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Abstract   
        
Objective. To evaluate the effect of five experimental silane monomer primers in 
vitro on the shear bond strength of a phosphate ester resin-composite cement 
bonded to silicatized zirconia framework.  
Methods. A total of 144 planar zirconia (Procera AllZircon) specimens were 
subjected to tribochemical silica-treatment, randomly divided into 12 sub-groups 
(n=12), and silanized with 1.0% (v/v) activated solutions of 3-
acryloxypropyltrimethoxysilane, 3 glycidoxypropyltrimethoxysilane, 3-
methacryloxypropyltrimethoxysilane,  styrylethyltrimethoxysilane, and 3-
isocyanatopropyltriethoxysilane, which had been prepared in 95% ethanol (pH 4.5). 
A ready-to-use 3-methacryloxypropyltrimethoxysilane (RelyX™ Ceramic Primer) was 
used as the control. One resin-composite cement (RelyX™ Unicem) stub was 
bonded to silicatized and silanized zirconia using polyethylene molds. Half of the 
specimen groups were dry-tested (without aging) and half were thermo-cycled at 
6000 cycles between 5 ºC and 55 ºC, with a constant dwelling time of 30 s. The 
shear bond strength of the cement stubs bonded to zirconia was measured using a 
universal testing machine using a constant cross-head speed of 1 mm/min. The 
silane primer activation was evaluated using Fourier-transform infrared 
spectroscopy. 
Results. In dry conditions, the highest shear bond strength was 11.7 (SD 2.3) MPa, 
obtained with 3-acryloxypropyltrimethoxysilane and after thermo-cycling 17.6 (4.1) 
MPa, both. Thermo-cycling increased the bond strengths significantly (ANOVA, 
p<0.001) and varied with the type of silane (ANOVA, p<0.001).  
Significance. Silanization with five experimental silane primers in vitro produced 
significantly greater shear bond strengths than the ready-to-use control silane.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Primers, Resin bonding, Silica-coating, Shear bond strength, Silanization, 
Zirconia, Conditioning 
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1. Introduction 

 

Biocompatible yttrium-stabilized tetragonal zirconia (ZrO2) is structurally stable and 

stiff as a framework material. It has no known adverse tissue reactions, and serves 

at high simulated masticatory loads [1]. However, the reliable and durable clinical 

cementing of CAD/CAM-zirconia is still a clinical concern [2]. Pretreatment methods 

that modify the surface texture or chemistry to enhance durable adhesion have thus 

been investigated and suggested [3-7]. Some special resin composite cements have 

also been developed. These cements contain acidic phosphate ester groups, for 

example, as in 10-methacryloyloxydecyldihydrogenphosphate (MDP) that is 

employed in Panavia™ (Kuraray, Osaka, Japan) [8] or other multifunctional 

molecules with methacrylate and phosphoric ester groups, for example, utilized in 

RelyX™ Unicem (3M ESPE, Seefeld, Germany) [5]. Both of these products have 

demonstrated durable bonding [9,10]. 

 Silane coupling agents find wide use in silanization of fillers in resin-

composite. Dual functional silane monomers can be used as coupling agents to 

promote adhesion between dissimilar matrices for composites and coatings, such as 

silica-coated materials in dentistry, because of their organofunctional group which 

polymerize with the monomers of resin composite and three hydrolyzable alkoxy 

groups which bond with silica and silica-coated surfaces [11]. An essential role of 

chemically activated silanes in dentistry is to mediate adhesion between dissimilar 

materials, hydrophobic resin composite and hydrophilic silica-coated surfaces. 

Experimental silane monomer primers have been evaluated in resin zirconia bonding 
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and they have exhibited a significant rise in the micro tensile bond strength [4,7]. 

However, intaglio zirconia is ineffective for silanization. In a widely used 

pretreatment method, tribochemical silica-coating in the Rocatec™ system, silica-

coated alumina particles are blasted onto the zirconia surface to pretreat it [12,13].  

