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Abstract

Our objective is to identify strategy-proof rules in the allocation prob-
lem & la Benassy (1982). Sprumont (1991) showed that the uniform rule
is the only rule satisfying strategy-proofness, efficiency, and anonymity
(or no-envy). While either anonymity or no-envy (both are fairness con-
dition) in his characterizations can be relaxed to weak symmetry (Ching
1994), whether the characterizations can be strengthened along the Pareto
dimension has remained open. This question is taken up by this paper.
We show that efficiency in Ching’s (1994) characterization can be relaxed
to continuity and a null-player axiom (“irrelevant” agents are not allo-
cated with any amount). The null-player axiom is implied by efficiency.

Keywords: Strategy-proofness, single-peakedness, uniform rule

Very Preliminary and Incomplete

*School of Economics and Finance, The University of Hong Kong, Pokfulam Road, Hong
Kong. Email: steve.ching@hku.hk. I am grateful to the participants of the Brown Bag
Seminar at SEF for helpful comments and discussion.



1 Introduction

Incentive compatibility is a fundamental principle in mechanism design. If ma-
nipulability of a mechanism is a concern, a stronger incentive-compatibility con-
dition is preferred. One of the strongest incentive-compatibility conditions in
the literature is strategy-proofness, which requires revelation of the true pref-
erence be a weakly dominant strategy for every agent. The requirement of a
weakly dominant strategy is quite demanding, because weakly dominant strate-
gies may not exist. Indeed, a general impossibility theorem was established
by Gibbard (1973) and Satterthwaite (1975) for “nondictatorial” strategy-proof
social choice functions.

Sprumont (1991) adopted the mechanism-design approach to study an allo-
cation problem in the model & la Benassy (1982). He showed that the “uniform
rule” (Benassy 1982) is the only (allocation) rule satisfying strategy-proofness,
“efficiency”, and “anonymity”. Efficiency is the usual Pareto condition and
anonymity simply rules out the dependency of a rule on the names of the
agents.

The result in Sprumont’s (1991) characterization of the uniform rule is three-
fold. First, it is an existence theorem for a rule satisfying strategy-proofness,
efficiency, and anonymity. Second, it is a uniqueness theorem for such a rule.
Third, it is a theorem identifying the uniform rule as a closed-form solution of
such a unique rule. Additionally, Sprumont (1991) showed that anonymity in
his characterization can be replaced by another fairness condition: no-envy,
which says that no agent prefers to receive the amount allocated to any other
agent.

It is uncommon to have a model allowing the co-existence of strategy-proofness
(a strong incentive-compatibility condition), efficiency (a Pareto condition), and
anonymity or no-envy (both are fairness condition). We consider the model a
good platform for exploring the relationship of strategy-proofness and other
axioms further. For instance, Ching (1994) showed that either anonymity or
no-envy in Sprumont’s (1991) characterizations can be relaxed to weak sym-
metry, which ensures that any agents with identical preference are indifferent
to the amounts allocated to them.!

While both fairness conditions in Sprumont’s (1991) characterizations can
be relaxed (Ching 1994), whether the characterizations can be strengthened
along the Pareto dimension has remained open. This question is taken up by
this paper. We show that efficieny in Ching’s (1994) characterization can be
relaxed to “continuity”? and a “null-player” axiom. The idea of the “null-player”

LA stronger version of weak symmetry is symmetry, which requires any agents with
identical preference be allocated the same amount. (Symmetry is weaker than anonymity.)
2“Continuity” is implied by strategy-proofness and efficiency together (see Sprumont 1991).



axiom is that an agent who is “irrelevant” to the problem is not allocated with
any amount. The “null-player” axiom is implied by efficiency.

In the next section, we introduce the model and state the background results.
The results are established in Section 3, where the “null-player” axiom is defined.
In the last section, we discuss the extension of the main result to a model with
free disposal.

2 Model

The problem is to allocate a perfectly divisible commodity among n > 2 agents.
The amount of the commodity to be divided is normalized to 1. Let N =
{1,...,n} be the set of agents. The preference relation of agent i € N over [0, 1]
is denoted by R;. Let P; be the strict relation of R; and I; the indifferent relation.
The preference relation R; is single-peaked if there exists p(R;) € [0,1] such
that for all z,y € [0,1], if x < y < p(R;) or p(R;) < y < x, then p(R;) P; y P; .
Let R be the domain of single-peaked preferences. Let S C N be a coalition?
and Rg = (R;);cs be a preference profile of the coalition.

