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ABSTRACT

Static Feature-specific imaging (SFSI) employing a fixed/static measurement basis has been shown to achieve
superior reconstruction performance to conventional imaging under certain conditions.1–5 In this paper, we
describe an adaptive FSI system in which past measurements inform the choice of measurement basis for future
measurements so as to maximize the reconstruction fidelity while employing the fewest measurements. An
algorithm to implement an adaptive FSI system for principle component (PC) measurement basis is described.
The resulting system is referred to as a PC-based adaptive FSI (AFSI) system. A simulation study employing the
root mean squared error (RMSE) metric to quantify the reconstruction fidelity is used to analyze the performance
of the PC-based AFSI system. We observe that the AFSI system achieves as much as 30% lower RMSE compared
to a SFSI system.
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1. INTRODUCTION

Feature-specific imaging (FSI)1 is motivated by the fact that most natural scenes are inherently redundant and
therefore, sparse in some transform domain such as Fourier and/or Wavelets. FSI employs transforms such
as principal component (PC), Hadamard, Wavelets as the measurement basis. FSI imager directly measures
linear projection(s) of the object on to the measurement basis and the resulting measurements are referred to as
features.6 Typically, the number of measurements in a FSI system is much less than the object dimensionality,
therefore, FSI is sometimes also referred to as compressive imaging in literature.7–11 Measuring fewer photon
efficient measurements compared to traditional imaging, FSI can yield benefits such as improved measurement
signal to noise ratio (SNR), reduced power, bandwidth, and weight requirements. Its superior performance to
traditional imaging has been demonstrated for applications such as sensor network, structured illumination, and
face detection.2–5

Previous research on FSI systems2, 3, 12 has utilized principal component or Karhunen-Loève basis for object
reconstruction task. We refer to such a FSI system as a PC-based static FSI (SFSI) system, because the mea-
surement bases are designed before the measurement process and remains fixed/static through the measurement
process. Note that principle component (PC) basis incorporates the second-order correlation properties of object.
For a SFSI system, we can design a PC basis that minimizes the reconstruction mean square error (MSE) for an
ensemble of objects. However, such a basis is sub-optimal for any particular object. This forms the motivation
to find a basis which incorporates individual object information as the measurement process progresses. Such
a non-static measurement basis design would achieve a better reconstruction performance than a SFSI system.
Here we take an adaptive approach that exploits past feature measurements to modify the measurement basis
during measurement process. We refer to such a FSI system as an adaptive FSI (AFSI) system. As a PC basis
is MSE optimal for object reconstruction assuming noise free measurements,13 here we use PC projection as an
example to develop AFSI system and demonstrate its superior performance relative to SFSI system.
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2. SFSI SYSTEM FRAMEWORK

A SFSI system employs projection vectors drawn from a fixed measurement basis. Figure 1 shows a block
diagram for a SFSI system. In this system, multiple images of an object are formed by a lenslet array. In
the focal plane, each image of the object is modulated by a spatial light modulator (SLM) which displays one
projection vector from the measurement basis. Light after the SLM is spatially integrated onto a single detector
resulting in one feature measurement. An array of L such projections yields L feature measurements. After I
such measurements, M = IL features are collected. An imager in figure 1 uses a parallel optical architecture,

Figure 1. A block diagram for SFSI using PC bases.

because it collects L feature measurements in parallel during one detector exposure time period T0. In such a
imager, the object irradiance collected in each feature measurement is reduced by a factor L due to use of L
lenslets of equal diameter within the system aperture.12 The M = IL feature measurements in a SFSI system
can be represented as

y = Fx + n (1)

where y is the feature measurement vector of size M ×1, F is the projection matrix of size M ×N which includes
the 1/L factor resulting from choice of the parallel architecture, x is the object vector of size N × 1 obtained by
lexicographically arranging a 2D object of size

√
N ×

√
N , and n is the noise vector of size M × 1. We assume

the detector noise is additive white Gaussian noise with zero mean and variance is σ2 = σ2
0/T0. Here σ2

0 is the
noise energy per bandwidth, and T0 is the detector exposure time.12 To reconstruct an object, we use a Wiener
or a linear minimum mean square error (LMMSE) operator,

W = RxF
T [FRxF

T + Rn]−1 (2)

where Rx and Rn are the object and noise auto-correlation matrices respectively, Rn = σ2I. The estimated
object x̂ is x̂ = Wy.

