PRAGMA 20, HKU March 2, 2011

Numerical Simulation of Integrated Terrestrial Processes over the East River (Dongjiang) in South China

Ji Chen

Department of Civil Engineering The University of Hong Kong

Acknowledgement:

HK CPU/RGC HKU7022_PPR_2: Assuring Hong Kong's water supply: learning the lessons of the 1963 drought

Groups:

- Hong Kong Observatory, Water Supplies Department Pearl River Water Resources Commission in Guangzhou Xinfengjiang Reservoir Authority in Heyuan
- **Research Cooperators:**
 - WU Yingping, CHAN Shu Ning, ZHANG Runrun

Study area

- Drainage area: 25,325 km²
- Mainstem length: 562 km
- Total reservoir storage capacity: 18.2×10⁹ m³
- XFJR is the biggest reservoir in the basin
- Water supply for:

Hong Kong, Shenzhen, Heyuan, Huizhou, Dongguan, Guangzhou

 80% of fresh water supply in Hong Kong is from the East River

The East River (Dongjiang) Basin

-Hong Kong Total Water Consumption

1970 1975

East River Water Supply

mcm

Xinfengjiang Reservoir (XFJR)

................

Storage capacity: 14 billion m³ Effective storage: 6.4 billion m³

Field Trip: Oct 14, 2007

Water Resources in the East River

WRAP

- Developed by **Prof. Ralph A. Wurbs** and his students in Texas A&M University, USA, in the late 1980s
- <u>Priority-based</u> simulation system
 - Available streamflow is allocated to each water right in turn in ranked priority order
 - The most senior water right (with the highest priority) can get water required first
- Modeling and analysis of river/reservoir system operations under the effects of
 - Water supply diversions
 - Basic streamflow requirements (for environmental and navigation purpose)

WRAP Main Structure

- 1. Ranking water rights in priority order
- 2. Reading natural streamflow and evaporation rate
- 3. Carrying out simulation for each water right as follows:

Control Points of the East River Basin

Xinfengjiang Reservoir

- Only Xinfengjiang Reservoir is included
- The reservoir contains 76% of total reservoir storage capacity in the East River basin
- Total capacity: 13.89 billion m³
 - Conservative capacity:
 - Inactive capacity: 4.31 billion m³
 - Flood control capacity: 3.09 billion m³
- $4.51 \text{ billion } \text{m}^3$

6.49 billion m³

Water Right Priority Order Water availability for each water user is affected by the water right priority

Two different priority orders:

- City Direction Priority Order
- D-I-A Priority Order

City Direction Priority Order

• the priority is assigned to the cities and regions according to their location (upstream to downstream) and their importance, i.e.

$\mathbf{HK} > \mathbf{SZ} > \mathbf{HY} > \mathbf{HZ} > \mathbf{DG} > \mathbf{GZ}$

• for each city, its priority is assigned according to the types of water usage, i.e.

Domestic > Industrial > Agricultural > Streamflow Requirement

• the salinity suppression requirement at SL, BL and the minimal instream flow requirement in HY should be satisfied first before any water diversion

D-I-A Priority Order

• for each city, priority is assigned according to the types of water usage, i.e.

Domestic > Industrial > Agricultural > Streamflow Requirement

• the priority is assigned to the cities according to their location (upstream to downstream) and the GDP i.e.

HK > SZ > HY > HZ > DG > GZ

• the salinity suppression requirement at SL, BL and the minimal instream flow requirement in HY should be satisfied first before any right water diversion

Main Settings in Simulations

Main Parameters	Settings	
Length of simulation period in month	12 months (the 1963 water year)	
Starting month of each cycle	Starting at October for each simulation	
Reservoir initial storage	Different storages for each simulation	

Mean Rv(%) of each water right with different initial reservoir storage at the beginning of Oct (CC (conservative capacity))