An allocation rule is a function ¢ : R™ — [0, 1]™ such that

> ¢i(Ry) =1 for all Ry € R™. (1)

The feasibility constraint (1) assumes no free disposal, i.e. > ¢;(Ry) = 1 even
when > p(R;) < 1. The case > p(R;) < 1 is interpreted as “excess supply”,
and Y p(R;) > 1 as “excess demand”. Note that the problem of excess supply
is not assumed away by no free disposal.*

The allocation rule mentioned in the introduction is the uniform rule (Be-
nassy 1982), which is defined as follows. For all Ry € R™ and all i € N,

max{p(R;), \(Rn)} if > p(R;)

=! 2)
min{p(R:), A(Rx)} if S p(Ry) > 1

Ui(Rn) = {

where A(Ry) solves Y U;(Ry) = 1.

In (2), either the max or min formula can be used for any Ry € R"™ such
that Y p(R;) = 1. Let’s consider the max formula first. Note that any M(Ry) <
min{p(R;)} can be used to solve the feasibility constraint:

U;(Ry) = max{p(R;),\(Rn)} = p(R;) for all j € N and

SN UiRN) =) p(R)) =1

3We use the symbol C for subset relationship and C for proper subset relationship.
4Had there been free disposal, it is natural to assume that for all Ry € R™,if 3" p(R;) < 1,
then ¢;(Rn) = p(R;) for all j € N, i.e. excess supply is no longer an issue.




and any A > min{p(R;)} results in a violation the feasibility constraint:

> Uj(Ry) =) max{p(R;),\} > > p(R;) =1

If the min formula is used, the same argument shows that the feasibility
constraint is satisfied if and only if A\(Ry) > max{p(R;)} is used. To summarize,
for any Ry € R™ such that > p(R;) =1,

(1) U;(Rn) = p(R;) for all j € N, whether the max or min formula is used,;

(2) AM(Ry) is not be uniquely determined by the max formula, nor the min
formula.

On the other hand, for any Ry € R"™ such that Y p(R;) # 1, AM(Rn) is
uniquely determined by (2). Suppose, without loss of generality, that > p(R;) <
1 (excess supply).®> To apply (2), A(Ry) is chosen to solve > max{p(R;), \(Rn)}
1, which implies that A(Rx) > p(Ry) for some k € N. A\(Ry) is unique, because
any A # A(Ry) results in a violation of the feasibility constraint. If A > A(Ry),
then

max{p(Ry),\'} = X > ARy) = max{p(Rx), \(Ryx)} and
max{p(R;), \'} > max{p(R;),\(Ry)} for all j #k

Summing up the left(most) hand side and right(most) hand side of the above,

S max{p(R,), X} > 3 max{p(R). A(Rx)} = 1

JEN jEN

The above equation violates the feasibility constraint. Alternatively, if N <
A RnN), then

max{p(Ry),\'} < AM(Ry) = max{p(Ry), \(Rn)} and
max{p(R;), \'} < max{p(R;),\(Rn)} for all j # k

Again, summing up the above left(most) hand side and right(most) hand side
shows that the feasibility constraint is not met.

The uniform rule has occupied a central position in the literature. It was
first characterized by Sprumont (1991), who showed that it is the only rule
scoring well on three fronts: incentive compatibility, efficiency, and fairness. The
incentive-compatibility axiom used by Sprumont (1991) is “strategy-proofness”,
which requires revelation of the true preference be a weakly dominant strategy
for every agent. Its formal definition is stated below:

Strategy-proofness: Foralli € N, all R;, R; € R, and all Ry\(;) € R,
®i(Ri, Ry\(iy) Ri (R, Ry giy)-

5The case of excess demand (3 p(R;) > 1) can be handled by the same argument.




Strategy-proofness a demanding property, because a weakly dominant strat-
egy may not exist. Indeed, a general impossibility theorem was established by
Gibbard (1973) and Satterthwaite (1975) for strategy-proof social choice func-
tions. It is uncommon to have a model allowing the co-existence of strategy-
proof, efficiency and anonymity or no-envy. We consider the current model a
good platform to explore the relationship of strategy-proofness and other axioms.

The other two axioms used by Sprumont (1991) are standard. The efficiency
axiom is the usual Pareto condition and the fairness axiom is simply an anony-
mous requirement. To define these two axioms, some basic definitions are in-
troduced first. Let the set of feasible allocations be Z = {z € [0,1]"| > z; = 1}.

Efficiency: For all Ry € R™, there is no z € Z such that z; R; ¢;(Ry) for
all i € N and z; P; ¢;(Ry) for some i € N

Let m# : N — N be a permutation and R,y = (R,r(i))ieN. Let II be the
collection of .