 The bond strengths of various commercially available adhesive systems to 

zirconia vary in magnitude [5,14]. Inert zirconia itself is not amenable to silane-based 

methods of adhesion promotion [3-5], but it can be pretreated using the Rocatec™ 

system, which cleanses the surface from eventual impurities and creates a highly 

microretentive surface and leaves a surface with a partial silicon dioxide coverage 

[15] without any weakening in its flexural properties [16]. After this pretreatment step, 

immediate silanization (silane application) can promote bonding to resin composite 

[11]. Furthermore, the rationale behind applying experimental silane primers is that 

the presence of specific organofunctional groups, such as an aromatic rective styryl 

[17], isocyanato [18], glycidoxy (epoxy), and acrylate [19,20] in certain types of silane 

monomers may improve the spatial compatibility of the silane molecule. This steric 

improvement may also increase reactivity of silane monomers (enable 

polymerization reactions) with methacrylate, acrylate and styryl with their vinylic C=C 

groups with phosphate ester groups in resin composite. Adhesion would be 

promoted by formed covalent bonds and a 3D siloxane bond system. The resin-

composite cement used is acidic (with an initial pH value 2), due to its phosphate 

groups, as its chemical character, however it is not known or reported that this 

feauture would inhibit chemical reactions of the silane in this study. In contrary, 
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silanes need an acidic environment to catalyze their necessary hydrolysis 

(activation) and enable them for polymerization [11].  

This study tested the hypothesis that silane monomers with such functional 

groups as isocyanato, styryl, glycidoxy methacrylate and acrylate in experimental 

primers significantly enhance bonding, presented as shear bond strength, between 

an acidic resin composite and silica-coated zirconia compared to a clinically 

available control silane. 

 

 

2. Materials and methods 

  

All experimental materials of this study are listed in Table 1; throughout the 

laboratory work all manufacturers’ instructions were followed and by only one 

operator. The zirconia specimens and resin-composite cement stubs were prepared 

in a standardized way. First, 144 planar zirconia specimens (surface area, 10 mm x 

10 mm; thickness, 3 mm) were embedded in acrylic denture resin blocks to leave 

one surface free. The surface was kept carefully intact and clean from any acrylic 

resin remains (visual check). Uniform abrasion pretreatment with Rocatec™ Plus 

sand (with a grain diameter of 110 µm) was performed with an operational pressure 

of 300 kPa at a perpendicular position approximately 10 mm away, for 60 s with slow 

rotation of the exposed surface of ca. 1.0 cm2. The specimens were cleaned in 

ethanol for 10 min in an ultrasonic bath, air dried, and protected from dust. The 
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specimens were divided randomly into two storage-type groups: (a) to be kept dry 

and (b) to be thermo-cycled, equaling to 12 test groups. 

 

2.1. Activated trialkoxysilanes and silanization 

All experimental silane primers were prepared at 1.0% (v/v) in a standard solution of 

95.0% (v/v) ethanol and deionized (milli-Q) water that had been adjusted to pH 4.5 

with 1 M acetic acid, a procedure further-developed by the authors. The silane 

primers were allowed to stabilize for 24 h and were then activated for 1 h at room 

temperature [4,7,18-20]. The two groups of silica-coated zirconia samples were each 

assigned randomly to 5 sub-groups for silanization. Each silane primer coating was 

applied with a new, clean brush. The silane was allowed to dry and react for 3 min, 

and then gently dried with oil-free compressed air. 

 

2.2. Fourier-transform infrared spectroscopic analysis 

Hydrolysis of each silane monomer was observed analytically up to 60 min using 

reflectance-absorbance Fourier-transform infrared spectroscopy (Spectrum One 

spectrometer; Perkin-Elmer, Beaconsfield, UK) to detect molecular bending, 

vibration, wagging, and rocking of functional groups [21]. The surface analysis of a 

silane primer film layer was conducted throughout the spectral range 3800–600 cm-1 

with a specular reflectance monolayer and grazing angle accessory in which the 

primer film was placed against a cleaned, planar, inert Ge crystal [18,19]. 
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2.3 Bonding of the resin composite cement and testing 

One RelyX™ Unicem cement stub was carefully prepared and bonded to each 

silica-coated silanized zirconia specimen using polyethylene molds (diameter, 3.6 

mm; height, 5.0 mm). The cement was carefully packed against the substrate and 

the stubs were light-polymerized for 40 s (light-intensity, 470-520 mW/cm2; 

wavelength, 490 nm) from the top of the stub and also from two lateral directions at 

the contact area of resin-composite stub to zirconia. The mould was gently removed 

and the specimens in the dry group were kept in a desiccator for about 2 h before 

shear bond strength testing. Specimens in the other groups were subjected to 

thermo-cycling in de-ionized water for 6000 cycles between 5ºC and 55ºC. The 

dwelling time at each temperature was 30 s, and the transfer time was 2 s (ISO 

Standard 10477)[22]. Each study group had 12 specimens (n=12). 

