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Abstract Stars in the late stages of evolution are able to synthesize complex organic
compounds with aromatic and aliphatic structures over very short time scales. These
compounds are ejected into the interstellar medium and distributed throughout the Galaxy.
The structures of these compounds are similar to the insoluble organic matter found in
meteorites. In this paper, we discuss to what extent stellar organics has enriched the
primordial Solar System and possibly the early Earth.
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Introduction

Since the Millar-Urey experiment, it has been widely believed that life on Earth originated
from simple molecules and developed in chemical complexity in a primordial soup under
the rules of chemistry. In the past 30 years, an increasing number of organic molecules in
the interstellar medium have been discovered by astronomical spectroscopic observations
through their rotational and vibrational transitions (Kwok 2007). Consequently, there have
been questions raised on whether interstellar organics play a role in the origin of life
(Ehrenfreund and Charnley 2000). We now know that complex organics are everywhere in
the Universe. Spectral signatures of aromatic compounds have been detected in the Solar
System, stars, interstellar clouds, diffuse interstellar medium, and in external galaxies
(Kwok 2011). Were these organics synthesized in situ in the Solar System and in interstellar
clouds? In this paper, we offer the suggestion that organics are produced in large quantities
in the circumstellar envelopes of evolved stars, and these organics are being distributed
throughout the Galaxy via stellar winds. The early Solar System was likely to have been
chemically enriched by some of these stellar materials.
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Synthesis of Complex Organics by Planetary Nebulae

Soon after the nucleosynthesis of the element carbon, stars on the asymptotic giant branch
(AGB) have been observed to have synthesized over 60 different gas-phase molecules in
their stellar winds (Olofsson 1997). These molecules include inorganics, organics, radicals,
chains, and rings. Just before the stellar winds completely deplete the hydrogen envelope,
acetylenes begin to form (Volk et al. 2000). This is followed by the formation of
diacetylene, triacetylene, and benzene (Cernicharo et al. 2001). In the following
evolutionary stage (called the proto-planetary nebulae phase), the first spectral signatures
of aromatic compounds appear. The 3.3, 6.2, 7.7, 8.6, and 11.3 um aromatic stretching and
bending modes first make their appearance during the proto-planetary nebulae phase, and
are found to become stronger in the subsequent planetary nebulae (Kwok 2000) phase
(Fig. 1). These aromatic features are accompanied by aliphatic features at 3.4 and 6.9 pm in
the spectra of proto-planetary nebulae. The detection of out-of-plane C-H bending modes at
12.1, 12.4, and 13.3 um suggests that the aromatic rings are not all connected to each other
and there are many exposed edges of the rings (Kwok et al. 1999). Also present in the
spectra of proto-planetary nebulae are broad plateau emission features at 8§ and 12 pm
which are due to collections of in-plane and out-of-plane bending modes of aliphatic chains
(Kwok et al. 2001).

These observations suggest that even under the extremely low density environment of
the circumstellar envelopes, complex organics can be synthesized. One possible scenario is
that starting from acetylene, these linear molecules bend to form benzene, and all kinds of
aliphatic chains get attached to the rings. The aromatic rings grow in size, possibly as the
result of photochemistry. Since we know the evolutionary and dynamical timescales of the
AGB (~10* yr), proto-planetary nebulae (~10° yr), and planetary nebulae (~10* yr) stages,
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Fig. 1 Infrared Space Observatory spectrum of the planetary nebula NGC 7027 superimposed on the Hubble
Space Telescope image of the object. The aromatic infrared bands (AIB) are marked in green. The
identifications of these bands are given in the legend. The lines labeled in purple are atomic lines. The
strengths of the AIBs show that aromatic compounds are being produced in large quantities
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these time scales constrains the chemical timescales that the synthesis must take place.
Circumstellar molecular synthesis is therefore extremely efficient (Kwok 2004).

It is interesting to note that these spectral characteristics resemble the infrared spectra
seen in coal (Guillois et al. 1996), kerogen (Papoular 2001), soot (Pino et al. 2008), and
petroleum (Cataldo et al. 2004). What all these compounds have in common is that they are
all disorganized organic matter with mixed spz/sp3 structures. While coal, kerogen and
petroleum are remnants of life on Earth, the carbonaceous grains produced by stars
condensed directly from the gas phase (similar to the formation process of soot) and are
probably amorphous nanoparticles with a few aromatic islands connected by aliphatic
chains (Kwok and Zhang 2011).

