13. Delay versus output load, under an inadmissible traffic pattern.

single packet. The ocular discovery in [19] is interesting, but
cannot give much insight on why a single packet buffer per

yields a much better performance than schemes
with a much larger buffer size. The proposed scheduling al-
gorithm also makes use of the middle-stage VOQ occupancy.
A dedicated feedback packet containing the middle-stage port
occupancy must be sent from each middle-stage port to its
connected output at the beginning of each time slot. Data
packets can only be scheduled after the feedback packet arrives
at an input port. Accordingly, the duration of a time slot must
be large enough to account for the extra propagation delay for
the feedback packet, as well as its associated packetization and
synchronization overheads.

Our design differs from [19] in motivation, understanding
of load-balanced switch, and the solution efficiency. In partic-
ular, we focus on properly selecting and coordinating the two
sequences of switch configurations to form a joint sequence
with both staggered symmetry property and in-order packet
delivery property. We first reveal the essence of load-balancing
in switches, i.e., neither buffer underflow nor overflow at any
middle-stage VOQ. As long as there is no buffer underflow and
overflow problem, the actual buffer size for each
has no impact on the switch throughput performance. How-
ever, to minimize packet delay, a small buffer size at each

is preferred because packets buffered at each
middle-stage VOQ tend to experience a much longer delay than
buffering them at input ports To this end, using a single-packet
buffer per is justified. To avoid middle-stage VOQ
overflow and underflow, a feedback mechanism is essential.
Based on the staggered symmetry property, we then devise an
efficient feedback mechanism that piggybacks an occupancy
vector onto a regular data packet sent. As no provision for
dedicated feedback packet is required, the time slot in our
design can be much shorter than that in [19].

With a single packet buffer per , we again ap-
peal to the connection patterns in the two switch fabrics for
maintaining packet order. The key is to ensure every packet be-
longing to the same flow to experience the same middle-stage
port delay no matter the path taken by the packet. Subsequently,

a family of joint switch sequences with both in-order packet de-
livery property and staggered symmetry property is found. Un-
like [19], this gives additional flexibility of selecting an optimal
joint sequence for a given traffic pattern.

B. Relationship With RRGS [35]

In [35], a pipelined RR scheduler called RRGS is proposed
to achieve the maximal size matching performance as iSLIP [6]
while avoiding iSLIP’s iteration overhead. In RRGS, there are

pipelined schedulers. Each of them is responsible for de-
termining a single switch configuration at the end of every
slots, or an -slot frame. As each scheduler has unique frame
starting and ending time slots, the configurations determined
by the schedulers are consecutive in time. In each frame, a
scheduler visits all input ports exactly once [based on a connec-
tion pattern like (1)]. In each visit, it collects the traffic from
an input port, and schedules/reserves some outputs for it on a
round-robin basis. At the end of a frame, the switch is config-
ured according to the reservations made during the frame. In
[36], RRGS is extended to address the fairness issue in handling
inadmissible traffic patterns and to support a variable number of
schedulers.

Although the single-stage switch architecture in [35] is very
different from our two-stage design, the scheduling mechanism
is quite similar. We can see that the role played by a scheduler
in RRGS is comparable to the role played by a middle-stage
port in our design. The middle-stage port delay experienced by
a packet is bounded by slots, so is the scheduling delay in
RRGS (from a packet being scheduled for sending until being
sent). This explains the similar delay-throughput performance
yielded by RRGS in [35] and ours. However, there are also some
major differences:

• RRGS requires schedulers. Although each scheduler
determines one switch configuration in every slots, the
switch configurations used in different time slots do not
follow any predetermined pattern. Notably, the switch
fabric in a load-balanced switch only needs to support
switch configurations, whereas for RRGS configura-
tions are required.

• Like iSLIP, RRGS requires rather heavy state information
exchange between input ports and schedulers for gener-
ating requests and receiving feedback. It is not clear how
to make this process efficient.

It is also interesting to point out that even though the concept
of load-balancing is not formally recognized in RRGS, it indeed
balances the incoming traffic among its schedulers, as our
feedback-based switch balances the traffic among middle-
stage ports.