Anonymity: For all Ry € R", alli € N, and all 7 € I, ¢r¢)(Rrn)) =
#i(RN)-

We are now ready to state Sprumont’s (1991) characterization of the uniform
rule.

Theorem 1 (Sprumont 1991). The uniform rule is the only rule satisfying
strategy-proofness, efficiency, and anonymity.

Anonymity in the above theorem can be replaced by no-envy: For all Ry €
R™and all i,j € N, d)z(RN) R; ¢](RN)

Theorem 2 (Sprumont 1991). The uniform rule is the only rule satisfying
strategy-proofness, efficiency, and no-envy.

Either anonymity in Theorem 1 or no-envy in Theorem 2 can be relaxed
to weak symmetry: For all Ry € R" and all i, € N, if R; = Rj, then
¢i(BN) I ¢j(RN).

Theorem 3 (Ching 1994). The uniform rule is the only rule satisfying strategy-
proofness, efficiency, and weak symmetry.

Both anonymity and mo-envy are fairness condition. Hence, Theorem 3
strengthens both Sprumont’s (1991) characterizations along the fairness dimen-
sion. One may wonder whether the same can be done along the Pareto dimen-
sion. The consequences of relaxing efficiency are investigated in this paper.



3 Results

It may not be desirable to drop efficiency altogether. For instance, the “equal-
division rule”® is a “fair” allocation rule that satisfies strategy-proofness all
the time. It is obviously “fair”” and trivially strategy-proofness (because it
is a constant function). Hence, we should allow a rule to be responsive to
preferences, but restrict it to be “continuous” with respect to preferences.?

For simplicity, we adopt the notion of “continuity”® formulated by Sprumont
(1991). Our point of departure is the following intermediate result by Sprumont
(1991), who showed that a one-person rule f : R — [0, 1] satisfies strategy-
proofness and continuity'® if and only if there exist two parameters a,b € [0,1]
such that

f(R) = med{p(R),a,b} VRER (3)

Let ¢ be continuous if and only if for all i € N and all Ry\ ;) € R ¢,
is continuous (in R; € R). Then the above single-person result can be applied
to a (multi-person) rule ¢ as follows:

Lemma 1 (Sprumont 1991). A rule ¢ satisfies strategy-proofness and continuity
if and only if for all i € N, there exist two functions a;,b; : R"~! — [0,1] such
that for all R\ sy € R

¢i(Ri, Ry\(iy) = med{p(R;), a;(Rn\(i}), bi(Bnv\giy )} VR € R (4)

Lemma 1 does not give a closed-form characterization of the rules satisfy-
ing stratgy-proofness and continuity, because there are two unknown functions
ai,b; in (4). To pin down these two unknown functions, “extreme preferences”
R,, R; € R such that p(R;) = 0 and p(R;) = 1 are introduced. They are used
to link the functions a;, b; to ¢; in the next lemma.

Lemma 2. A rule ¢ satisfies strategy-proofness and continuity if and only if
for alli € N and all R\ () € R

¢i(Ri, Ry (iy) = med{p(R;), ¢i(R;, Rn\1iy), ¢i(Ri, Rvvgiy)} VRi € R (5)

Proof. Setting R; = R, in Equation (4) gives

¢i(R;, Ry\(iy) = min{a;(Ry 1), bi (R (33) }

SEqual-division rule E: For all Ry € R", E;(Ry) = % The generalization of the

equal-division rule to an m-dimensional allocation problem is straightforward: E;(Ry) = %
for all Ry € R™, where D € R is the endowment.

7Obviously, it is (weakly) symmetric, anonymous, and envy-free.

8From a practical point of view, reporting preferences and receiving the information cannot
be error-free. The robustness of a rule is guaranteed by “continuity”, which ensures that a
rule is not very sensitive to any such small errors.

9To be a bit more precisely, f is “continuous in R € R”. See Sprumont (1991) for a formal
definition of continuity.

10 Continuity is implied by strategy-proofness and efficiency, as shown by Sprumont (1991).




and R; = R; in (4) gives
¢i(Ri, Ry (i) = max{a;(Ry\(i}), i (R (i}) }
Note that ¢;(R;, RN\{i}) < (ﬁi(ﬁi,RN\{i}) for all RN\{i} e R L ]

Lemma 2 is still not a closed-form characterization, because the function ¢;
appears on both sides of (5). This problem can easily be tackled when n = 2,
as illustrated in the next proposition.