D	City	10%CC	50%CC	70%CC	90%CC
E S	HK(D)	100.00	100.00	100.00	100.00
C S	HK(O)	93.78	100.00	100.00	100.00
E	SZ(D)	80.07	100.00	100.00	100.00
N D	SZ(I)	66.67	100.00	100.00	100.00
Ι	SZ(A)	77.90	100.00	100.00	100.00
N G	HY(D)	66.67	100.00	100.00	100.00
U	HY(I)	66.67	100.00	100.00	100.00
P P	HY(A)	41.70	66.58	85.44	100.00
к I	HZ(D)	66.67	91.67	100.00	100.00
0 P	HZ(I)	60.39	85.39	100.00	100.00
к I	HZ(A)	36.08	61.08	94.78	100.00
T	DG(D)	57.11	82.11	96.41	100.00
Y	DG(I)	50.00	75.00	87.43	100.00
0	DG(A)	52.20	63.80	74.30	100.00
R D	GZ(D)	50.00	75.00	83.33	100.00
E	GZ(I)	50.00	75.00	83.33	100.00
R	GZ(A)	52.20	63.80	74.30	100.00

Mean $R_v(\%)$ of each water right with different initial reservoir storage at the beginning of Oct (CC (conservative capacity))

D-I-A	10%CC	50%CC	70%CC	90%CC
HK(D)	100.0	100.00	100.00	100.00
HK(O)	93.78	100.00	100.00	100.00
SZ(D)	80.07	100.00	100.00	100.00
HY(D)	66.67	100.00	100.00	100.00
HZ(D)	66.67	100.00	100.00	100.00
DG(D)	66.67	100.00	100.00	100.00
GZ(D)	66.67	91.67	100.00	100.00
SZ(I)	62.26	91.67	100.00	100.00
HY(I)	58.33	84.35	100.00	100.00
HZ(I)	58.33	83.33	100.00	100.00
DG(I)	58.33	83.33	100.00	100.00
GZ(I)	58.33	83.33	100.00	100.00
SZ(A)	70.90	82.50	100.00	100.00
HY(A)	35.51	55.71	79.55	100.00
HZ(A)	28.70	53.70	80.00	100.00
DG(A)	52.20	63.80	74.30	100.00
GZ(A)	52.20	63.80	74.30	100.00

Hydrologic Processes

Introduction of SWAT (Soil & Water Assessment Tool)

Development

Developed in the USDA-ARS in the 1990s

Objective

Predict the impact of climate change and land management practices on water, sediment and agricultural chemical yields.

Application

Contributed by several federal agencies (USA EPA, NRCS, etc.)

Components

Hydrologic cycle in SWAT (Soil and Water Assessment Tool)

$$SW_{t} = SW_{o} + \sum_{i=1}^{t} (R_{day,i} - Q_{surf,i} - E_{act,i} - W_{seep,i} - Q_{lat,i}) \quad (mm/d)$$

(Neitsch *et al.* 2005)

Main Inputs to SWAT

HRUs Distribution

- Subbasin can be divided into hydrologic response units (HRUs) , Each HRU possesses unique landuse / soil attributes / management.
 Based on Land Use & Soil Type
- **#** How to distribute HRUs for a subbasin

Drainage area controlled by	Observation Daily	Calibration	Validation
Longchuan	1952 – 1984	1952 – 1972	1973 – 1984
	33yr	21yr	12yr
XFJ	1965 – 1984	1965 – 1984	
	20yr	20yr	
Boluo	1954 – 1984	1954 – 1972	1973 – 1984
	31yr	19yr	12yr

Paramatar	ater Description Range		Calibrated Value		
	Description	Kange	Longchuan	XFJ	Boluo
$lpha_{gw}$	Base flow recession constant	0 – 1	0.003	0.0054	0.0054
esco	Soil evaporation compensation factor	0.001 – 1	0.999	0.999	0.999
ерсо	Plant uptake compensation factor	0.001 – 1	0.001	0.001	0.001
gw_revap	Groundwater "revap" coefficient	0.02 - 0.2	0.05	0.02	0.2
rchrg_dp	Deep aquifer percolation fraction	0 – 1	0.1	0.016	0.5

Validation

Daily streamflow at Boluo (Validation period)

Evaluation

	Relative Bias	Correlation Coefficient
Daily flow	– 0.16	0.87

Water balance - over watershed

Annual Mean Item	Value (mm/d)
РСР	3.798
ET	1.484
Flow	2.155
ET/PCP	40.1%
SF/PCP	56.7%