The bond strength of the 12 test groups after dry storage and termo-cycl ing 

with 6000 cycles were assessed by applying shear bond strength testing. Zirconia 

specimens were mounted in a jig of the universal testing machine (Lloyd LRX; Lloyd 

Instruments, Fareham, UK) and shear force was applied at a crosshead speed of 1.0 

mm/min to the adhesive interface until failure occurred.  

After debonding, the failure type was assessed and classified according to the 

failure origin by using an optical microscope, with a magnification of 100x.. 

“Interfacial failure” (also called adhesive failure in literature) was assigned as to have 

occurred across the zirconia-resin interface, resulting in exposure of the zirconia 

surface and with less than 33% of resin-composite remaining, and “mixed failure” 

with more than 33% but less than 66%, whereas “cohesive failure” occurred within 
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the resin composite with more than 66% composite remaining on the zirconia 

surface.  

The stress-strain curve was analyzed with Nexygen 2.0 software (Lloyd 

Instruments, Fareham, UK). Statistical analysis was performed using SPSS version 

11.0 (Statistical Package for Statistical Science, Chicago, IL, USA). The means of 

each group were analyzed by two-way analysis of variance (ANOVA), with shear 

bond strength as the dependent variable, and silane type and specimen storage type 

as independent variables. p values of less than 0.05 were considered to be 

statistically significant in all tests. Multiple comparions of different surface 

silanizations were analyzed usind Tukey HSD test. Statistical comparison of 

differences between the storage type of each test group was carried out using t test. 

 
2.4. Scanning electron microscopy analysis 
 

The impact of the surface conditioning after silica-coating, and also the failure area 

of the shear bond strength tested, of the thermo-cycled samples was evaluated by a 

scanning electron microscopy, SEM (JSM 5500, Jeol, Tokyo, Japan), study. The 

zirconia specimens were first mounted on aluminum sample-holder stubs and 

sputtered with gold (BAL-TEC SCD 050, Balzers AG, Balzers, Liechtenstein). The 

SEM analysis was then performed with a working distance of 20 mm and an 

operating voltage of 17 kV in the backscatter electron mode. The images were 

captured using the software in the SEM system. Magnifications of 28 and 200 were 

chosen for a visual observation and to be compared with observations obtained 

using optical microscopy. 
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3. Results 
  
 
All experimental silanes tested resulted in greater shear bond strengths than the 

control, i.e. initial values, with thermo-cycled samples achieving greater shear bond 

strengths than dry-storaged specimens (Table 2a, 2b). While ANOVA revealed a 

significant influence of the silane type (p < 0.0001), and specimen storage (p < 

0.001) on the shear bond strength values, interaction between silane type and 

storage conditions was not found (p < 0.201). Tukey’s post hoc test for silane type, 

with strength as the dependent variable, showed that the highest shear bond 

strength was obtained for 3-acryloxypropyltrimethoxysilane in both dry and thermo-

cycled storage conditions, 11.7 (SD 2.3) MPa and 16.0 (2.5) MPa, respectively. The 

lowest values were found for the control in both dry and thermo-cycled storage 

conditions 4.5 (1.3) MPa and 6.5 (2.6) MPa, respectively. The lowest values for an 

experimental silane primer were 6.8 (2.1) MPa after dry storage and 8.5 (1.6) MPa 

after thermo-cycling. The visually assessed failure mode after thermo-cycling varied 

among silane treatment groups (Table 2c). No specimens showed spontaneous 

debonding, and all exhibited different types of failure, except the group treated with 

3-isocyanatopropyltriethoxysilane, which showed interfacial failure only. 

Fourier-transform infrared spectroscopy analysis of the experimental silane 

primers revealed that ethoxy and methoxy groups had reacted and hydrolyzed 

(releasing C2H5OH and CH3OH, respectively) to yield silanol ≡Si-OH groups (Fig 2). 

During activation of the zirconia primers, there were signal changes at the wave 

number region ranging from 1000 to 1200 cm-1. This finding indicated that the labile 

–O-CH3 (–O-C2H5) alkoxy groups had turned into reactive silanol groups. Three 
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spectra are presented (Fig. 2).18,19 The spectra also suggested intensive and 

complex ≡Si-OH and ≡Si-O-Si≡ signals for the control, and the same signals, but 

with somewhat reduced intensity, for the silane monomers with acrylate and styryl 

functionalities. The spectra suggest that all the silane primers and control had been 

converted to silanol oligomers during the first 15 min, but definietly during 60 min.   

