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ABSTRACT

Diffusion kurtosis imaging (DKI) is a recent MRI based method that
can quantify deviation from Gaussian behavior using a kurtosis ten-
sor. DKI has potential value for the assessment of neurologic dis-
eases. Existing techniques for diffusion kurtosis imaging typically
need to capture hundreds of MRI images, which is not clinically fea-
sible on human subjects. In this paper, we develop robust denoising
and model fitting methods that make it possible to accurately recon-
struct a kurtosis tensor from 75 or less noisy measurements. Our de-
noising method is based on subspace learning for multi-dimensional
signals and our model fitting technique uses iterative reweighting to
effectively discount the influences of outliers. The total data acquisi-
tion time thus drops significantly, making diffusion kurtosis imaging
feasible for many clinical applications involving human subjects.

Index Terms— MRI, Kurtosis Tensors, Model Reconstruction,
Optimization, Denoising

1. INTRODUCTION

Diffusion magnetic resonance imaging (MRI) provides a means to
noninvasively probe the microstructure of biological tissues. Water
diffusion in biological tissues attenuates the MRI signal. The amount
of attenuation of diffusion-encoding gradient pulses along one spe-
cific direction depends on the probability density function of pro-
jected displacements of water molecules along that gradient direc-
tion [1]. Thus, by measuring the attenuation factors along multiple
gradient directions, it becomes possible to reconstruct the full diffu-
sion displacement probability density function for water molecules
in biological tissues. Since microscale tissue structures, such as cel-
lular compartments and membranes, determine the mobility of wa-
ter molecules within, the reconstructed diffusion displacement prob-
ability density function can be conversely used to infer the tissue
microstructure.

In tissues, such as brain gray matter, where the measured ap-
parent diffusivity is largely independent of the orientation of the tis-
sue, it is usually sufficient to characterize the diffusion characteris-
tics with a scalar apparent diffusion coefficient (ADC). However, in
anisotropic media, such as brain white matter, where the measured
diffusivity is known to depend on the orientation of the tissue, no
single ADC can characterize the orientation-dependent water mobil-
ity in these tissues. Because of this, a zero-mean trivariate Gaussian
function was proposed to model the diffusion displacement proba-
bility density function. This led to diffusion tensor imaging (DTI),
which reconstructs the full covariance matrix (tensor) of the Gaus-
sian function from multiple measurements.

A diffusion tensor D is a second-order three-dimensional posi-
tive semidefinite symmetric tensor [2, 8]. Under a Cartesian coor-
dinate system, it is represented by a real three-dimensional symmet-
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ric matrix, which has six independent elements D = (D;;) with
D;; = Dj; for4, 5 = 1,2, 3. In this model, the MRI signal intensity
Sm(q) is expressed as follows.

(S ()] = I[S(0)] = bDapp (%), (1

where q = bx, x(= [x1 x2 x3]7) is a unit vector, Dypp(x) is the
ADC value in the direction defined by x

3
Dapp(x) = Y Dijxix;, )

i,7=1

and the parameter b is given by

0
b= (149)* (A - 5) : 3)
where g is the gradient strength, v is the proton gyromagnetic ra-
tio, A is the separation time of the two diffusion gradients, ¢ is the
duration of each gradient lobe. Combining (1) and (2), we have

In[Sn(q)] = n[S(0)] = b > Dijxix;. 4)

ij=1

However, the complex structure of most tissues, consisting of
various types of cells and membranes, can cause the diffusion dis-
placement probability density function to deviate substantially from
a Gaussian form. This deviation from Gaussian behavior can be
quantified using a dimensionless metric called the excess kurtosis.
A method, named diffusion kurtosis imaging (DKI), for estimating
the excess kurtosis of water diffusion in vivo by means of pulsed-
field-gradient MRI has been introduced in [5]. A diffusion kurtosis
tensor W is a fourth-order three-dimensional fully symmetric array,
which has fifteen independent elements W = (W;jx;) with Wijx
being invariant for any permutation of its indices ¢, j, k,l = 1,2, 3.
In this model, (1) can be expanded as follows:

(S (q)] = In[S(0)] = bDapp(x) + észﬁpp(X)Kapp(X), ©)

where Kqpp(x) is the apparent kurtosis coefficient (AKC) value in
the direction x,

3 2 3
1
D2y Kapp = <§ Z Dii) Z Wijrr XiXjXpxi.  (6)
1 i,j,k,I1=1
Combining (5), (2) and (6), we have
In[Sm(q)] = In[S(0)] — bDapp +

3 2 3
1,(1
L Di;
v (5300:)

Z Wijkt XiXjXpX1. (7

i,5,k,l=1
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The non-Gaussian behavior of water molecules may contain
useful information related to tissue structure and patho-physiology.
Hence, the diffusion kurtosis imaging (DKI) has important biologi-
cal and clinical significance. Sharp differences between the diffusion
kurtosis in white and gray matters have been reported in [5]. DKI
is believed to have potential value for the assessment of neurologic
diseases, such as multiple sclerosis and epilepsy, with associated
white matter abnormalities. In addition, DKI may be useful for
investigating abnormalities in tissues with isotropic structures, such
as brain gray matter, where techniques like DTI are less applicable.