Spatial distribution of hydrologic components Annual average (1951 – 2000)

Precipitation (mm/yr)

Surface Runoff (mm/yr)

Spatial distribution of hydrologic components Annual average (2000)

Soil Water (mm)

Reservoir operation - Reservoirs in ERB

Reservoir operation - simulated by SWAT

Controlled outflow with target release

 $Outflow = \frac{V - V_{targ}}{ND_{targ}}$

$$V_i = V_{i-1} + In - Evp - Seep$$

 V_{targ} Target reservoir volume for a given day

The same value for all the days in each month

ND_{targ} Number of days required for the reservoir to reach target storage

1967

1965

1969

1971

1973

Reservoir operation - simulated by SWAT

Volume

Outflow

A New Reservoir Simulation Scheme

Storage V(i)	Operation Purpose and Equation for Computating Outflow, O(i) (m ³ /d), on a given day <i>i</i>		
$V(i) > V_p$	flood control, $\frac{V(i) - V_p}{ND_{targ}}$		
$V_p \ge V(i) > V_d$	hydropower generation, downstream water supply, and water resources, $ \left(1 + \left[\alpha \cdot \frac{V(i) - V_c}{\max\left[V_p - V_c, V_c - V_d\right]} + \beta \cdot \frac{\overline{I}_{30}(i) - I_{30}(i)}{\sigma_{30}(i)} \cdot \frac{V(i) - V_d}{V_p - V_d} + \gamma \cdot \frac{V(i) - V_p}{V_p - V_d}\right] \cdot k (mon)\right) \cdot \overline{O}(i) $		
$V(i) \le V_d$	0		
	Power Supply Storage		

Comparison and Evaluation

Variabla	Sahama	Monthly Statistical Terms		
variable	Scheme	RMSE	NSE	
Storage	I (Target release)	I get release) 1.87		
	II (Mechanism based scheme)	1.57	0.50	
Outflow	I	6.9	0.19	
	П	6.0	0.38	

Four hydrologic processes in SWAT

Hydrologic Processes	Calculation and Parameters invol	Limitations	
Overland flow	$Q_{surf} = \frac{\left(R_{day} - I_a\right)^2}{\left(R_{day} - I_a + S_a\right)}$	S _a	without considering direct overland flow from saturated area
Revap	$W_{revap} = \beta_{revap} \cdot E_0$	Brevap	to be calibratedtime invariantspatially unchanged
Baseflow	$Q_{b,i} = Q_{b,i-1} \cdot e^{-\alpha_{gw} \cdot \Delta t} + W_r \cdot (1 - e^{-\alpha_{gw} \cdot \Delta t})$	A gw	to be calibrated $f(W_r)$
Percolation to deep aquifer	$w_{deep,mx} = \beta_{deep} w_{rchrg}$	eta_{deep}	 to be calibrated this amount of water is returned to hydrologic cycle only by pumping

Saturated Area and Water Table Depth

Integrated of SWAT-TOPMODEL

Hydrologic Processes	Calculation and Parameters involved		Strengths
Revap	$W_{revap} = fr_{sat} \cdot E_0$	Saturated fraction $fr_{sat} = \frac{A_c}{A} = \int_{x \ge (\xi \cdot \overline{z} + \lambda)} f(x) dx$ $x = \text{Topographic Index} = \ln \frac{a}{\tan \beta}$ $f(x) \text{ Probability distribution of TI}$ $\lambda \text{ Mean value of TI}$ $\overline{z} \text{ Basin average water table depth}$ $\xi \text{ Decay factor of soil}$	$fr_{sat} = f(\lambda, \overline{z}, \xi)$ Temporal and spatial varying
Baseflow	$Q_b = AT_0 e^{-(\lambda + \xi \cdot \bar{z})}$	$T_0 = k_{sx}(0) / \xi$ Basin lateral transmissivity $k_{sx}(0)$ Saturated lateral hydraulic conductivity at the surface	$Q_b = f(\lambda, \overline{z}, \xi)$
Overland flow	-	Rainfall falling on the saturated area enters channel directly	Quick surface runoff