Proposition 1. Let n = 2. A rule ¢ satisfies strategy-proofness and continuity
if and only if fori # j and all R; € R,

¢i(Ri, R;) = med{p(R;),1 — med{p(R;), d;(R;, R;), d;(R;, Rj)},
1 —med{p(R;), ¢j(ﬁiaﬁj)u ¢;(Ri,Rj)}} VR, € R (6)

Proof. By the feasibility constraint (1),

¢i(R;; Rj) =1 — ;(R;, R;) (7)
By (5),
¢ (R;, R;j) = med{p(R;), d;(R;, R;), 6;(R;, R;)} (8)
Substituting (8) into (7) gives
¢i(R;, R;j) = 1 —med{p(R;), ¢;(R;, R;), 6;(R;, R;)} 9)
Similarly,
¢i(Ri, R;) = 1 — med{p(R;), ¢;(Ri, R;), ¢;(Ri, R;)} (10)
Substituting (9) and (10) into (5) gives (6). O

Two remarks are in order. First, all {¢;(Ry\g, Rs)}j=12.5cn in (6) are
fixed for ¢, so they are parameters of ¢. For notational convenience, let a; s =
oy (EN\S,RS) for all 7 = 1,2 and all § C N. Altogether, there are eight such
parameters, which are subject to the following monotonicity constraint (see
Lemma 2):

ajs < ajsugyy Vi=1,2,VS C N (11)
and the feasibility constraint (1):
a1, s +a2s=1VSCN (12)
Le. feasibility implies that only four parameters are independent.

Second, ¢ in Proposition 1 is a function of the two peaks {p(R;)}i=1,2 and
four parameters, e.g. {a1,s}scn, of which the functional form is the recursive



median formula (6). Hence, Proposition 1 is a closed-form characterization of
the rules satisfying strategy-proofness and continuity for n = 2.

It should be pointed out that the equal-division rule is continuous, because
it is a constant rule and any constant rule is trivially continuous. To rule out
constant rules, we require a rule be responsive to preferences and propose an
axiom based on the concept of “null player”. Agent ¢ € N is a null player if
p(R;) =0 (or R; = R;). The idea of the “null-player” axiom is that nothing is
given to a null player when he is considered to be “irrelevant” to the problem.

A null player may or may not be “relevant” to a problem, depending on
whether there is excess supply or excess demand. A null player, who has zero
demand, is clearly not responsible for creating excess demand. Hence, we con-
sider a null player to be “irrelevant” when there is excess demand. On the other
hand, a null player cannot be considered ”irrelevant” when there is excess sup-
ply, which is due to insufficient demand. This discussion leads to the following
formulation of the “null-player” axiom. A piece of notation is introduced first.

For all Ry € R™, let the set of null players be N(Ry) = {i € N|R; = R;}
(which can be empty).

Null-player axiom: For all Ry € R", if > p(R;) > 1, then ¢;(Ry) =0
for all i € N(Ry).!t

A simple argument shows that the null-player axiom is implied by efficiency.
Let ¢ be efficient. By contradiction, suppose that the null-player axiom does not
hold for ¢, i.e. there exist Ry € R" such that > p(R;) > 1 and i € N(Ry) such
that ¢;(Ry) > 0. By feasibility, there exists k € N such that ¢ (Ry) < p(Rg)-
Let z be such that

zi = ¢i(Rn) — min{¢; (RN ), p(Rx) — dox(Rn)}
2r = ¢r(RN) + min{¢; (RN ), p(Ri) — ¢ox(Rn)}
2 = é;(Ry) for all j # i, k

Clearly, z; P; ¢i(RN), 2k Py dx(RN), 25 Ij ¢;(Ry) for all j # i, k, and 2 € Z,
contradicting efficiency.

Our result is stated below, which shows that efficiency in Theorem 3 can be
relaxed to continuity and the null-player axiom. Hence, it further strengthens
Theorems 1 and 2 along the Pareto dimension (in addition to relaxing either
anonymity or no-envy to weak symmetry).

Theorem 4. The uniform rule is the only rule satisfying strategy-proofness,
continuity, the null-player aziom, and weak symmetry.

1 The null-player axiom has no bite in case of excess supply.



The following notation is handy for proving Theorem 4. For all Ry € R",
let N(Ry) = {i € N|R; = R;} (which may be called a “full-player” set).

