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Longitudinal and transverse electrohydrodynamic flows through a plane channel, of which the walls

are micropatterned with a periodic array of stripes, are considered. One unit of wall pattern consists

of a slipping stripe and a non-slipping stripe, each with a distinct zeta potential. The problems are

solved by a semi-analytical method, where the basic solutions satisfying the electrohydrodynamic

equations are expressed by eigenfunction expansions, and the coefficients are determined numerically

by point collocation satisfying the mixed stick-slip boundary conditions. In the regime of linear

response, the Onsager relations for the fluid and current fluxes are deduced as linear functions of

the hydrodynamic and electric forcings. The phenomenological coefficients are explicitly expressed

as functions of the channel height, the Debye parameter, the slipping area fraction of the wall, the

intrinsic slip length, and the zeta potentials. Attention is paid to some particular kinds of patterns,

with a view to revisit and to generalize the theoretical limits made in previous studies on electrokinetic

flow over an inhomogeneously slipping surface. One should be cautious when applying the theoretical

limits. We show that when a surface is not 100% uniformly slipping but has a small fraction of area

being covered by no-slip slots, the electro-osmotic enhancement can be appreciably reduced. We also

show that when the electric double layer is only moderately thin, slipping-uncharged regions on a

surface will have finite inhibition effect on the electro-osmotic flow. VC 2011 American Institute of
Physics. [doi:10.1063/1.3647582]

I. INTRODUCTION

Much of the microfluidic technology relies on flow

through a channel with very fine cross-section. Experiments

in past decades have explored fluid flows in ever-smaller

channels, which can now be miniaturized to microns or even

smaller in cross-section. There is an increasing need to look

for effective ways to drive fluids through such capillaries.

The flow-rate for pressure-driven (also called Poiseuille)

flow through a rectangular channel decreases according to

the third power of the channel height, and hence pressure

pumping alone may be insufficient for very narrow channels.

If the fluid is an electrolyte solution (e.g., water with dis-

solved ionic species or a liquid with free charges), flow may

result from electrokinetic phenomena as well. A common

kind of such flow, termed electroosmotic flow (EOF), is

driven by an electric potential difference across the channel.

EOF has typically a plug-like velocity profile, which is deter-

mined by the electrical properties but not the channel height.

Electrokinetic phenomena stem from the distribution of

free charges in the electrical double layer (EDL) that forms

on the fluid–solid interface. Most substances acquire a sur-

face electric charge when brought into contact with an elec-

trolyte. Ions of opposite charge (counterions) to that of the

surface will be attracted to the surface, while ions of the

same charge (coions) are repelled from the surface. Such a

redistribution of free ions in the solution, together with the

surface charge, gives rise to a two-layer structure: a single

(stern) layer of immobile ions attached to the surface, and a

diffuse layer in which there is an excess of counterions over

coions to neutralize the surface charge. The electric potential

on the stern interface is known as the zeta potential. Charge

neutrality is not satisfied in the double layer, and hence, in

the presence of an electric field, these ions will move, gener-

ating electric current in the channel. At the same time, the

electric body force will drive the bulk fluid into motion as

well. Such a phenomenon is called electro-osmosis. If the

channel is closed, electro-osmotic pressure will be induced

to produce a counterbalancing flow. The converse of electro-

osmosis is known as streaming potential, which is the elec-

tric potential induced in a pressure-driven flow in order to

produce a counterbalancing electric current when there is no

external electric connection between the inlet and exit of the

channel. Streaming potential thereby produces a backward

flow known as electroviscous flow. Probstein,1 Li,2 Kandli-

kar et al.,3 and Masliyah and Bhattacharjee4 can be consulted

for an in-depth understanding of electrokinetic transport

phenomena.

Boundary slip plays an equally important role in facili-

tating flow through a microchannel. Microengineered surfa-

ces exhibiting slip length (which corresponds to the depth

into the envelope of a surface where a simple shear flow ve-

locity would extrapolate to zero) as large as tens of microns

have been reported. Current understanding has the hydrody-

namic slip be classified into intrinsic slip and roughness-

induced slip. Intrinsic slip arises from a depletion or low-

density region separating molecules of fluid from those of a

solvophobic surface. Roughness-induced slip, which is an

apparent effect as is observed from outside the boundary,
a)Author to whom correspondence should be addressed. Electronic mail:

cong@hku.hk.

