PRAGMA 20, HKU March 2, 2011

Numerical Simulation of Integrated Terrestrial Processes over the East River (Dongjiang) in South China

Ji Chen

Department of Civil Engineering The University of Hong Kong

Acknowledgement:

HK CPU/RGC HKU7022_PPR_2: *Assuring Hong Kong's water supply: learning the lessons of the 1963 drought*

Groups:

Hong Kong Observatory, Water Supplies Department Pearl River Water Resources Commission in Guangzhou Xinfengjiang Reservoir Authority in Heyuan

Research Cooperators:

WU Yingping, CHAN Shu Ning, ZHANG Runrun

- •**Drainage area: 25,325 km2**
- •**Mainstem length: 562 km**
- •**Total reservoir storage capacity: 18.2**×**109 ^m³**
- •**XFJR is the biggest reservoir in the basin**
- •**Water supply for:**

Hong Kong, Shenzhen, Heyuan, Huizhou, Dongguan, Guangzhou

• **80% of fresh water supply in Hong Kong is from the East River**

Study area The East River (Dongjiang) Basin

Hong Kong Total Water Consumption

-East River Water Supply

0

200

400

600

800

1000

mcm

Xinfengjiang Reservoir (XFJR)

饮水思喜 水天然清亮 味道岩 【图2-519

125. 2011. 1111. 111 498 3955 1885 19

Storage capacity: 14 billion ^m³ Effective storage: 6.4 billion ^m³

Field Trip: Oct 14, 2007

Water Resources in the East River

WRAP

- • Developed by **Prof. Ralph A. Wurbs** and his students in Texas A&M University, USA, in the late 1980s
- \bullet **Priority-based simulation system**
	- Available streamflow is allocated to each water right in turn in ranked priority order
	- The most senior water right (with the highest priority) can get water required first
- • **Modeling and analysis of river/reservoir system operations under the effects of**
	- Water supply diversions
	- Basic streamflow requirements (for environmental and navigation purpose)

WRAP Main Structure

- 1. Ranking water rights in priority order
- 2. Reading natural streamflow and evaporation rate
- 3. Carrying out simulation for each water right as follows:

Control Points of the East River Basin

Xinfengjiang Reservoir

- •Only Xinfengjiang Reservoir is included
- • The reservoir contains 76% of total reservoir storage capacity in the East River basin
- •Total capacity: 13.89 billion m³
	- Conservative capacity:
	- Inactive capacity:
	- Flood control capacity: 3.09 billion m³
- 3
- 3
	-

Water Right Priority Order Water availability for each water user is affected by the water right priority

Two different priority orders:

- City Direction Priority Order
- D-I-A Priority Order

City Direction Priority Order

• the priority is assigned to the cities and regions according to their location (upstream to downstream) and their importance, i.e.

HK > SZ > HY > HZ > DG > GZ

- for each city, its priority is assigned according to the types of water usage, i.e.
	- **Domestic > Industrial > Agricultural > Streamflow Requirement**
- \bullet the salinity suppression requirement at SL, BL and the minimal instream flow requirement in HY should be satisfied first before any water diversion

D-I-A Priority Order

• for each city, priority is assigned according to the types of water usage, i.e.

Domestic > Industrial > Agricultural > Streamflow Requirement

• the priority is assigned to the cities according to their location (upstream to downstream) and the GDP i.e.