Connection with the Solar System

Laboratory analysis of meteorites and interplanetary dust particles (IDP) collected in the
upper atmospheres shows signatures of complex organics. The 3.4 pum features seen in
proto-planetary nebulae are detected in IDPs (Flynn et al. 2003; Keller et al. 2004). The
insoluble organic matter (IOM) in carbonaceous chondrite meteorites is found to have a
structure similar to that of kerogen (Derenne and Robert 2010). Instead of being “dirty
snowballs”, the nuclei of comets are believed to contain significant amounts of organics
(Sandford et al. 2006; Cody et al. 2011). The colors of asteroids give indications of the
presence of organics (Cruikshank et al. 1998) and these can be confirmed by future sample
return missions. Even the Titan haze shows the 3.4 pum features similar to those seen in
proto-planetary nebulae (Kim et al. 2011). Recent analysis of circumstellar and interstellar
spectra has shown that there is a strong aliphatic component and the carrier is more
consistent with a mixed aromatic/aliphatic compound similar in chemical composition to
the IOM (Kwok and Zhang 2011). A schematic of the chemical structure is shown in Fig. 2.

The similarity in chemical structure between stellar and Solar System organics suggests
there may be a connection. We know that planetary nebulae eject a large amount of dust
and gas into the interstellar medium, and a fraction of the ejected materials is in the form of
complex organics. The typical mass loss rate per planetary nebula is ~10° Mg yr'.
Assuming a dust-to-gas ratio of 0.003, the ejection rate of dust is 2x 10" kg s'. The birth
rate of planetary nebulae in the Galaxy is~1 yr'', with a lifetime of ~20,000 yr, giving
about ~20,000 planetary nebulae in the Galaxy at any one time. Since about half of this
number is carbon-rich, the total carbonaceous dust production rate of 2x 10" kg s™. Over
the 10'? yr lifetime of the Galaxy, about 6x 10*® kg of carbonaceous solid particles has been
distributed over the Galaxy. The total amount of organics delivered to Earth externally has
been estimated to be 10'°-10'® kg (Chyba and Sagan 1992), which is much larger than the
total amount of organic carbon in the biosphere (2x10'> kg, Falkowski et al. 2000). The
total amount of organic carbon stored in the forms of coal and oil is more difficult to
estimate. Extrapolating from existing reserves, the potential total reserve can be as high as
4x10" kg. If we include kerogen, the total amount of organic matter in Earth is ~1.5x 10" kg
(Falkowski et al. 2000).

Although a significant amount of organics were produced by stars, it is less clear how
much of the ejected material was accreted into the solar nebula, or how much of this
primordial organic matter has ended up on Earth. It was commonly believed that any
interstellar organics in the pre-solar nebula would have been totally destroyed and re-
processed during the formation of the Solar System. However, if the pre-solar organics are
in the form of amorphous solids rather than gas-phase molecules, it is more likely for these
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Fig. 2 A schematic of the possible structure of stellar organics. This structure is characterized by a highly
disorganized arrangement of small units of aromatic rings linked by aliphatic chains. Other impurities such as
O, N, and S are commonly present. This structure contains about 100 C atoms and a typical particle may
consist of multiple structures similar to this one (diagram from Kwok and Zhang 2011)

complex organics to have survived and be embedded into comets, asteroids, and
planetesimals. The discovery of pre-solar grains based on isotopic anomalies has confirmed
that stellar grains such as silicon carbide (Bernatowicz et al. 1987), diamonds (Lewis et al.
1987), and refractory oxides (Nittler et al. 1997) can be incorporated into meteorites. The
early Earth could have been chemically enriched with organic compounds through external
bombardments by comets and asteroids containing these stellar materials, or even inherit
the organics through the accretion process of planet formation. With our new understanding
of stellar organics, may be it is time for us to reexamine the premise whether the early Solar
System was completely homogenized by thermal processing.

Conclusions

There is now strong spectroscopic evidence that complex organics are being synthesized by
old stars in large quantities. The discovery of pre-solar grains in meteorites shows that
stellar grains can travel across the Galaxy and reach the Solar System, establishing the
stellar-Solar System connection (Zinner 1998). If the early Earth was indeed enriched by
stellar organics, then life may have been much easier to get started given the rich
ingredients available. Instead of having to start from scratch, the aromatic and aliphatic
components of these grains can serve as building blocks for nucleic acids and lipids.
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On the Galactic scale, since planetary nebulae are distributed all over the Galaxy, stellar
organics can easily be delivered to other planetary systems in the Galaxy. From this
perspective, the availability of basic ingredients for life is not restricted to Earth and is
universal over the Galaxy.
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