1070-6631/2011/23(10)/102002/14/$30.00 VC 2011 American Institute of Physics23, 102002-1

PHYSICS OF FLUIDS 23, 102002 (2011)

Downloaded 28 Feb 2012 to 147.8.21.150. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3647582
http://dx.doi.org/10.1063/1.3647582
http://dx.doi.org/10.1063/1.3647582


results from the possible trapping of nano- or micro-bubbles

of gas in crevices of a rough surface. Either a low-density

region or a layer of gas pockets will appreciably lubricate

the flow owing to their much lower viscosity. Studies on

superhydrophobic slip flows abound in the literature; see

Rothstein5 for a most recent review on this topic.

While electrokinetics and hydrodynamics slip are indi-

vidually beneficial to microchannel flow, the aggregate

effects due to their combined action remain fraught with

questions. Churaev et al.6 experimentally observed the effect

of surface slippage on the zeta potential. In the Debye-

Hückel limit for low potential, they put forward a linear

expression for the corrected zeta potential fa=f¼ 1þ kj,

where fa and f are the apparent and true zeta potentials,

respectively, k is the slip length of the surface, and j�1 is the

Debye length that scales the thickness of the electric double

layer. Since the EDL is of the order of nanometers, even a

small slip length of the order of tens of nanometers can lead

to a significant enhancement in the zeta potential. The EOF

slip velocity, known as Helmholtz-Smoluchowski velocity,

is linearly proportional to the zeta potential and will there-

fore be enhanced accordingly. Nonlinear relationships for

the apparent potential, which work beyond the Debye-

Hückel limit, were later proposed by Joly et al.7 and Tandon

and Kirby.8

Using the Lorentz reciprocal theorem, Squires9 derived

a general expression for the electro-osmotic slip velocity, in

the thin double-layer limit, for a microscopically heterogene-

ous surface, where the zeta potential and slip length are

given functions of the microscales. His results indicate that

(i) the linear enhancement due to slip is only true when the

zeta potential is everywhere constant; (ii) electro-osmotic

flow over a surface with zero-potential and perfect-slip

regions shows no manifestation of the slip at all. In conclu-

sion, Squires remarked that electrokinetic effects over inho-

mogeneously slipping surfaces depend sensitively on the

microscopic nature of the surface phenomena.

Motivated by the findings of Squires,9 we aim to further

look into the problem of electrokinetic flow over an inhomo-

geneously slipping and charged surface by considering spe-

cifically the pattern of linear stripes aligned either parallel or

normal to the flow. We shall re-examine the two observa-

tions made by Squires9 mentioned above, while relaxing

some of the conditions imposed by him. In this work, we

shall first derive the Onsager constitutive equations govern-

ing the fluid and current fluxes as linear functions of the

hydrodynamic and electro-osmotic forcings that are in a

direction either parallel or perpendicular to the stripes.

Assuming low potentials, the linearized Poisson-Boltzmann

equation is used to describe the electric potential as a func-

tion of space subject to the periodic change in the zeta poten-

tial on the walls. The Boltzmann equation is not applicable

when the EDLs of the two walls overlap each other since the

conditions of zero electrical potential and ionic concentra-

tions equal to the bulk ionic concentration at a location far

away from the walls, which are required for the validity of

the Boltzmann equation, will not be satisfied for overlapped

EDL fields.10,11 Here, we assume that the electric double

layer is of a thickness equal to or smaller than the channel

height, and therefore only weakly or non-overlapped EDL

fields are considered. We also assume that the slipping

regions can have a finite or infinite slip length. We solve the

flow problems using the method of eigenfunction expan-

sions, where the coefficients are numerically determined by

the method of point collocation satisfying the mixed stick

and slip conditions on the walls.

The problem under consideration, i.e., electro-osmotic

(EO) flow over a striped superhydrophobic surface, has also

been studied by Bahga et al.,12 Zhao,13,14 and Belyaev and

Vinogradova.15 These studies have contributed significantly

to the understanding of the effects of an inhomogeneously

charged superhydrophobic surface on the EO flow. Relations

between EO mobility and hydrodynamic slip have been

developed by these authors, particularly for the limits of thin

and thick EDL. Conditions under which the EO flow is to be

enhanced by hydrodynamic slip are also discussed by these

authors. Nevertheless, some generalizations of the problem

are still wanting. Most of these studies are confined to flow

over a single surface or flow through a thick channel and

stripes which are perfect slipping. Here, we consider flow

through a channel of any height (subject to the constraint

that the EDLs are not overlapped), and stripes of arbitrary

slippage. Zhao14 has numerically demonstrated the applic-

ability of the Onsager relation for EO flow of arbitrary EDL

thickness over a superhydrophobic surface. Here, we can

prove it formally. Also, these studies have developed analyti-

cal expressions for the thin EDL limit, but the range of valid-

ity of these limiting expressions is yet to be ascertained.

