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Abstract: In this paper we study the flow and heat transfer characteristics of a viscous 

fluid over a nonlinearly stretching sheet in the presence of non-uniform heat source and 

variable wall temperature. A similarity transformation is used to transform the governing 

partial differential equations to a system of nonlinear ordinary differential equations. An 

efficient numerical shooting technique with a fourth-order Runge-Kutta scheme is used to 

obtain the solution of the boundary value problem. The effects of various parameters 

(such as the power law index ,n  the Prandtl number Pr, the wall temperature 

parameter ,λ  the space dependent heat source parameter *A and the temperature 

dependent heat source parameter *B ) on the heat transfer characteristics are analyzed. 

The numerical results for the heat transfer coefficient (the Nusselt number) are presented 

for several sets of values of the parameters and are discussed. The results reveal many 

interesting behaviors that warrant further study on the effects of non-uniform heat source 

and the variable wall temperature on the heat transfer phenomena at the nonlinear 

stretching sheet. 
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1. Introduction 
 
The viscous flow over a stretching sheet has important industrial applications. For 

example, in metallurgical processes, such as drawing of continuous filaments through 

quiescent fluids, annealing and tinning of copper wires, glass blowing, manufacturing of 

plastic and rubber sheets, crystal growing, continuous cooling and fibers spinning, the 

sheets are stretched continuously. During the manufacture of these sheets, the melt issues 

from a slit and is subsequently stretched to achieve the desired thickness. The final 

product with desired characteristics strictly depends upon the stretching rate, the rate of 

cooling in the process, and the process of stretching. In view of these applications, 

Sakiadis [1,2] studied the boundary layer flow over a stretched surface. He employed a 

similarity transformation and obtained a numerical solution for the problem.  

 

Later, Erickson et al. [3] extended the work of Sakiadis [2] to account for mass transfer at 

the stretched surface. The two dimensional boundary layer flow caused by a linear 

stretching sheet in an otherwise quiescent fluid was first discussed by Crane [4]. He 

obtained a closed form exponential solution. Singh [5] studied the effect of non-uniform 

heat source on hydromagnetic convective flow of a viscoelastic fluid. Grubka and Bobba 

[6] studied the heat transfer characteristics of a continuous stretching surface with 

variable temperature. Abel and Nandeppanavar [7–9] studied the effect of non-uniform 

heat source on viscoelastic boundary layer flows. Further, Abel et al. [10] investigated the 

effects of viscous dissipation and non-uniform heat source. Abel and Mahesha [11] 

studied the effects of non-uniform heat source with variable thermal conductivity. Ali 

[12] investigated the effects of power law index on heat transfer characteristics of a 

power law fluid flow. Tsai et al. [13] investigated the effects of non-uniform heat source 

on unsteady stretching sheet. 

 
However, all these studies are restricted to linear stretching of the sheet. It is worth 

mentioning that the stretching is not necessarily linear. In view of this, Kumaran and 

Ramanaih [14] studied flow over a quadratic stretching sheet. Magyari and Keller [15], 

Elbashbeshy [16], Khan and Sanjayanand [17], Sanjayanand and Khan [18], Sajid and 

Hayat [19], Partha et al. [20] studied the heat transfer characteristics of viscous and 
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viscoelastic fluid flows over an exponentially stretching sheet. Vajravelu [21], Vajravelu 

and Cannon [22], and Cortell [23–25] studied the effects of various parameters governing 

the flow of a viscous fluid over a nonlinearly stretching sheet. In all these studies with 

nonlinear stretching sheet, the authors ignored the effects of the heat source, which is 

very important in exothermic and endothermic processes.  