Existing techniques for diffusion kurtosis imaging typically
need to capture hundreds of MRI images with distinct combinations
of b values and gradient directions [5, 6], which takes a long time to
finish and is not clinically feasible on human subjects as they need
to stay still during the entire data acquisition stage. In this paper, we
develop robust denoising and model fitting methods that makes it
possible to reconstruct a kurtosis tensor from 75 or less noisy mea-
surements. Our denoising method is based on subspace learning for
multi-dimensional signals and our model fitting technique uses iter-
ative reweighting to effectively discount the influences of outliers.
The total data acquisition time thus drops significantly, making
diffusion kurtosis imaging feasible for many clinical applications
involving human subjects.

2. ROBUST MODEL FITTING

From the above section, we know a diffusion tensor D has 6 un-
knowns and a diffusional kurtosis tensor W has 15 unknowns. To
reconstruct the kurtosis tensor from multiple measurements, we have
to simultaneously estimate the diffusion tensor because both of them
are involved in (5) and (7). Therefore, we need to simultaneously es-
timate 21 unknowns during kurtosis tensor reconstruction. Suppose
there are n + 1 (n > 21) real noisy measurements associated with
distinct q vectors, {S(0), Sr(q1)," -+ ,Sr(qn)}, where q; = b;x".
We cast kurtosis tensor reconstruction as a least-squares minimiza-
tion of the differences between real and predicted measurements,

n

min > (In[S,(q:)] — In[Sm(a)])?, ®)

i Wijkr S

where Sy, (q;) is the model-based prediction defined in (5). We
solve this nonlinear minimization in two stages. First, we remove
the nonlinear term and minimize

n

S (S, ()] — ([S(0)] — bi Dy (x))?

i=1

as a linear least-squares problem. This linear minimization provides
an initial estimation of the diffusion tensor only. Second, solve the
full nonlinear problem in (8) using the Levenberg-Marquardt method
[7]. The diffusion tensor is initialized using linear least-squares solu-
tion and the unknowns in the diffusion kurtosis tensor are initialized
to zero.

Since we aim to use sparse measurements only and they are
further contaminated with noise and outliers, the above nonlinear
method usually does not give rise to robust results. Therefore, we
further integrate nonlinear optimization with a robust statistical tech-
nique, iteratively re-weighted least squares (IRLS) [9], to reduce the
influences of noise and outliers. (8) thus becomes the following
weighted least-squares minimization.

n

min > w(ai) (In[Sr(qi)] — [Sm(a:)])®  (9)
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where w(q;) is the weighting term for the measurement associated
with q;. We define one meta-iteration as the process of running the
Levenberg-Marquardt method on the weighted least-squares prob-
lem in (9) for a reasonable number of iterations (say 10) while keep-
ing the weights fixed. At the end of each meta-iteration, we up-
date the weights in (9) according to the final residual error of each
measurement in the current meta-iteration. A larger residual error
indicates a larger likelihood for the measurement to be an outlier,
and therefore it should receive a smaller weight in the next meta-
iteration to reduce its influence on the estimated kurtosis tensor. We
use a Gaussian kernel to define the weighting term as follows.

w(a;) = exp (= (In[Sy(q:)] — [Sm(q:)])* /207) . (10)

where o is the standard deviation of the residual errors of all mea-
surements. We typically use only 2 to 3 meta-iterations in our exper-
iments and the last meta-iteration is run until convergence.

Note that the above model fitting algorithm does not explicitly
enforce the constraint that the diffusion tensor is a positive semidef-
inite matrix even though it does return such a matrix most of the
time. When this algorithm does not return a matrix satisfying this
constraint, we switch to a more expensive procedure based on con-
vex optimization. Let d be the 9-element vector by flattening the
3x3 diffusion tensor D, and k be the 15-element vector assembled
from the fifteen independent elements of the kurtosis tensor W. The
weighted least-squares minimization in (9) can be written in a vector
form as follows.

rg}gliw(qi) (b +ala— £ k)2 an
=1

where b; = Sr(q:) — S(0), a; and f; are coefficient vectors for d
and k, respectively. a; and f; are derived from (7) and include the
cross-terms, X;X; and X;X; Xz X, respectively. They are specific to q;.
If we further stack a;’s and f;’s into matrices and b;’s into a vector,
(11) can be further rewritten in the following matrix-vector form,

min |b+ Ad — Fk|2, 12)

where b is a nx 1 vector, A is a nx9 matrix, and F is a nx 15
matrix. The i-th element of b is \/w(q;)b;; The i-th row of A and
F are /w(q;)al and \/w(q;)f], respectively.