Proof. Let ¢ satisfy strategy-proofness, continuity, the null-player axiom, and
weak symmetry. Let Ry € R™ and ¢ € N. By Lemma 2,

®i(Ri, Rn\ 1) = med{p(R;), ¢i(R;, R\ (iy), @i (Ri, Rnn (i)
To obtain a closed-form characterization of ¢, we need to pin down the two func-
tions ¢;(R;, Ry\(iy) and ¢;(R;, Ry f43) in the above equation. By the feasibility
constraint and weak symmetry together,
1- ZJ&’;ENLVRN\U}) ¢j (Eiv RN\{z‘})
IN(R;, Ry (iy)]
1- ZjQN(EmRN\{i}) ;i (Ri, RN\{i})
IN(Ri, Rn (i)

®i(R;, Ry\(iy) = (13)

¢i(Ri, Ry (iy) = (14)

For (13), if N(R;, Rn\fi3) # 0, then Y- i P(1;) > 1, so the null-player axiom
implies that

¢i(Ry, Rv\iy) = 0 if N(B;, Ryy\piy) # 0 (13)
Note that j # ¢ in (13) and (14). By Lemma 2,
¢ (R;, Rn\(iy) = med{p(R;), ¢;(R;, R;, Rn\i 53 ): ¢35 (R, Ry, Rav\gijy)} (15)
¢j(Ri, Rn\(iy) = med{p(R;), ¢;(Ri, R;, Rn\ (i 5} )s ¢ (Ri, Rjs R\ (i jy)} (16)
Repeating the above argument,

L= D kg N (R, Ry R g15y) 96 (B By B g 5)

QSBmEvR ijy) = 17
J( 50 LUN\{ J}) |E(Ei7ﬂjaRN\{i,j})| 17)
=0if N(Ri,Rj,RN\{i,j}) #0 (17)
B ZkgéN( . )¢k(ﬂiaﬁjaRN\{i7j})
¢(E R RN . ) Rj, Rn\{i,5} (18)
! R IN(R;, Rj, Rv\gi jy)]
¢; (R, Rj, R\ (i) = (19)

1_Zkiﬁﬁ,§ R\, )¢k(RZaRJ7RN\{1J})
| (Rla Rj7 RN\{Z,]})'

Obviously, k # 4,7 in (17), (20), and k # j in (18). Furthermore, it is without
loss of generality to assume that k # i in (18), because ¢;(R;, R;, Rn\gijy) =0
(by the null-player axiom), so

¢;(Ri, Rj, Rnfi,y) = (20)

> k(R By, R\ (i.jy)
kEN (R, Rj Ry (i 5))
= > ok (R, Ry, B (i jy)

k¢ﬁ(ﬁi»§j,RN\{i,j})U{i}



Now we can repeat the argument for ¢x (R, R;, Ry (i53) in (17), dx(R;, R;, R\ gi,51)
in (18) and ¢y (R;, Rj, Ry\(i,53) in (20), and keep doing so until ¢;(R;, Ry {i})
becomes a recursive median formula of n peaks {p(R;)};jen, some zeroes, and
some parameters from the list {¢; (BN\SvES)}jGN,S§N~ With an explicit func-
tional form derived for ¢;(R;, Ry 43) (the recursive median formula), ¢;(R;, R\ (5})
is unique if and only if the parameters from {¢; (EN\S, RS)}jeN,SgN are unique.

The next step is to show uniqueness of all the parameters in {¢, (EN\S, Rs)}jen.scn-
By weak symmetry,

?i(Ry) = ¢j(§1v) = % forall j € N

For all S C N and all j € N, the null-player axiom implies that

d)j(EN\SvES) =0ifj ¢S
and feasibility and weak symmetry together imply that

= ...

d)j(EN\S?RS) = g lf] S S

Hence, all the parameters {(bj(EN\saES)}jeN,SQN are unique.
The unique rule is the uniform rule, because the uniform rule satisfies strategy-

proofness, continuity, the null-player axiom, and weak symmetry. O
4 Discussion

One variation of the model is to assume free disposal. When free disposal is
assumed, the following concepts need to be modified.

An allocation rule is a function ¢ : R™ — [0, 1]™ such that,

> ¢i(Ry) =min{> p(R;),1} for all Ry € R" and (1)
¢;j(Ry) = p(R;) for all j € N if Y p(R;) <1 (1)

The uniform rule is redefined accordingly. For all Ry € R™ and alli € N,

| (p(R) if > p(R;) <1
Ui(Ry) = {min{p(Ri)vA(RN)} if > p(R;)>1

where A(Ry) solves Y U;(Ry) =1 when ) p(R;) > 1.

(2)

The null-player axiom also needs to be modified as follows: For all Ry €
R"™, ¢;(Ry) =0 for all i € N(Rn).

10



Note that the above null-player axiom can be interpreted as individual ra-
tionality for the null player. There is no need to modify other axioms, e.g.

strategy-proofness, continuity, and weak symmetry, so we are ready to state the
new version of Theorem 4.

Theorem 4'. The uniform rule is the only rule satisfying strategy-proofness,
continuity, the null-player axiom, and weak symmetry.

The proof of Theorem 4’ is essentially the same as the proof of Theorem 4.

11
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