 
The analysis of the temperature field as modified by the generation or absorption of heat 

in moving fluids is important in view of several physical problems, such as in a chemical 

reaction taking place and in problems concerned with dissociating fluids. The volumetric 

rate of heat generation has been assumed to be constant or a function of space variables 

whilst some other studies have considered directly the frictional heating and the 

expansion effect.  Foraboschi and Federico [26] assumed volumetric rate of heat 

generation of the type ( )0 0Q Q T T= −  when 0T T≥ , and 0Q = when 0T T<  in their study 

of the steady state temperature profiles for linear, parabolic and piston-flow in circular 

pipes, The relations above, as explained by Foraboschi and Federico, are valid as an 

approximation of the state of some exothermic process increasing in temperature and 

having 0T  as the onset temperature. When the inlet temperatures are not less than 0T , 

they used ( )0 0Q Q T T= −  and studied its effect on the heat transfer in laminar flow of 

non-Newtonian heat-generating fluids. Moalem [27] studied the effect of temperature-

dependent heat sources of the form 1
0 ( ) ,Q a bT −+ such as the one occurring in electrical 

heating, on the steady-state heat transfer within a porous medium.  

 
Hence in this paper we investigate the effects of non-uniform heat source as in Eq. (4), 

(which can bring out the effects of exothermic process and the effects of electrical 

heating) and the variable wall temperature on the heat transfer characteristics of a viscous 

fluid over a nonlinearly stretching sheet.  

 
2. Mathematical formulation of the problem 

Consider the two dimensional flow of an incompressible viscous fluid over a stretching 

surface. The x-axis is taken along the stretching surface in the direction of the motion and 

the y-axis is perpendicular to it; see for details [21] and Fig. 1(a,b). It may be noted that 
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the Navier–Stokes equations are elliptic, but when we use the boundary layer 

approximation they become parabolic. Hence, under the usual boundary layer 

approximations, the flow and heat transfer problems with non-uniform heat sources are 

governed by the following equations: 

0,u v
x y
∂ ∂

+ =
∂ ∂

                 (1)  

2

2 ,u u uu v
x y y

υ∂ ∂ ∂
+ =

∂ ∂ ∂
                                                                                   (2)                

2

2p
T T Tu vc k q
x y y

ρ
∂ ∂ ∂  ′′′+ = + ∂ ∂ ∂ 

,                                    (3) 

where x and y denote the cartesian coordinates along and normal to the sheet, respectively, 

u and v are the velocity components of the fluid in the x and y directions, respectively, ρ  

is the fluid density, ( )/υ µ ρ=  is the kinematic viscosity, µ  is the viscosity, T  is the 

temperature, k  is the thermal conductivity, and pc is the specific heat at constant pressure. 

q′′′  is the non-uniform heat source, which is modeled as: 

( ) ( )
1

* *2( ) ( 1)exp( )
2

n
w

w
ku x b nq A T T y x B T T

xυ υ

−

∞ ∞

 + ′′′ = − − + −  
   

,                                (4)                   

where *A  and *B are parameters of the space and temperature dependent internal heat 

generation/absorption. The case *A > 0 and *B > 0 corresponds to internal heat generation 

while *A < 0 and *B < 0 corresponds to the internal heat absorption. 

 

The boundary sheet is stretched nonlinearly with a velocity proportional to x coordinate 

(i.e., the distance from a slit); hence the appropriate boundary conditions for the problem 

are 

( ) , 0, , at 0
0, as

n
wu x bx v T Ax y

u T T y

λ

∞

= = = =


→ → →∞
,                                                                   (5) 

where b  and n  are parameters related to the surface stretching velocity. Introducing new 

similarity variables  
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and upon substitution of these similarity transformations into Eqs. (1), (2) and the 

conditions in (5), we get 

 22 ,
1

nf f ff
nηηη η ηη

 = − + 
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with the boundary conditions  
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1 , 0 at 0

0, as

f f
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η

η

η η η
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
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Similarly upon substitution of similarity variables in Eq. (6) into Eq. (3) we obtain 

{ } **2 2Pr 0,Pr
1 1

f A fB f
n nηη η ηηθ θ θλ   + + + =−   + +   

           (9)  

where ( ) ( )wT T T T θ η∞ ∞− = − and the boundary conditions in Eq. (5) take the form 

( )
( )

1       at          0

0     as         

θ η η

θ η η

= = 


→ →∞
 .           (10) 

The shear stress at the wall is given by 
3 1

2
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( 1) (0)
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The local wall heat flux is defined as 
1

2

0

( 1)( ) (0)
2

n

w w
y

T b nq k k T T x
y ηθυ

−

∞
=
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.                                                   (12) 

Since there is no exact solution for the nonlinearly stretching boundary value problem, 

we opt for an efficient shooting technique with a fourth-order Runge-Kutta scheme.  