HK > SZ > HY > HZ > DG > GZ

• the salinity suppression requirement at SL, BL and the minimal instream flow requirement in HY should be satisfied first before any right water diversion

Main Settings in Simulations

Mean Rv ^{(%}) of each water right with different initial reservoir storage at the beginning of Oct (CC (conservative capacity))

D	City	10%CC	50%CC	70%CC	90%CC
\bf{E} S	HK(D)	100.00	100.00	100.00	100.00
$\mathbf C$	HK(O)	93.78	100.00	100.00	100.00
\bf{E}	SZ(D)	80.07	100.00	100.00	100.00
N D	SZ(I)	66.67	100.00	100.00	100.00
$\mathbf I$	$\mathbf{SZ}(\mathbf{A})$	77.90	100.00	100.00	100.00
N $\mathbf G$	HY(D)	66.67	100.00	100.00	100.00
	HY(I)	66.67	100.00	100.00	100.00
${\bf P}$ $\mathbf R$	HY(A)	41.70	66.58	85.44	100.00
$\mathbf I$	HZ(D)	66.67	91.67	100.00	100.00
$\mathbf 0$	HZ(I)	60.39	85.39	100.00	100.00
$\mathbf R$ $\mathbf I$	HZ(A)	36.08	61.08	94.78	100.00
T	DG(D)	57.11	82.11	96.41	100.00
$\mathbf Y$	DG(I)	50.00	75.00	87.43	100.00
$\mathbf 0$	DG(A)	52.20	63.80	74.30	100.00
$\mathbf R$ D	GZ(D)	50.00	75.00	83.33	100.00
\bf{E}	$\mathbf{GZ}(\mathbf{I})$	50.00	75.00	83.33	100.00
$\mathbf R$	GZ(A)	52.20	63.80	74.30	100.00

Mean $R_v(\%)$ of each water right with different initial reservoir storage at the beginning of Oct (CC (conservative capacity))

Hydrologic Processes

Introduction of SWAT (Soil & Water Assessment Tool)

Development

Developed in the USDA-ARS in the 1990s

Objective

Predict the impact of climate change and land management practices on water, sediment and agricultural chemical yields.

Application

Contributed by several federal agencies (USA EPA, NRCS, etc.)

Components

Hydrologic cycle in SWAT (Soil and Water Assessment Tool)

$$
SW_{t} = SW_{o} + \sum_{i=1}^{t} (R_{day,i} - Q_{surf,i} - E_{act,i} - W_{seep,i} - Q_{lat,i}) \pmod{m}
$$

(Neitsch *et al.* **2005)**

Main Inputs to SWAT

HRUs Distribution

- **Based on Land Use & Soil Type Subbasin can be divided into hydrologic response units (HRUs) , Each HRU possesses unique landuse / soil attributes / management.**
- **How to distribute HRUs for a subbasin** $\frac{1}{2}$

Daily streamflow at Boluo (Validation period)

Evaluation

- over watershed Water balance

Annual average (1951 – 2000) Spatial distribution of hydrologic components

Precipitation (mm/yr) Surface Runoff (mm/yr)

Annual average (2000) Spatial distribution of hydrologic components

Soil Water (mm)

Reservoir operation - Reservoirs in ERBG

- simulated by SWAT Reservoir operation

Controlled outflow with target release

targ targ ND $Outflow = \frac{V - V_i}{V}$

$$
\Leftrightarrow V_i = V_{i-1} + In - Evp - Seep
$$

 V_{targ} Target reservoir volume for a given day

The same value for all the days in each month

ND_{targ} **Number of days required for the reservoir to reach target storage**

1965

1967

1969

1971

1973

Reservoir operation - simulated by SWAT

Volume

Outflow

A New Reservoir Simulation Scheme

Comparison and Evaluation

Four hydrologic processes in SWAT

Saturated Area and Water Table Depth

North

Integrated of SWAT-TOPMODEL

Revap simulation

Evaluation

Scenario I: SWAT

Soil Erosion

Land Phase

Sediment in surface runoff (MUSLE)

$$
sed=11.8 \cdot (Q_{surf} \cdot q_{peak} \cdot area_{hru})^{0.56} \cdot K_{\text{USLE}} \cdot C_{\text{USLE}} \cdot P_{\text{USLE}} \cdot LS_{\text{USLE}} \cdot CFRG
$$