 
 
4. Discussion 
There is active on-going discussion around the role of silica-coating on zirconia. One 

concern is the thickness of the framework: for zirconia restorations with walls thicker 

that 2 mm, it has been found that silica-coating itself does not weaken flexural 

strength [23]. Zirconia specimens can be successfully cleaned ultrasonically to 

remove all loose sand and debris [1], and airborne particle abrasion methods can be 

used to dramatically enlarge the surface area and thereby enable micromechanical 

retention [6,13]. As a potential shortcoming, such methods might contribute to flaws 

that occur after treatment, which can contribute to fracture and thus failure [24]. 

Nevertheless, there is a general consensus that air-borne particle abrasion and 

corresponding silica-coating are acceptable pretreatment methods in resin zirconia 

bonding to promote durable bonding of the framework [5,13-15]. 

 The experimental silane primers used in this study were activated by 

hydrolysis, in this case catalyzed by acetic acid over a time that is shown to be 

sufficient, following a procedure supported by the literature [4,18-20]. Numerous 

studies have concluded that silanes alone do not provide reliable chemical covalent 

bonding with zirconia due to the inertness of zirconia [3,5,9,14]. After thermo-cycling, 

all the shear bond strength values were increased, apparently owing to post-
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polymerization accelerated by dwelling period at the relatively high temperature, at 

55 °C. All the bonding astrength values exceeded the 5-MPa minimum set by the 

International Organization for Standardization [21]. Nevertheless, one should 

preferably have a closer look at the changes in the shear bond strength value 

(growth/increase) in this study after thermo-cycling when the bond values produced 

using experimental primers are compared to the control specimen group 

(normalization), and after thermo-cycling. In this case it can be observed that 

experimental 3-glycidoxypropyltrimethoxysilane may produce a growth of 171%, and 

3-acryloxypropyltrimethoxy 146 % in the shear bond strength values, respectively. 

Even 3-isocyanatopropyltriethoxysilane is suggesting a significant enhancement of 

31% for the shear bond strength even though its observed adhesion failure mode 

was interfacial (Table 2a).  

There is now found an interesting discrepancy between the experimental 3-

methacryloxypropyltrimethoxysilane-based primer and the control silane, because 

both bear very much chemical similarity, e.g. silane compound, solvent, pH [11]. 

They should in principle have relatively similar performance. However, the adhesion 

promotion performance of the experimental primer was significantly was better, viz. it 

produced 109% higher shear bond results after thermo-cycling, and also a 

significant rise in shear bond strength value after dry storage, 129%, was observed. 

The control silane is a prehydrolyzed clinical product, which means that it consists of 

polymerized silane aggregates (oligomers) which may have lost the initial reactivity 

regardless its reported relatively long suggested self life (often 2-3 years). In general 

it should be noted that there are siginifcant chemical differences between 
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commercially available silane products and their bonding properties in clinical 

dentistry [26]. Styrylethyltrimethoxysilane, a reactive aromatic silane (cf. Fig. 1b)  

was evaluated previously as a dual silanization reagent in combination with other 

silane monomers for experimental nanocomposites: the results suggested that high 

biaxial flexural strength values were obtained using it for filler silanization [17]. At the 

moment, 3-glycidoxypropyltrimethoxysilane (an epoxy type silane) is used as 

coupling agent for epoxy composites employed in electronic chip encapsulation and 

to prepare epoxy-containing hybrid organic-inorganic materials.  

Silanization of the silica-coated zirconia surfaces with all of the silane primers 

resulted in statistically greater shear bond strengths than the control. As a 

comparison to figure out the magnitude of the obtained shear bond strength values, 

they agree with some bond strength values in clinical dentistry published in the 

literature: e.g. between resin-composite bonding to enamel (18-22 MPa) and resin-

composite cement bonding to enamel for orthodontic brackets (18-20 MPa) [27]. 3-

Isocyanatopropyltriethoxysilane led to statistically equally low bonding strength as 

the control silane, which has approximately the same low silane concentration as the 

experimental primers in this study, but has another silane compound, viz. 3-

methacryloxypropyltrimethoxysilane. This is somewhat surprising to observe 

because treatment of a silica-coated Ti surface with experimental 3-

isocyanatopropyltriethoxysilane primer has been shown to promote adhesion 

significantly more than compared to 3-methacryloxypropyltrimethoxysilane [18]. 