 
3. Numerical solution 

Analytical solution for the flow problem with 1n ≠ does not exist so consequently, one 

has to use a numerical technique. The nonlinear differential Eqs. (7) and (9) with 

boundary conditions (8) and (10) are solved numerically by the shooting technique with a 
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fourth-order Runge-Kutta method [28,29]. The nonlinear differential equations are first 

decomposed into to a system of first order differential equations  

( )
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with the boundary conditions 

1 0 0

2 0

(0) 1,         (0) 0,       (0) 1
( ) 0, ( ) 0

f f
f

θ
θ

= = = 
∞ = ∞ = 

 ,                                                         (14) 

where 0 0( ) ( ) and ( ) ( ).f fη η θ η θ η= =   The boundary value problem above is first 

converted into an initial value problem (IVP) by appropriately guessing the missing 

slopes 2 1(0) and (0)f θ . Then the resulting IVP is solved by the shooting method for 

several sets of values of the parameters. The step size of 0.01h = is employed for the 

computational purposes and the error tolerance of 610−  is being used.  

 
4. Analytical solution (a special case) 

In this special case, we investigate the solution of Eqs. (7) and (9) with the boundary 

conditions (8) and (10), when 1n = and 2λ =  as follows: 

 

4.1 Solution of the momentum equation 

Substituting 1n =  into Eq. (7), we obtain the momentum boundary layer equation as: 
2 ,f f ffηηη η ηη= −                            (15) 

with the conditions  

( ) ( )
( )

1 , 0 at 0

0, as

f f

f
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η η η
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= = = 

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.                                    (16) 
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The momentum boundary layer Eq. (15) with conditions (16) has the exact solution (for 

details see Vajravelu [21]) 

( ) 1 exp( ).f η η= − −                                                                                 (17) 

 
4.2 Solution of thermal boundary layer equation 

Similarly, when 1n = and 2λ = , the governing thermal boundary layer Eq. (9) reduces to 

{ }* *Pr 2Pr 0f B f A fηη η η ηθ θ θ+ + − + =                                                                       (18)  

with conditions  

( )
( )

1       at          0

0     as         

θ η η

θ η η

= = 

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.            (19) 

Analytical solution for the differential equation (18) subject to the conditions (19) can be 

obtained in terms of Kummer’s function as: 
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0 02
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5. Results and discussion  

Heat transfer characteristics of the viscous boundary layer flow over a nonlinearly 

stretching sheet with non-uniform heat source are investigated. The shooting technique 

with a fourth-order Runge-Kutta scheme is employed to obtain the solution for the one-

way coupled nonlinear boundary value problem. Also, as a special case, we obtained an 

analytical solution (when 1n =  and 2λ = ) to the case of Newtonian fluid. The results for 

the Newtonian case are used to validate the numerical results for the general case 1.n ≠  
The parameters involved in the study are n (the power law-index), λ (the temperature 

parameter), Pr (the Prandtl number), and *A (the space dependent heat source/sink) 

and *B  (the temperature dependent heat source/sink). Since Vajravelu [21], Cortell 

[23,24] already studied the effects of the parameters n and Pr on the flow and heat 
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transfer characteristics. Therefore, we focus our attention on the other parameters λ , 
*A and *B .  