The projection matrix F in a PC-based SFSI (PC-SFSI) system is constructed from eigenvectors of the
object auto-correlation matrix Rx. To minimize reconstruction error M eigenvectors corresponding to the
largest M eigenvalues are used to form the PC projection matrix F, yielding M features.13 With this projection
matrix F, the reconstruction MSE is minimized for an ensemble of objects when they satisfy an underlying
Gaussian distribution.13 However, for a specific object, this PC projection matrix is sub-optimal and therefore
the projection vectors need to be designed specifically for that object. For example, we observe a set of M PC
projection vectors derived from a training set comprised of “tank” or “face” yield a smaller reconstruction MSE
values for a “tank” or a “face” object respectively, compared with a set of M PC projection vectors derived from
a larger training set spanning a wider class of objects such as building, mountain, or river. Note that the first set
of projection vectors are derived from a set composed of training samples similar to the test objects. Therefore,
the projection vectors are able to incorporate more relevant object prior knowledge compared to a set composed
of different class of data samples than the test object. This observation motivates our design for a PC-based
AFSI system discussed in the next section.

3. AFSI SYSTEM FRAMEWORK

In an PC-based AFSI system, the feature measurement basis is modified based on the set of past PC feature
measurements. For example, for a

√
N ×

√
N object, the first L PC projection vectors are derived from a
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training set, then they are used to make the corresponding L feature measurements. Based on these L PC feature
measurements, the second L projections are derived and the second L feature measurements are collected and so
on. Following this procedure, M PC projection vectors are designed sequentially incorporating object knowledge
learnt at each measurement step.

Figure 2. A block diagram for AFSI using a PC basis

Figure 2 presents the block diagram of a PC-AFSI system. Before continuing the discussion, we define a list
of parameters as shown below:

x : object vector of size N × 1.

A(i), B(i) : two training sets in the ith iteration, where samples in A(i) span a N − iL dimensional
space and samples in B(i) span a N dimensional space.

k(i) : cardinality of A(i) and B(i).

R
(i)
A , R

(i)
B : auto-correlation matrices estimated from samples in A(i) and B(i).

F(i) : projection matrix of size L × N in the ith iteration.

F̃(i) : accumulated projection matrix of size (iL) × N after the first i iterations.

n(i) : noise vector of size L × 1 in the ith iteration.

y(i) : feature vector of size L × 1 in the ith iteration.

ỹ(i) : accumulated feature vector of size (iL) × 1 after the first i iterations.

W
(i)
n : reconstruction operator in the ith iteration using measurement with noise.

x̂(i) : object reconstruction in the ith iteration.

As shown in figure 2, L PC projection vectors in each adaptation iteration are derived from a training set

A(i). These PC vectors are the L dominant eigenvectors of R
(i)
A , where i denotes the ith iteration, i = 1, 2, 3, ..., I,

and I is the total number of adaptation steps. Feature measurements y(i) in the ith iteration are represented as
y(i) = F(i)x + n(i). The vector ỹ(i) = [y(1)T y(2)T ... y(i)T ]T represent all of the feature measurements up to
the ith iteration. At each iteration, additional information about the object is incorporated by computing new
PC projection vectors from an updated training set that is in turn defined by last training set and the feature
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measurements acquired until that step. The adaptation process employs denoised feature measurements, which
are defined as

ŷ(i) = W(i)
y y(i), (3)

where W
(i)
y = R

(i)
y [R

(i)
y + Rn]−1 and R

(i)
y = E{[F(i)x][F(i)x]T } = F(i)R

(i)
B F(i)T . The “K-nearest neighbor”

method is used to update training set A(i) to A(i+1) in the accumulated feature space. In this method, we choose
the k(i + 1) closest training samples to x̂(i) from A(i). These chosen samples define the updated training set
A(i+1) and the remaining samples are discarded. We also remove the subspace spanned by the iL PC projections
from A(i+1) to ensure orthogonality among all projection vectors. The number of training samples k(i) at ith

iteration is defined as: k(i) = αe−βi, the the training set size decreases exponentially as i increases. Parameters α
and β are optimized based on more than 50 different training sets. The optimal values of α = 0.5 and β = 0.0063
maximizes AFSI system performance and are used throughout the remainder of this paper.

To estimate an object from its iL PC feature measurements, we use the Wiener/LMMSE operator. The object

estimate is x̂(i) = W
(i)
n ỹ(i), where W

(i)
n is the Wiener/LMMSE operator W

(i)
n = R

(i)
B F̃(i)T [F̃(i)R

(i)
B F̃(i)T +Rn]−1.

In the mathematical formulation for W
(i)
n , F̃(i) = [F(1)T F(2)T · · · F(i)T ]T is the accumulated projection matrix

and Rn = σ2I is the noise autocorrelation matrix. Note that, R
(i)
B is derived from the sample set B(i) with

B(1) = A(1) initially. B(i) is also updated using the same “K-nearest neighbor” method as used for updating

A(i). But the subspace spanned by the iL projections is not removed from B(i+1) in order to make R
(i)
B an

autocorrelation matrix for objects in a N dimensional space instead of a N − iL dimensional space.