These authors used the dual series to solve the mixed

boundary value problem. Here, we use the method of point

collocation, which is simpler to implement numerically than

the dual series. We shall show how our model can produce

the same theoretical expressions as those derived by these

authors9,12,14,15 when applied to some particular kinds of

slip-charge wall patterns. First, when the wall potential is

uniform, the effective hydrodynamic slip length can be

directly employed in the EO flow problem as if the wall

were homogeneously slipping. An important implication is

that the EO enhancement due to slip is linearly proportional

to the ratio of the effective slip length to the electric double

layer thickness. Second, when the slip regions are perfectly

slipping but uncharged, they will have no effect on the EO

flow under the condition of a very thin electric double layer.

Third, when the slip regions are partially slipping and

uncharged, the EO flow will always be inhibited by the

effective slip. However, this trend can be dramatically

reversed when the slipping regions become slightly charged.

In this paper, we put the emphasis also on how one should be

watchful on applying these theoretical limits. We demon-

strate our points with numerical results. First, one is cau-

tioned that when a surface is not 100% uniformly slipping

but has a small fraction of area being covered by interspersed

no-slip slots, the EO enhancement can be materially reduced.

Second, one is cautioned that unless the electric double layer

is extremely thin, at least three orders of magnitude thinner

than the pattern length, the slipping-uncharged regions will

indeed have finite effect (not enhancement, but diminishing)

on the EO flow. Further to these two points, we shall also
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examine in this paper how the present wall pattern may have

effect on the so-called figure of merit of the channel when it

is used for electrokinetic energy conversion.

II. FORMULATION

Consider Stokes flow of a fluid through a parallel-plate

channel, of which the walls are patterned with a periodic array

of alternate stick-slip stripes of different wall potentials.

As shown in Fig. 1, the two walls are located at y¼6h, where

h is half the channel height. The two walls have identical pat-

terns which are aligned in-phase with each other such that the

flow is symmetrical about the x-axis. One unit of the wall pat-

tern, which is of a period length 2L, consists of a slipping

stripe of width 2aL, slip length k, and wall potential fS and a

non-slipping stripe of width 2(1� a)L and wall potential fNS.

The number 0� a� 1 denotes the area fraction of the wall

which is slipping. The intrinsic or microscopic slip length is

allowed to vary in the range 0� k�1, where the two limit-

ing values k¼ 0 and k¼1 correspond to no-slip and perfect-

slip conditions, respectively. The pattern period length is

assumed to be comparable to the channel height, L� h.

On assuming low potentials and non-overlapped EDLs,

we invoke the Debye-Hückel approximation, by which the

Poisson-Boltzmann equation for the electric potential w(x, y)

due to the electric double layer is linearized to

r2w ¼ j2w; (1)

where r � @=@x; @=@yð Þ and j is the inverse of the Debye

length (a measure of the thickness of the electric double

layer) given by

j ¼ 2z2
0e2n0

�kBT

� �1=2

; (2)

where for a (z0:z0) symmetrical electrolyte, z0 is the valence

of the electrolyte, e is the elementary charge, n0 is the bulk

concentration of the ions at the neutral state, � is the dielec-

tric constant of the fluid, kB is the Boltzmann constant, and T
is the absolute temperature. The Debye-Hückel approxima-

tion is valid for z0ew=kBT � 1.