If d is known, (12) becomes a linear least-squares problem with
k as the unknown. The optimal solution in this case is

k* = F(b+ Ad), (13)

where F* is the Moose-Penrose pseudo-inverse of F. If we substi-
tute this formulation for optimal k into (12) and further add the con-
straint that the diffusion tensor D formed from the vector d should
be symmetric and positive semidefinite, we have the following con-
vex optimization,

min [[(I—FF")(b+ Ad)|;,
st.  D(d)>=o0. (14)

This convex optimization sets d as the only unknown and can be
conveniently solved using the SeDuMi toolbox [10] in MATLAB.
Given the solution of (14), we extract the eigenvectors of the
diffusion tensor D(d) and use them as the orthogonal axes of a lo-
cal frame. We further transform all q vectors to this local frame and
solve the nonlinear problem in (9) again within this local frame using
arevised Levenberg-Marquardt method. In this local frame, we only



need to optimize the three diagonal elements of the diffusion tensor
D because all of its off-diagonal elements should be zero. We only
need to guarantee that the three diagonal elements are all nonnega-
tive to enforce the original constraint that D is positive semidefinite.
Our revised Levenberg-Marquardt method can easily guarantee such
nonnegativity during every iteration of the optimization. Our ex-
periments have confirmed that solving the kurtosis tensor using this
procedure can achieve much more accurate results than directly us-
ing the pseudo-inverse in (13), where d is replaced with the solution
for the convex optimization in (14).

Note that a complete dataset for diffusion tensor imaging or dif-
fusion kurtosis imaging is typically three dimensional and consists
of a large number of pixels. Each pixel contains multiple measure-
ments with the aforementioned q vectors, {q1,qz," - ,qn}. Thus,
the aforementioned model fitting is repeated for every pixel.

3. SUBSPACE BASED DENOISING

The robust model fitting technique discussed in the previous sec-
tion can resist the influences of noise and outliers to a certain ex-
tent. Nonetheless, when the noise level is very high, it may fail
to accurately reconstruct a kurtosis tensor model. In this section,
we develop a preprocessing step that performs noise removal be-
fore model fitting. Note that we are actually dealing with multi-
dimensional signals if we stack the multiple measurements at the
same pixel together as a vector, s = [S(0) S(qi1) S(an)]*.
Since all components in this vector are derived from the same under-
lying biological structure, they are highly correlated. On the other
hand, since each component is measured separately, the noise in dif-
ferent components is much less correlated. Instead of denoising each
component separately, we chose to denoise all components simulta-
neously. Because of the correlation present among different compo-
nents, the idea is to learn a lower-dimensional subspace that the noise
free multi-dimensional signal belongs [3]. The noisy signal can then
be projected to this subspace to have its noise part removed.

We use Independent Component Analysis (ICA) to learn the
aforementioned subspace. ICA is performed on the collection of
noisy (n + 1)-dimensional vectors from all pixels or a subset of
pixels, such as the pixels in a 2D slice of the original 3D dataset.
The result is n + 1 independent components (ICs) each of which is
a (n + 1)-dimensional vector. In contrast to Principal Component
Analysis (PCA), ICA renders the output signals as statistically inde-
pendent as possible by evaluating higher-order statistics. We use the
popular FastICA algorithm introduced in [4], which performs ICA
by maximizing the non-Gaussianity of the signal components.

To extract a desired signal subspace, we need to first sort the
independent components in decreasing order of importance and then
choose a subspace from this ordered list. Let U = [up u1 --- uy]
be the (n + 1) x (n 4 1) matrix of the complete set of independent
components, whose linear combination can losslessly represent the
(n 4 1)-dimensional signal at each pixel. Suppose the signal at a
pixel is expressed as s = Z?:o c;u;. Then the vector of coefficients
c=lcoct - cn]T can be obtained by solving the linear system,

Uc =s. (15)

We solve such projection coefficients for signals from all pixels and
compute the variance of the coefficients corresponding to each inde-
pendent component. An independent component is considered im-
portant if its projection coefficients have a large variance. Finally, we
sort the independent components in decreasing order of importance.