The algorithm for estimating the object x using I iterations in a PC-AFSI system is summarized as following:

1. Calculate R
(i)
A = E{a(i)

j a
(i)T
j } and R

(i)
B = E{b(i)

j b
(i)T
j }, where E{} represents the mathematical

expectation, a
(i)
j and b

(i)
j are training samples in A(i) and B(i) respectively, j = 1, 2, · · · , k(i). Initially,

A(1) = B(1) and k(1) = αe−β = 0.5e−0.0063.

2. Calculate the L dominant eigen-vectors of R
(i)
A and form F(i).

3. Make the feature measurements y(i) = F(i)x and form ỹ(i) = [y(1)T y(2)T ... y(i)T ]T .

4. Estimate the object x̂(i) = W(i)ỹ(i)

5. Calculate the de-noised feature vector ŷ(i) = W
(i)
y y(i).

6. Calculate the feature measurements of a
(i)
j , u

(i)
j = F(i)a

(i)
j . Form ũ

(i)
j = [u

(1)T
j u

(2)T
j · · · u

(i)T
j ]T .

7. Calculate the distance between x̂(i) and a
(i)
j in feature space: d

(i)
j = ||ũ(i)

j − ˜̂y
(i)||2, where

˜̂y
(i)

= [ŷ(1)T ŷ(2)T ... ŷ(i)T ]T .

8. Update A(i) to A(i+1) by choosing a
(i)
j such that a

(i)
j is associated with the k(i + 1) smallest d

(i)
j values.

B(i) is also updated to B(i+1) accordingly.

9. Define the samples in A(i+1) as a
(i+1)
j = a

(i)
j − F(i)T u

(i)
j .

10. If i < I, go back to 1.

4. SIMULATION RESULTS

In the simulation study of PC-based SFSI and AFSI systems, we use 97,392 image samples of size 32 × 32, of
object such as face, building, and tank images to form the initial training set A(1). These samples with dynamic
range of [0, 255] are obtained under high, moderate and low illumination conditions. Six such training samples are
presented in the top row of figure 3. Twenty tank object images are used for testing. Detector noise energy per
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bandwidth in the FSI systems is set to σ2
0 = 1 throughout the rest of this section. With detector exposure time T0

the noise variance in feature measurement is σ2 = σ2
0/T0 = 1/T0. In figure 3, first row shows the original samples,

the second row presents the noisy measurements of the training samples acquired using a conventional imager
where T0 = 0.02s. Reconstruction error is quantified with the relative RMSE metric, E{||x̂(i) − x||2/||x||2},
where E{} denotes the mathematical expectation over the testing set. To simplify notation, we also use RMSE
here onwards to refer to relative RMSE.

Figure 3. Some object examples (top row) and its noisy measurements when σ2 = 1/T0 with T0 = 0.02s (bottom row).
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Figure 4. a) reconstruction examples; RMSE vs. M using b) PC AFSI and SFSI for L = 4 when T0 = 0.02s; c) PC AFSI
for different L.

Four reconstruction examples of an object using SFSI and AFSI systems are presented in the top and bottom
rows in figure 4 a), respectively. The original object is the left most sample in the top row of figure 3. For
both of the SFSI and AFSI systems the corresponding object estimates, obtained from M = 64 and 160 feature
measurements, are shown in the left and right columns in figure 4 a), respectively. The reconstruction error RMSE
value each object is labeled under the corresponding object estimate. From figure 4 a), we observe that PC-based
AFSI shows both visually and quantitatively superior reconstruction performance compared to PC-based SFSI.
The RMSE values for the reconstructions in AFSI when M = 64 and M = 160 are 0.245 and 0.193 respectively,
compared with the corresponding RMSE values of 0.271 and 0.210 for the reconstructions in SFSI system.
Visually the reconstructions in AFSI present better quality than the reconstructions in SFSI with more contrast
and details. Figure 4 b) presents a plot of average reconstruction error RMSE vs. M for PC-based SFSI and
AFSI systems using 20 tank testing samples with L = 4 and T0 = 0.02s. We can make the following observations
from this figure. First, for both systems the reconstruction error reduces and approaches towards a minimum
value as M increases. The non-zero minimum RMSE value as M = N is due to a finite measurement SNR. Two
components contribute to the reconstruction error: the truncation error and the feature measurement SNR. The
truncation error results from using M < N feature measurements. Therefore, it reduces as M increases towards
N as high order features are used towards the reconstruction. However, note that the feature measurement SNR