- *sed*mass of soil erosion (ton)
- q_{peak} peak runoff (m³/s)
- *areahru*area of HRU(ha)
- *KUSLE*soil erodibility factor
- $C_{\textit{USLE}}$ factor of land cover and management
- *PUSLE*conservation practice factor
- $LS_{\overline{USLE}}$ account for the factor of topography
- *CFRG*coarse fragment factor

Sediment Erosion

Land Phase

(2) Sediment in lateral & groundwater flow

$$
\left| \frac{Q_{lat} + Q_{gw}}{1000} \right|
$$

sedlat sediment loading in lateral and groundwater flow (ton) *Qlat*lateral flow for a given day (mm H_2O) Q_{gw} groundwater flow for a given day (mm H_2O) *areahru* area of the HRU (km2) *concsed*concentration of sediment in lateral and groundwater flow (mg/L)

Sediment Erosion

Water Phase

$$
conc_{sed,ch,mx} = c_{sp} \cdot v_{ch,pk}^{specp}
$$

$$
V_{ch,pk} = \frac{q_{ch,pk}}{A_{ch}}
$$

$$
q_{ch,pk} = prf \cdot q_{ch}
$$

*conc*_{sed,ch,mx} maximum conc. of sed. transported (ton/m³ or kg/L) *C_{sp}* coefficient defined by the user *v_{ch,pk}* peak channel velocity (m/s) *Spexp* exponent defined by the user normally varies between 1.0 and 2.0 and was set at 1.5 in the original Bagnold stream power equation (Arnold et al., 1995). *prf* peak rate adjustment factor *qch*average rate of flow (m^3/s) *Ach*cross-sectional area of flow

Sediment Erosion

Water Phase

 $\mathit{conc}_\mathit{sed,ch,i} > \mathit{conc}_\mathit{sed,ch,mx}$ deposition is the dominant process and the net amount of sediment deposited

$$
sed_{\text{dep}} = (conc_{\text{sed},\text{ch},i} - conc_{\text{sed},\text{ch},mx}) \cdot V_{\text{ch}}
$$

 $\mathit{conc}_\mathit{sed,ch,i} < \mathit{conc}_\mathit{sed,ch,mx}$ degradation is the dominant process and the net amount of sediment reentrained

$$
sed_{deg} = (conc_{sed,ch,mx} - conc_{sed,ch,i}) \cdot V_{ch} \cdot K_{CH} \cdot C_{CH}
$$

 $K_{CH}^{\phantom i}$ is the channel erodibility factor (cm/hr/Pa) $C_{CH}^{}$ is the channel cover factor

Final amount of SS

$$
sed_{ch} = sed_{ch,i} - sed_{dep} + sed_{deg}
$$
 (ton)

ch σ_{out} = sed $_{ch} \cdot \frac{\sigma_{out}}{V_{ch}}$ *V***Sed. transported out of the reach** $\textit{sed}_{\textit{out}} = \textit{sed}_{\textit{ch}} \cdot$ (ton)

Soil Erosion and Sediment Transport

Water Quality

Land Phase (NPS)

 The transport of nutrients from land areas into streams and water bodies is a normal result of soil weathering and erosion processes

 Governing movement of mineral and organic forms of nitrogen and phosphorus from land areas to the stream network

Water Phase

- **Determine the loadings of water, sediment, nutrients and pesticides to the main channel in land phase hydrologic cycle**
- **Keep track mass flow and modelsthe transformationof chemicals in thestream**
-
- **PS: Loadings from sources not associated with a land areas**

Water Phase (NPS & PS)

Parameters which affect water quality and can be considered pollution indicators include nutrients, total solids, biological oxygen demand and microorganisms (Loehr, 1970; Paine, 1973).

The SWAT in-stream water quality algorithms incorporate constituent interactions and relationships used in the QUAL2E model (Brown and Barnwell, 1987).

Water Phase (NPS & PS)

(0) Alge

Simulate algal growth in the stream

Why?