 
The effects of the physical parameters involved in the heat transfer analysis are depicted 

in Figs. 2 through 6. The influence of the power-law index n is depicted in Fig. 2. From 

this figure it is clear that as the nonlinear stretching parameter n  increases, an increase in 

temperature occurs. The effect of the parameterλ  on heat transfer is typical as in Grubka 

and Bobba [6], which is presented in Fig. 3. From this figure it can be seen that, the 

magnitude of the parameter λ  dictates the direction of heat transfer. From this figure we 

can also see that, the increasing effect of λ  is to decrease the magnitude of temperature 

in the boundary layer, and hence there is heat transfer from sheet to liquid. Fig. 4 shows 

the effect of the Prandtl number on the heat transfer. Increasing the Prandtl number (Pr) 

will decrease the temperature. That is, an increase in the Prandtl number is to decrease 

the thickness of the thermal boundary layer. Also this phenomenon is true with λ . 

However, quite opposite is true with the other parameters. 

 
Figs. 5 and 6 show the effects of the heat source/sink parameter on the temperature. The 

heat generation/absorption clearly affects the flow and temperature of the fluid. It is the 

cumulative influence of the flow and temperature-dependent heat source/sink parameter 

that determines the extent to which temperature falls or rises in the boundary layer 

region. From the plots it is clear that, the energy is released for increasing values of  
* *0,  0A B> >  and this causes the magnitude of temperature to increase, where as energy 

is absorbed for decreasing values of * *0,  0.A B< <  Non-uniform heat sinks 

corresponding to * *0,  0A B< <  can contribute to quenching the heat from stretching 

sheet effectively. 

 
The numerical results for the wall temperature gradient (0)θ′   are documented in Table 

1. These results reveal that the effect of increasing values of  *A  and *B  is to increase the 

wall temperature gradient (0),θ ′ but quite opposite is the phenomenon with the 

parameters Pr and λ .  
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Nomenclature 
 

b  stretching rate      

x  horizontal coordinate  

y  vertical coordinate  

u  horizontal velocity component  

v  vertical velocity component  

T  temperature  

t  time   

pc  specific heat  

f   dimensionless stream function  

Pr Prandtl number 
*A  space dependent heat source/sink 
*B  temperature dependent heat source/sink 

n power-law index 

 

Greek symbols 

η  similarity variable 

θ  dimensionless temperature 

k  thermal conductivity  

µ  viscosity  

υ  kinematic viscosity  

ρ  density   

wτ  shear stress  

λ  temperature parameter 

 

Subscripts 

η  first derivative w. r. t. η  

ηη  second derivative w. r. t. η  

ηηη     third derivative w. r. t. η  
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Table1. Values of the Nusselt number ( )0θ ′ for several sets of values of the parameters.  
 
 

 (Note: While studying the effect of individual parameters the following values are used 
λ = 2.0, Pr = 1.0, *A = 0.1, *B = 0.1). 

 
 

 

 

 

 

 

 

Parameters Values 
- ( )0θ ′  

  0.5n =  

 

1.0n =  1.5n =  

λ  
1.0 
2.0 
3.0 

 
0.994706 
1.452543 
1.818398 
 

0.864169 
1.237484 
1.544861 

0.784960 
1.100034 
1.365733 

Pr 
1.0 
2.0 
3.0 

1.452443 
2.226426 
2.799134 

 
1.237484 
1.927176 
2.436357 
 

1.00034 
1.732455 
2.199036 

*A  

 
-0.1 
0.0 
0.1 
 

1.561825 
1.507134 
1.452443 

1.354497 
1.295990 
1.237484 

1.22213 
1.161123 
1.00034 

*B  

 
-0.1 
0.0 
0.1 
 

1.560166 
1.508454 
1.452443 

1.334991 
1.288311 
1.237484 

1.188739 
1.146251 
1.100034 
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  Fig. 1(a): Schematic diagram of the stretching sheet 

 

 

 
Fig. 1(b):  Schematic of a polymer extrusion process 
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Fig 2: effect of power-law index parameter n on temperature profile
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Fig 4: Effect of Pr on Temperature profile
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Fig 6: Effect of B* on temperature profile
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