Proc. of SPIE Vol. 7818  781809-5

Downloaded from SPIE Digital Library on 24 Feb 2012 to 147.8.21.43. Terms of Use:  http://spiedl.org/terms



decreases as M increases, because a smaller object irradiance is available per feature under constant exposure and
fixed detector noise constraints. The LMMSE reconstruction operator suppresses the contribution of a feature
to the object estimate if its measurement SNR is too small. Therefore, the feature measurement SNR ultimately
limits the achievable minimum RMSE and the M value at which it is first achieved. The second observation
from figure 4 b) is that the PC-base AFSI system yields a superior reconstruction performance relative to the
PC-based SFSI system in terms of the RMSE metric. For example, when M = 260, the RMSE for AFSI is 0.086
which is 32.3% less than the RMSE of 0.127 for SFSI. In figure 4 c) a plot of RMSE vs. M for the PC-based
AFSI system with L = 4, 16, and 32 is shown. Note that, with increasing L the reconstruction RMSE increases
due to reduced feature measurement SNR for every object feature. This can be understood by noting that in a
parallel architecture FSI system with L measurements, the signal energy in each feature measurement reduces as
L increases, while the detector noise variance is fixed as 1/T0. Therefore, the system reconstruction performance
reduces as a result of decreasing feature measurement SNR with increasing L. Another observation from figure
4 c) is that the minimum reconstruction RMSE achieved is reached first at a lower M as L increases. This is due
to the fact that the Wiener reconstruction operator effectively limits the use of feature measurement with low
SNR to minimize reconstruction error. Thus as L increases and each feature measurement SNR decreases with
increasing L, the FSI system achieves its minimum error with fewer feature measurements.
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Figure 5. RMSE vs. M for different T0(s) in PC-based AFSI system when L = 32.
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Figure 6. Ttotal vs. T0 for a) L = 1, b) L = 4, c) L = 16 PC-based SFSI and AFSI systems.

Figure 5 shows the reconstruction RMSE in the PC-based AFSI varies as a function of M for different detector
exposure time T0 when L = 32. As expected, the AFSI system has smaller reconstruction error for larger T0,
because the noise energy is inversely proportional to T0 hence low detector noise and large measurement SNR
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results from a large T0 value. Given a RMSE value, we can find the minimum number of features Mmin and the
total feature collection time Ttotal = T0 ∗Mmin required to reach a desired reconstruction error. Figures 6 a), b),
and c) show Ttotal vs. T0 in PC-based SFSI and AFSI systems respectively with L = 1, 4, 16. The desired RMSE
values are set to 0.10 and 0.15. Ttotal value is determined by two underlying mechanisms. For large T0 value,
the measurement noise is small, but it requires more time to acquire the data achieving the desired RMSE value
hence the system loses its adaptation advantage. For small T0 value, although the measurement noise is large,
the system is more agile and can more quickly exploit knowledge acquired from measurements. Therefore, for
each L there exists a minimum Ttotal at which the measurement noise and adaptation balance out each other.
Several such minimum Ttotal values are presented in figures 6 b) and c). Note that, if T0 is too small or the
detector noise is too large, FSI system can not reach small desired RMSE value, therefore, some curves in figures
6 have their minimum Ttotal values at the smallest T0 values. The second observation is that Ttotal in an AFSI
system is always smaller than the Ttotal values in a SFSI system as expected. For example, with L = 16 the
minimum Ttotal to achieve RMSE of 0.15 in PC-based AFSI system is 0.34s, which is 2.57 times less than the
minimum Ttotal value 0.875s in PC-based SFSI system. The minimum Ttotal values for both PC-based AFSI and
SFSI systems for L = 1, 4 and 16 are listed in tables 1. From figure 6 and table 1, we also have the observation
that the minimum Ttotal values for FSI systems increases as L increases due to the reduced measurement SNR for
increasing L. From this observation we can conclude when there is finite measurement noise, the AFSI system
with L = 1 presents the best performance among all the parallel architecture AFSI systems.

Table 1. minimum Ttotal in PC-based SFSI and AFSI systems for L = 1, 4, and 16

L RMSE
SFSI AFSI

T0(ms) Ttotal(s) T0(ms) Ttotal(s)

1
0.10 0.4 0.2884 0.4 0.2192
0.15 0.1 0.0668 0.1 0.03

4
0.10 5 0.96 6 0.798
0.15 3 0.291 3 0.138

16
0.10 70 3.78 80 2.88
0.15 25 0.875 20 0.34

5. CONCLUSION

In this paper, we analyzed an adaptive FSI system for reconstruction task using PC projections. A training
set including more than 97,000 samples is used to design the PC projections. The adaptation is achieved by
updating the training set based on the collected feature measurements. We also developed an algorithm for the
PC-based AFSI systems using noisy measurements. The superior reconstruction performance of AFSI relative
to SFSI is demonstrated using parallel architecture FSI systems for L feature measurements. The improvement
of reconstruction RMSE from PC-based SFSI system to PC-based AFSI system is about 30% for tank testing
samples. The AFSI system also required smaller exposure time Ttotal to achieve a desired reconstruction RMSE
value compared with the SFSI system. It is observed that the AFSI system with L = 1 presents the best system
performance.
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