- **EX** During the day, algae increase the stream's DO via photosynthesis.
- **At night, algae reduce the stream's DO via respiration.**
- **As algae grow and die, they form part of the in-stream nutrient cycle.**

How?

Growth and decay of algae/chlorophyll *^a* **is calculated as a function of the growth rate, the respiration rate, the settling rate and the amount of algae present in the stream.**

Water Phase - N

(1) orgN

algal biomass $N \rightarrow$ orgN

 $orgN \rightarrow NH₄$ ⁺

orgN settling (sed.)

 $\Delta orgN_{\textit{str}} = \big(\alpha_{\textup{l}} \cdot \rho_{\textit{a}} \cdot \textit{algae} - \beta_{\textup{N,3}} \cdot \textit{orgN}_{\textit{str}} - \sigma_{\textit{4}} \cdot \textit{orgN}_{\textit{str}}\big) \cdot TT$

Δ*orgN_{str}* change in organic nitrogen concentration (mg N/L)

- α_{1} fraction of algal biomass that is nitrogen (mg N/mg algal biomass) ρ_a local respiration or death rate of algae $(\text{day}^{-1} \text{ or } \text{hr}^{-1})$
- *algae* algal biomass concentration at the beginning of the day (mg alg/L)
- $\beta_{N,3}$ rate constant for hydrolysis of orgN to ammonia N (day⁻¹ or hr⁻¹)
- $orgN_{str}$ organic nitrogen concentration at the beginning of the day (mg N/L)
- $\sigma_{\!\scriptscriptstyle 4}$ rate coefficient for organic nitrogen settling $(\text{day}^{-1} \text{ or } \text{hr}^{-1})$
- *TT*flow travel time in the reach segment (day or hr)

Water Phase - P

(1) orgP

 $\Delta orgP_{str} = \big(\alpha_{2}\cdot\rho_{a}\cdot{algae} - \beta_{P,4}\cdot{orgP_{str}} - \sigma_{5}\cdot{orgP_{str}}\big)\cdot{TT}$ algal biomass $P \rightarrow \text{orgP}$ **orgP → soluble inorganic P orgP settling (sed.)**

 $\triangle orgP_{str}$ change in organic P concentration (mg P/L)

- α fraction of algal biomass that is P (mg P/mg alg biomass) \leq user defined \geq ρ _a local respiration or death rate of algae $(\text{day}^{-1} \text{ or } \text{hr}^{-1})$
- *algae* algal biomass concentration at the beginning of the day (mg alg/L)
- β_{P_4} rate constant for mineralization of organic phosphorus (day⁻¹ or hr⁻¹)
- $orgP_{str}$ organic P concentration at the beginning of the day (mg P/L)
- σ_{ς} rate coefficient for organic phosphorus settling $\frac{day^{-1}}{y^{-1}}$ or hr^{-1})
- *TT*flow travel time in the reach segment (day or hr)

Seasonal variation of stream water quality

NH3-N: constant PS load

Low conc. in wet season

Critical period for nutrient:

Ending of dry season Æ

Beginning of wet season

NO3-N: PS and NPS loads

Planting & Fertilization (Apr & Aug) Eluviation (Mar)

NPS pollution load

Conclusions

This study focused on the improvement of our understanding of the integrated terrestrial processes over the East River (Water, Sediment, Nutrients, Reservoir operation and Land management)

- **Water resources: to overcome the projected water shortage induced by the drought condition as in 1963, 70% conservative capacity of Xinfengjiang reservoir would be filled**
- **Reservoir simulation: A mechanism-based numerical scheme for^a multiyear and multipurpose reservoir is developed**
- **Model integration: Hydrologic representation in SWAT are** K. **enhanced physically by integrating TOPMODEL features**
- **Sediment & Water quality: Soil erosion and NPS pollution features are analyzed, with identification of critical area and critical period**