IX. CONCLUSION

In this paper, a framework for designing feedback-based
scheduling algorithms was proposed for elegantly solving the
notorious packet missequencing problem of a load-balanced
switch without sacrificing the switch’s delay and throughput
performance. Unlike existing approaches, we showed that the
efforts made in load balancing and keeping packets in order
can complement each other. Specifically, at each middle-stage
port between the two switch fabrics of a load-balanced switch,
only a single-packet buffer for each VOQ is required. In-order
packet delivery is made possible by properly selecting and
coordinating the two sequences of switch configurations to

1090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

form a joint sequence with both staggered symmetry property
and in-order packet delivery property. As compared to the
existing load-balanced switch architectures and scheduling al-
gorithms, our solutions have the modest requirement on switch
hardware, but consistently yield the best delay and throughput
performance under various traffic conditions.

ACKNOWLEDGMENT

The authors would like to thank the editor Prof. C.-S. Chang
and the anonymous reviewers for their detailed and insightful
comments, which helped to significantly improve the quality of
the paper.

REFERENCES

[1] D. Pao, N. H. Liu, A. Wu, K. L. Yeung, and K. S. Chan, “Efficient
hardware architecture for fast IP address lookup,” IEE Proc. Comput.
Digital Tech., vol. 150, no. 1, pp. 43–52, Jan. 2003.

[2] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for
VLSI communications switches,” in Proc. 15th Annu. Symp. Comput.
Archit., Jun. 1988, pp. 343–345.

[3] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE INFOCOM, San
Francisco, CA, Apr. 1996, vol. 1, pp. 296–302.

[4] T. Anderson, S. Owicki, J. Saxes, and C. Thacker, “High speed switch
scheduling for local area networks,” ACM Trans. Comput. Syst., vol.
11, pp. 319–352, 1993.

[5] N. McKeown, “Scheduling Algorithms for Input-Queued Cell
Switches,” Ph.D. dissertation, Univ. California, Berkeley, 1995.

[6] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr.
1999.

[7] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a dual
round-robin switch,” in Proc. IEEE INFOCOM, Apr. 2001, vol. 3, pp.
1688–1697.

[8] C. S. Chang, D. S. Lee, and Y. S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: One-stage buffering,” Comput. Commun.,
vol. 25, pp. 611–622, 2002.

[9] C. S. Chang, D. S. Lee, and C. M. Lien, “Load balanced Birkhoff-von
Neumann switches, part II: Multi-stage buffering,” Comput. Commun.,
vol. 25, pp. 623–634, 2002.

[10] Y. Shen, S. Jiang, S. S. Panwar, and H. J. Chao, “Byte-focal: A practical
load-balanced switch,” in Proc. IEEE HPSR, Hong Kong, May 2005,
pp. 6–12.

[11] X. L. Wang, Y. Cai, S. Xiao, and W. B. Gong, “A three-stage load-
balancing switch,” in Proc. IEEE INFOCOM, Phoenix, AZ, Apr. 2008,
pp. 1993–2001.

[12] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” in Proc. IEEE INFOCOM, New York, Jun. 2002, vol. 2, pp.
1032–1041.

[13] I. Keslassy, “The Load-Balanced Router,” Ph.D. dissertation, Stanford
Univ., , 2004.

[14] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
and N. McKeown, “Scaling Internet routers using optics,” in Proc.
ACM SIGCOMM, Karlsruhe, Germany, Aug. 2003, pp. 189–200.

[15] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: A novel al-
gorithm for stable scheduling in load-balanced switches,” IEEE/ACM
Trans. Netw., vol. 16, no. 5, pp. 1212–1225, Oct. 2008.

[16] C. L. Yu, C. S. Chang, and D. S. Lee, “CR switch: A load-balanced
switch with contention and reservation,” in Proc. IEEE INFOCOM,
Anchorage, AK, May 2007, pp. 1361–1369.

[17] C. S. Chang, D. S. Lee, and Y. J. Shih, “Mailbox switch: A scal-
able two-stage switch architecture for conflict resolution of ordered
packets,” in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004, vol. 3,
pp. 1995–2006.

[18] B. Lin and I. Keslassy, “The concurrent matching switch architecture,”
in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006, pp. 1–12.

[19] H. I. Lee, “A two-stage switch with load balancing scheme maintaining
packet sequence,” IEEE Commun. Lett., vol. 10, no. 4, pp. 290–292,
Apr. 2006.

[20] J. R. Nechvatal, “Asymptotic enumeration of generalised latin rectan-
gles,” Util. Math., vol. 20, pp. 273–292, 1981.