Revap simulation

Scenario	Model	Revap	Comparison period	
Ι	SWAT	f(PET)	Jan and Mar	
II	SWAT-TOPMODEL	$f(\text{PET}, fr_{\text{sat}})$	Mid Sep	

Evaluation

Scenario I: SWAT

Scenario II: SWAT-TOPMODEL

Model	Period	Mean		PB	NSE	R ²
		Observed	Simulated	(%)	D / M	D / M
SWAT	Calibration	818.64	831.17	1.53	0.84 / 0.93	0.84 / 0.93
	Validation	808.88	847.34	4.75	0.82 / 0.90	0.84 / 0.91
SWAT- TOPMODEL	Calibration	818.64	833.82	1.85	0.80 / 0.88	0.83 / 0.93
	Validation	808.88	854.05	5.59	0.77 / 0.82	0.84 / 0.91

Soil Erosion

Land Phase

Sediment in surface runoff

(MUSLE)

$$sed = 11.8 \cdot (Q_{surf} \cdot q_{peak} \cdot area_{hru})^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$$

- sedmass of soil erosion (ton) q_{peak} peak runoff (m³/s)
- q_{peak} peak runoff (m³/s area_{hru} area of HRU(ha)
- K_{USLE} soil erodibility factor
- C_{USLE} factor of land cover and management
- P_{USLE} conservation practice factor
- LS_{USLE} account for the factor of topography
- *CFRG* coarse fragment factor

Sediment Erosion

Land Phase

(2) Sediment in lateral & groundwater flow

$$sed_{lat} = \frac{(Q_{lat} + Q_{gw}) \cdot area_{hru} \cdot conc_{sed}}{1000}$$

 sed_{lat} sediment loading in lateral and groundwater flow (ton) Q_{lat} lateral flow for a given day (mm H2O) Q_{gw} groundwater flow for a given day (mm H2O) $area_{hru}$ area of the HRU (km²) $conc_{sed}$ concentration of sediment in lateral and groundwater flow (mg/L)

Sediment Erosion

Water Phase

$$conc_{sed,ch,mx} = c_{sp} \cdot v_{ch,pk}^{spexp}$$

$$\begin{cases} v_{ch,pk} = \frac{q_{ch,pk}}{A_{ch}} \\ q_{ch,pk} = prf \cdot q_{ch} \end{cases}$$

conc_{sed,ch,mx}maximum conc. of sed. transported (ton/m³ or kg/L) C_{sp} coefficient defined by the user $v_{ch,pk}$ peak channel velocity (m/s)Spexpexponent defined by the usernormally varies between 1.0 and 2.0 and was set at 1.5 in the
original Bagnold stream power equation (Arnold et al., 1995).<math>prfpeak rate adjustment factor q_{ch} average rate of flow (m³/s) A_{ch} cross-sectional area of flow

Sediment Erosion

Water Phase

 $conc_{sed,ch,i} > conc_{sed,ch,mx}$ deposition is the dominant process and the net amount of sediment deposited

$$sed_{dep} = (conc_{sed,ch,i} - conc_{sed,ch,mx}) \cdot V_{ch}$$

 $conc_{sed,ch,i} < conc_{sed,ch,mx}$ degradation is the dominant process and the net amount of sediment reentrained

$$sed_{deg} = \left(conc_{sed,ch,mx} - conc_{sed,ch,i}\right) \cdot V_{ch} \cdot K_{CH} \cdot C_{CH}$$

 K_{CH} is the channel erodibility factor (cm/hr/Pa) C_{CH} is the channel cover factor

Final amount of SS

$$sed_{ch} = sed_{ch,i} - sed_{dep} + sed_{deg}$$
 (ton)

Sed. transported out of the reach $sed_{out} = sed_{ch} \cdot \frac{V_{out}}{V_{ch}}$ (ton)

Soil Erosion and Sediment Transport

Water Quality

Land Phase (NPS)

 The transport of nutrients from land areas into streams and water bodies is a normal result of soil weathering and erosion processes

 Governing movement of mineral and organic forms of nitrogen and phosphorus from land areas to the stream network

Water Phase

- Determine the loadings of water, sediment, nutrients and pesticides to the main channel in land phase hydrologic cycle
- Keep track mass flow and models the transformation of chemicals in the stream
- NPS: Loadings from land areas
- PS: Loadings from sources not associated with a land areas

Water Phase (NPS & PS)

Parameters which affect water quality and can be considered pollution indicators include nutrients, total solids, biological oxygen demand and microorganisms (Loehr, 1970; Paine, 1973).