However, it is essential to note that all-ceramic surfaces and silica-coated metal 

surfaces are not equivalent or comparable as such. 
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 Chemically probably the most reactive silane monomer in this study, 3-

glycidoxypropyltrimethoxysilane which yielded the highest shear bond values for  

thermo-cycled specimens. This is supported by some other studies of the authors 

[19, 20, 28].  The observed failure mode was mainly interfacial (adhesive) for this 

silane, whereas both styrylethyltrimethoxysilane and 3-

glycidoxypropyltrimethoxysilane exhibited 50% interfacial failure, 3-

acryloxypropyltrimethoxysilane and 58%, control 50% and 3-

methacryloxypropyltrimethoxysilane 42% cohesive failure. For an unknown reason, 

control was not observed to exhibit a mixed failure (Table 2c). It is noteworthy that 

siloxane films on the substrates cannot be detected by SEM imaging. SEM images 

(Fig. 3a-b) are of a tested thermo-cycled specimen, silanized with 3-

glycidoxypropyltrimethoxysilane and demonstrating a cohesive failure type. Good 

bonding and contact to the zirconia in this case are apparent. 

Nevertheless, bond strength results based on shear bond strength testing are 

often criticized. The typical failure mode during shear bond strength testing is a 

sliding or in-plane shear mode in which the cracked surfaces slide over one another 

in a direction perpendicular to the leading edge of the crack [5,13,18-20,29]. This is, 

however, also the typical mode during which the adhesive such as a silane primer,  

exhibits increased resistance to fracture. Hence, bonding and adhesion studies are 

being performed more frequently using microtensile bond strength testing [3,4,7], 

which can be described as testing under a tensile (“opening”) mode, where the 

loading is normal to the crack. Given that a limitation of both microtensile and shear 

bond strength testing is unintentional antiplane shear mode (or tearing), the 
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measurement of fracture toughness has been suggested [29, 30]. Still, shear bond 

strength testing may be considered relevant in providing an initial idea of whether 

adhesion has been chemically promoted or not using various silane monomers in 

experimental primers, though the relevance for presenting the dry-storage results 

might remain disputable. Nevertheless, the authors feel it is important to report also 

them [5]. 

 It is noteworthy that, for unknown reasons, silane treatment has not been 

observed to strengthen the porcelain matrix and its flexural strength [31]. This 

question should be investigated for silica-coated zirconia as well. As the next step 

for the authors, the effect of concentration of the three functional silanes evaluated 

here merits further study, on bond strength (e.g. shear bond strength) after long-term 

water storage. Thus the  hydrolytic stability of the silane film between silica-coated 

zirconia and resin composite cement should be assessed. The authors summarize 

that silane coupling agents exhibit a unknown and huge potential in biomaterials 

science, let alone silane compounds (organic silicon derivatives) have no intrinsic 

toxicity [32]. 

The hypotheses of this study was met: a significant bond strength 

enhancement may take place using some less usual silane monomers in 

experimental primers. 

 

5. Conclusion  

Silanization with four  experimental silane primers produced significantly greater 

shear bond strengths after artificial aging than a ready-to-use control silane. 3-
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acryloxypropyltrimethoxysilane, 3-glycidoxyproplytrimethoxysilane or 

styrylethyltrimethoxysilane may enhance the  bonding of organophosphate resin to 

silica-coated zirconia significantly and merits further investigations. 
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Table 1 Materials used in this study. 
   
Brand 
 

Description  Manufacturer Purity 
(%) 

Batch   

Procera 
AllZircon  

Zirconium dioxide (zirconia) Nobel Biocare, 
Göteborg, 
Sweden 
 

N/A N/A 

Rocatec Plus   Sand, silica-coated alumina 
(diameter 110 µm) 
 

3M ESPE, 
Seefeld, 
Germany 
 

N/A 260762 

RelyX Unicem 
 
 
 
 
 
RelyX 
Ceramic 
Primer 
 

Adhesive resin cement paste, shade 
A2, bis-GMA, TEGDMA, silane treated 
ceramic and silica fillers, functionalized 
DMA  
 
Dilute 3-
methacryloxypropyltrimethoxysilane in 
organic solvent 
 

3M ESPE, 
Seefeld, 
Germany 
 
 
 
3M ESPE, St. 
Paul, MN, USA 
 

N/A 
 
 
 
 
 
N/A 

259571 
 
 
 
 
 
6XJ 

Z-6030 
 
 
 
SIA0200.0 
 
 
 
SIS6990.0 
 
 
 
SII6455.0 
 
 
 
SIG5840.0 
 

3-Methacryloxypropyltrimethoxysilane 
 
 
 