[21] B. Hu and K. L. Yeung, “On joint sequence design for feedback-based
two-stage switch architecture,” in Proc. IEEE HPSR, Shanghai, China,
May 2008, pp. 110–115.

[22] P. Gupta and N. McKeown, “Design and implementation of a fast
crossbar scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, Jan.–Feb.
1999.

[23] Y. S. Lin and C. B. Shung, “Quasi-pushout cell discarding,” IEEE
Commun. Lett., vol. 1, no. 5, pp. 146–148, Sep. 1997.

[24] K. L. Yeung, “Efficient time slot assignment algorithms for TDM
hierarchical and non-hierarchical switching systems,” IEEE Trans.
Commun., vol. 49, no. 2, pp. 351–359, Feb. 2001.

[25] B. Wu, K. L. Yeung, M. Hamdi, and X. Li, “Minimizing internal
speedup for performance guaranteed switches with optical fabrics,”
IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 632–645, Apr. 2009.

[26] C. Minkenberg, R. Luijte, F. Abel, W. Denzel, and M. Gusat, “Current
issues in packet switch design,” in Proc. ACM SIGCOMM, Jan. 2003,
pp. 119–124.

[27] A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, and E. Schi-
attarella, “Distributed scheduling in input queued switches,” in Proc.
IEEE ICC, Glasgow, Scotland, Jun. 2007, pp. 6330–6335.

[28] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar.
2000, vol. 2, pp. 556–564.

[29] M. Berger, “Delivering 100% throughput in a buffered crossbar with
round robin scheduling,” in Proc. IEEE HPSR, Poznan, Poland, Jun.
2006, pp. 403–407.

[30] Y. Shen, S. S. Panwar, and H. J. Chao, “Providing 100% throughput
in a buffered crossbar switch,” in Proc. IEEE HPSR, New York, Jun.
2007, pp. 1–9.

[31] X. Wang and K. L. Yeung, “Load balanced two-stage switches using
arrayed waveguide grating routers,” in Proc. IEEE HPSR, New York,
Jun. 2007, pp. 1–6.

[32] A. Bianco, D. Cuda, J. Finochietto, and F. Neri, “Multi-metaring pro-
tocol: Fairness in optical packet ring networks,” in Proc. IEEE ICC,
Glasgow, Scotland, Jun. 2007, pp. 2348–2352.

[33] A. E. Tan, “IEEE 1588 precision time protocol time synchronization
performance,” National Semiconductor, Application Note 1728, Oct.
2007.

[34] R. Palaniappan, Y. Wang, T. Clarke, and B. Goldiez, “Simulation of an
ultra-wide band enhanced time difference of arrival system,” in Proc.
Parallel Distrib. Comput. Syst., Nov. 2007, pp. 306–309.

[35] A. Smiljanic, R. Fan, and G. Ramamurthy, “RRGS-round-robin
greedy scheduling for electronic/optical terabitswitches,” in Proc.
IEEE GLOBECOM, Rio de Janeiro, Brazil, Dec. 1999, vol. 2, pp.
1244–1250.

[36] E. Oki, R. Rojas-Cessa, and H. J. Chao, “PMM: A pipelined maximal-
sized matching scheduling approach for input-buffered switches,” in
Proc. IEEE GLOBECOM, San Antonio, TX, Nov. 2001, vol. 1, pp.
35–39.

[37] B. Wu, K. L. Yeung, P.-H. Ho, and X. Jiang, “Minimum delay sched-
uling for performance guaranteed switches with optical fabrics,” J.
Lightw. Technol., vol. 27, no. 16, pp. 3453–3465, Aug. 2009.

Bing Hu (S’06) received the B.Eng. and M.Phil.
degrees in communicational engineering from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2002 and 2005,
respectively.

He is currently a Ph.D. candidate with the De-
partment of Electrical and Electronic Engineering,
The University of Hong Kong. His research interests
include next-generation Internet, high-speed packet
switch/router design, and all-optical networks.

Kwan L. Yeung (SM’99) was born in 1969. He re-
ceived the B.Eng. and Ph.D. degrees in information
engineering from The Chinese University of Hong
Kong, Shatin, Hong Kong, in 1992 and 1995, respec-
tively.

He joined the Department of Electrical and
Electronic Engineering, The University of Hong
Kong, in July 2000, where he is currently an As-
sociate Professor and the Information Engineering
Program Co-Director. His research interests include
next-generation Internet, packet switch/router de-

sign, all-optical networks, and wireless data networks.