For the present problem, w is even in both x and y. The

solution to Eq. (1) is expressible by

wðx; yÞ ¼ A0

coshðjyÞ
coshðjhÞ þ

X1
n¼1

An cosðanxÞ coshðbnyÞ
coshðbnhÞ ; (3)

where an¼ np=L and b2
n ¼ a2

n þ j2. The coefficients A0;1;2���
are to be determined on applying the boundary condition

wðx; hÞ ¼ A0 þ
X1
n¼1

An cosðanxÞ ¼ fS in 0 < x < aL
fNS in aL < x < L

�
:

(4)

For this square-wave pattern, the Fourier series coefficients

are readily found to be

A0 ¼ afS þ ð1� aÞfNS; An ¼ 2ðfS � fNSÞ
sinðanaLÞ

anL
: (5)

The charge density qe(x, y) can then be found from the Pois-

son equation

qe ¼ ��r2w ¼ ��j2w: (6)

The electric potential w(x, y) described above is the

potential due to the electric double layer at the equilibrium

state. In the presence of an externally applied electric field
~Eext ¼ ðEx; 0;EzÞ, where Ex and Ez are constants, the total

potential is

wtotðx; y; zÞ ¼ wðx; yÞ � ðx; y; zÞ � ~Eext: (7)

Owing to the free charges in the fluid, a Lorentz body force

term qe
~E is added to the momentum equation, where qe is

the charge density given by Eq. (6), and

~E ¼ � @

@x
;
@

@y
;
@

@z

� �
wtot ¼ �

@

@x
;
@

@y
; 0

� �
wþ ~Eext (8)

is the total electric field strength. Let us consider flow driven

by pressure gradient and electric field which are in a direc-

tion either parallel or normal to the stripes. We consider only

low-Reynolds-number flows so that the inertia can be

ignored in the following analysis. We shall work only in the

low-Dukhin limit,16 where the applied electric and flow

fields do not disturb the EDL significantly from its equilib-

rium state. The Stokes equations are solved by the method of

FIG. 1. (Color online) Electrokinetic longitudinal or transverse flow through

a parallel-plate channel with walls which are patterned with a periodic array

of stripes. One unit of wall pattern consists of a non-slipping stripe of zeta

potential fNS, and a slipping stripe of slip length k and zeta potential fS. The

two walls are arranged in-phase with each other so that the flow is symmetri-

cal about the centerline of the channel. The x- and z-axes are respectively

normal and parallel to the stripes, while the y-axis is perpendicular to the

channel walls. The x-, y-, and z-velocity components are denoted by (u, v, w).

Longitudinal flow is unidirectional flow purely along the z-direction, and

transverse flow is two-dimensional flow in the (x, y) plane.
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eigenfunction expansion where the coefficients are deter-

mined by point-matching the mixed boundary conditions.

Similar solution techniques have been applied by Ng and co-

authors17–20 to Stokes flow through channels with superhy-

drophobic surfaces made up of alternating slipping stripes.

Before we proceed, let us introduce the following

normalization:

ðx̂; ŷ; ĥ; k̂Þ ¼ ðx; y; h; kÞ=L; ðân; b̂n; ĵÞ ¼ ðan; bn; jÞL;
ðÂ0; Ân; f̂SÞ ¼ ðA0;An; fSÞ=fNS;

)

(9)

by which

Â0 ¼ af̂S þ 1� a; Ân ¼ 2ðf̂S � 1Þ sinðânaÞ
ân

; ân ¼ np:

(10)

Equation (4) becomes

Â0 þ
X1
n¼1

Ân cosðânx̂Þ ¼ f̂S in 0 < x̂ < a
1 in a < x̂ < 1

�
; (11)

which will be used in our later derivations.

A. Longitudinal flow

For flow driven by a constant pressure gradient

Pz¼�dp=dz and a constant electric field strength
~Eext ¼ ð0; 0;EzÞ both purely in the z-direction (i.e., parallel

to the stripes), the flow is unidirectional along the z-direc-

tion, and the velocity w(x, y) is governed by

0 ¼ �Pz þ lr2wþ qeEz; (12)

where l is the dynamic viscosity of the fluid. By linearity,

we may decompose the velocity into components due solely

to either the pressure or the electric forcing: w¼wPOþwEO.

By convention, the two types of flow are termed Poiseuille

(PO) flow and electroosmotic (EO) flow, respectively. The

two forcings give rise to the following velocity components,

which are even in both x and y

wPOðx̂; ŷÞ ¼
ĥ2

2
1� ŷ2

ĥ2

� �
þ ĥd̂k

(

þ ĥ
X1
n¼1

Ĉn cosðânx̂Þ coshðânŷÞ
coshðânĥÞ

)
P�z ; (13)

wEOðx̂; ŷÞ¼� Â0

coshðĵŷÞ
coshðĵĥÞ

þ B̂0

(

þ
X1
n¼1

cosðânx̂Þ Ân
coshðb̂nŷÞ
coshðb̂nĥÞ

þ B̂n
coshðânŷÞ
coshðânĥÞ

" #)
E�z ;

(14)

where

P�z � �
L2

l
Pz and E�z � �

�fNS

l
Ez (15)

are the forcing parameters with dimensions of velocity, and

the hatted terms are dimensionless quantities defined in

Eq. (9). Note that we have expressed the results in such a

way that the forcings have the same dimensions as the

response, while the phenomenological coefficients are all

non-dimensional.