A common criterion for choosing a subspace is based on mini-
mum description length (MDL). However, as mentioned in [3], the

(d

Fig. 1. Comparison of model fitting results with and without it-
erative reweighting. (a) mean kurtosis with reweighting; (b) mean
kurtosis without reweighting; (c) standard deviation of kurtosis with
reweighting; (d) standard deviation of kurtosis without reweighting.

MDL estimator tends to significantly underestimate the number of
independent components corresponding to noise. In practice, we
simply visualize the variances of the projection coefficients for all
components in the aforementioned order and visually identify a lo-
cally maximum gap in variance between two adjacent components.
All components after that gap are classified as noise components
and discarded. The components before the gap form the desired sub-
space. Suppose there are r remaining components. This subspace is
represented by the truncated matrix, U™ = [u] uj --- ul].

To extract the noise free part of a signal, we need to project
the original noisy signal to this subspace. Again, the projec-
tion of a signal is a linear combination of these r components,
§ = >.7_, cjuj. The vector of coefficients ¢’ = [¢} ¢, --- c}.]T
can be obtained by minimizing ||s — 8|, which is again a lin-
ear least-squares problem, whose solution is ¢’ = U(T)+s, where
Ut = (U(T)TU(T)) U™ s the Moose-Penrose do-

= pseudo

inverse of U™

4. EXPERIMENTAL RESULTS

We have performed various experiments to validate our algorithms.
The measurements were collected with five levels of b values, which
are 500, 1000, 1500, 2000, and 2500, respectively. At each distinct b
value, 10 to 15 gradient directions were sampled over the unit sphere,
resulting in 58 to 75 noisy measurements per image pixel.

In our experiments, we estimate scalar quantities, including
mean and standard deviation of kurtosis, because clinical applica-
tions typically adopt such scalar quantities instead of the originally
reconstructed tensorial data. Mean kurtosis is defined to be the in-
tegral of the apparent kurtosis coefficient in (6) over the unit sphere
[8]. Standard deviation of kurtosis is defined to be the integral of the
squared difference between the apparent kurtosis coefficient and the
mean kurtosis over the unit sphere. Intuitively, mean kurtosis has
relatively large values in regions with a relatively high fiber density,
which is true not only in the white matter but also in regions of the
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(b)

(d
Fig. 2. Comparison of model fitting results with and without ICA-

based subspace denoising. (a) mean kurtosis without denoising;
(b) mean kurtosis with denoising; (c) standard deviation of kurtosis
without denoising; (d) standard deviation of kurtosis with denoising.

gray matter filled with tiny fibers. Standard deviation of kurtosis, on
the other hand, computes the degree of consistency among different
diffusion directions. It has relatively large values in regions filled
with crossing fibers.

Fig. 1 shows kurtosis fitting results for a normal subject. The
results obtained with iterative reweighting better reveal details and
are more consistent between the mean and standard deviation of
kurtosis. On the other hand, the results obtained without iterative
reweighting overestimate the standard deviation of kurtosis because
it considers the noise as part of the standard deviation. They also
appear to be washed out and show less spatial details.

Fig. 2 shows kurtosis fitting results for a stroke patient. It is
obvious from the images that one side of the brain has much less
neural fibers. A comparison is shown between results obtained with
and without ICA-based subspace denoising. It is easy to verify that
the results obtained with ICA-based denoising are cleaner with much
less noisy dots.

Fig. 3 shows denoising results for an extremely noisy dataset
collected for a pair of mouse brains. We compared our ICA-based
subspace denoising with two other methods. One is Gaussian de-
noising applied to individual data channels. The other is PCA-based
subspace denoising. Our denoising method succeeded on this low-
quality dataset while the other two methods failed. The fractional
anisotropy of the original dataset is also shown as a reference im-
age.

5. CONCLUSIONS

We have developed robust denoising and model fitting methods that
make it possible to accurately reconstruct a kurtosis tensor from 60
or less noisy measurements. Our denoising method is based on sub-
space learning for multi-dimensional signals and our model fitting
technique uses iterative reweighting to effectively discount the influ-
ences of outliers. The total data acquisition time thus drops signifi-
cantly, making diffusion kurtosis imaging feasible for many clinical
applications involving human subjects.

(c) PCA (d) ICA
Fig. 3. A comparison of model fitting results among various de-
noising methods. (a) Fractional anisotropy; (b) mean kurtosis with
Gaussian denoising performed on each data channel separately; (c)
mean kurtosis with PCA-based subspace denoising; (d) mean kurto-
sis with ICA-based subspace denoising.
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