The SWAT in-stream water quality algorithms incorporate constituent interactions and relationships used in the QUAL2E model (Brown and Barnwell, 1987).

Water Phase (NPS & PS)

(0) Alge

Simulate algal growth in the stream

Why?

- During the day, algae increase the stream's DO via photosynthesis.
- At night, algae reduce the stream's DO via respiration.
- As algae grow and die, they form part of the in-stream nutrient cycle.

How?

Growth and decay of algae/chlorophyll *a* is calculated as a function of the growth rate, the respiration rate, the settling rate and the amount of algae present in the stream.

Water Phase - N

(1) orgN

algal biomass $N \rightarrow orgN$

 $orgN \rightarrow NH_4^+$

orgN settling (sed.)

$$\Delta orgN_{str} = (\alpha_1 \cdot \rho_a \cdot algae - \beta_{N,3} \cdot orgN_{str} - \sigma_4 \cdot orgN_{str}) \cdot TT$$

 $\Delta org N_{str}$ change in organic nitrogen concentration (mg N/L)

- α_1 fraction of algal biomass that is nitrogen (mg N/mg algal biomass) ρ_a local respiration or death rate of algae (day⁻¹ or hr⁻¹)
- algae algal biomass concentration at the beginning of the day (mg alg/L)
- $\beta_{N,3}$ rate constant for hydrolysis of orgN to ammonia N (day⁻¹ or hr⁻¹)
- $orgN_{str}$ organic nitrogen concentration at the beginning of the day (mg N/L)
- σ_4 rate coefficient for organic nitrogen settling (day⁻¹ or hr⁻¹)
- *TT* flow travel time in the reach segment (day or hr)

Water Phase - P

(1) orgP

 $orgP \rightarrow soluble inorganic P$ $algal biomass P \rightarrow orgP$ $orgP settling (sed.) \rightarrow \Delta orgP_{str} = (\alpha_2 \cdot \rho_a \cdot algae - \beta_{P,4} \cdot orgP_{str} - \sigma_5 \cdot orgP_{str}) \cdot TT$

 $\Delta org P_{str}$ change in organic P concentration (mg P/L)

- α_2 fraction of algal biomass that is P (mg P/mg alg biomass) <user defined>
- ρ_a local respiration or death rate of algae (day⁻¹ or hr⁻¹)
- algae algal biomass concentration at the beginning of the day (mg alg/L)
- $\beta_{P,4}$ rate constant for mineralization of organic phosphorus (day⁻¹ or hr⁻¹)
- $orgP_{str}$ organic P concentration at the beginning of the day (mg P/L)
- σ_5 rate coefficient for organic phosphorus settling (day⁻¹ or hr⁻¹)
- *TT* flow travel time in the reach segment (day or hr)

Seasonal variation of stream water quality

NH3-N: constant PS load

Low conc. in wet season

Critical period for nutrient:

Ending of dry season \rightarrow

Beginning of wet season

NO3-N: PS and NPS loads

Planting & Fertilization (Apr & Aug) Eluviation (Mar)

NPS pollution load

Conclusions

This study focused on the improvement of our understanding of the integrated terrestrial processes over the East River (Water, Sediment, Nutrients, Reservoir operation and Land management)

- Water resources: to overcome the projected water shortage induced by the drought condition as in 1963, 70% conservative capacity of Xinfengjiang reservoir would be filled
- Reservoir simulation: A mechanism-based numerical scheme for a multiyear and multipurpose reservoir is developed
- Model integration: Hydrologic representation in SWAT are enhanced physically by integrating TOPMODEL features
- Sediment & Water quality: Soil erosion and NPS pollution features are analyzed, with identification of critical area and critical period