3-Acryloxypropyltrimethoxysilane 
 
 
 
Strylethyltrimethoxysilane 
 
 
 
3-Isocyanatopropyltriethoxysilane 
 
    
 
3-Isocyanatopropyltriethoxysilane  

Dow Corning 
Toray Silicone, 
Tokyo, Japan 
 
Gelest, 
Morrisville, PA, 
USA 
 
Gelest, 
Morrisville, PA, 
USA 
 
ABCR, 
Karlsruhe, 
Germany 
 
Gelest, 
Morrisville, PA, 
USA 
 

98 
 
 
 
95 
 
 
 
92 
 
 
 
95 
 
 
 
98 

VN02011454 
 
 
 
5C-6412 
 
 
 
7D-10467-5 
 
 
 
9E-14595 
 
 
 
N/A 

     
Ethanolum 
Anhydricum 
 

Ethanol Arcus, Oslo, 
Norway 

99.5 030305 

Acetic acid Acetic acid Merck, 
Darmstadt, 
Germany 

100 K12716063 
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Table 2a Tested zirconia specimens with cements stubs (n = 12). Key: MPS = 1.0 
vol% 3-methacryloxypropyltrimethoxysilane, ACPS = 1.0 vol% 3-
acryloxypropyltrimethoxysilane, STYRX = 1.0 vol% styrylethyltrimethoxysilane; 
ABCR, Germany), ICS = 1.0 vol% 3-isocyanatopropyltriethoxysilane, GPS = 1.0% 
glycidoxyproplytrimethoxysilane, and Control: RelyX Ceramic Primer, 3M ESPE, 
USA. 
 
Silane   Shear bond 

strength + standard 
deviation (dry 
storage)/MPa 

Change to 
Control/% 

Shear bond 
strength + standard 
deviation (thermo-
cycled)/MPa 

Change to 
Control/% 

MPS 10.3 (3.4) 129 13.6 (4.9) 109 
ACPS  11.7 (2.3) 146 16.0 (2.5) 146 
STYRX 10.3 (3.0) 128 14.9 (4.3) 129 
ICS 6.8 (2.1) 51 8.5 (1.6) 31 
GPS 7.8 (1.0) 73 17.6 (4.1) 171 
Control 4.5 (1.3) - 6.5 (2.6) - 

 
Table 2b Statistical analysis: tests of between-subjects effects. Results of two-way 
ANOVA for the shear bond strength of the experimental silane primers. Dependent 
variable: strength.  
Source   Sum of 

Squares 
 df Mean 

Square 
F Significance

Corrected 
Model 

2293.153 a 11 208.486 23.174 0.000 

Storage 683.662 1 683.662 75.998 0.000 
Silane 1330.303 5 266.061 29.576 0.000 
Storage * 
Silane 

268.924 5 53.785 5.979 0.000 

Error 1214.432 135 8.996   
Total 20416.781 147    

a. R Squared = 0.654 (Adjusted Squared = 0.626) 
 
Table 2c Failure mode analysis after thermo-cycling, 6000 x between 5-55 °C. Key: 
See Table 2a.  
Silane   Spontaneous 

debonding  
 Cohesive failure Mixed failure Interfacial failure

Control  0  6 0 6 
MPS  0  5 3 4 
ACPS   0  3 2 7 
STYRX  0  3 3 6 
GPS  0 4 2 6 
ICS  0  0 0 12 
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Fig. 1 Structures of silane monomers used in the experimental primers:  

(A) 3-Acryloxypropyltrimethoxysilane, (B) 3-Methacryloxypropyltrimethoxysilane (also present in the 

control),(C) Styrylethyltrimethoxysilane, (D) 3-Isocyanatopropyltriethoxysilane,  

(E) 3-Glycidoxypropyltrimethoxysilane. 
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(C)   
Fig. 2 Fourier-transform infrared spectra of some silane monomers in the experimental primers and 

activation reactions within 1 h (Key: ‘A’ = absorbance (in arbitrary units), ‘wave number’ as cm-1): 

(A) The control silane,  

(B) Styrylethyltrimethoxysilane,  

(C) 3-Acryloxypropyltrimethoxysilane.  
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a) 
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b) 
 
 
 
Fig. 3 SEM images of zirconia specimens after thermal aging (thermo-cycling) showing the cohesive 

failure (fracture) mode. Images of a zirconia specimen silanized with 3-

glycidoxypropyltrimethoxysilane. 
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