The parameter d̂k in Eq. (13) is the dimensionless (nor-

malized by L) effective or macroscopic hydrodynamic slip

length for flow parallel to the stripes. The coefficients d̂k, Ĉn,

B̂0, and B̂n are to be determined on applying the mixed-type

boundary condition

w ¼ �k̂@w=@ŷ in 0 < x̂ < a; ŷ ¼ ĥ
0 in a < x̂ < 1; ŷ ¼ ĥ

;

�
(16)

where k̂ is the dimensionless microscopic slip length of the

slipping stripes. Such a heterogeneous Navier’s slip bound-

ary condition has been used previously by, among others,

Squires,9 Bahga et al.,12 Zhao,14 and Belyaev and Vinogra-

dova15 for EO flow over a superhydrophobic surface. On

substituting the velocities in Eqs. (13) and (14) into the con-

dition above, the following equations are obtained:

XM

n¼1

cosðânx̂Þ � cosðânÞ þ ânk̂ cosðânx̂Þ tanhðânĥÞ
h i

Ĉn

¼ k̂ ð0 < x̂ < aÞ; (17)

XM

n¼1

cosðânx̂Þ � cosðânÞ½ 	Ĉn ¼ 0 ða < x̂ < 1Þ; (18)

d̂k ¼ �
XM
n¼1

cosðânÞĈn; (19)

XM

n¼1

cosðânx̂Þ � cosðânÞ þ ânk̂ cosðânx̂Þ tanhðânĥÞ
h i

B̂n

¼ �Â0ĵk̂ tanhðĵĥÞ �
XM

n¼1

Ân cosðânx̂Þ � cosðânÞ½

þ b̂nk̂ cosðânx̂Þ tanhðb̂nĥÞ
i
ð0 < x̂ < aÞ; (20)

XM

n¼1

cosðânx̂Þ � cosðânÞ½ 	B̂n ¼ 0 ða < x̂ < 1Þ; (21)

B̂0 ¼ �1�
XM

n¼1

cosðânÞB̂n; (22)

where we have truncated the series each to M terms. In the

sense of point collocation, we impose the two pairs of

Eqs. (17) and (18) and Eqs. (20) and (21) at M discrete points

evenly distributed in the domain 0 � x̂ < 1 while avoiding

the junction point x̂ ¼ a. This forms two M
M systems of

linear equations for the unknowns Ĉ1;���;M and B̂1;���;M, which

can be solved readily by a standard routine. The coefficients

d̂k and B̂0 are then found from Eqs. (19) and (22).

Taking average over a periodic unit of cross-sectional

area, we get the mean velocity for the longitudinal flow

102002-4 C.-O. Ng and H. C. W. Chu Phys. Fluids 23, 102002 (2011)

Downloaded 28 Feb 2012 to 147.8.21.150. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



�w ¼ L
k
11P�z þ L

k
12E�z ; (23)

where

L
k
11 ¼ ĥ2 1

3
þ

d̂k
ĥ

 !
; (24)

L
k
12 ¼ �Â0

tanhðĵĥÞ
ĵĥ

� B̂0 (25)

are dimensionless phenomenological coefficients known as

the hydrodynamic conductance and the streaming flow con-

ductance, respectively. The driving forces P�z and E�z are

defined in Eq. (15), where E�z is also known as the Helmholtz-

Smoluchowski velocity.

The electric current density arising from conduction and

convection is given by

Iz ¼ rEz þ qew; (26)

where r is the electric conductivity of the fluid. The electric

conductivity is a function of the charge density and therefore

a function of space. Its variation is, however, small under the

condition of low potentials.4 Here, for simplicity, we assume

that r is a constant. On substituting Eqs. (3), (13), and (14)

for qe¼��j2w and w¼wPOþwEO and taking average over

a unit sectional area, we get the following expression for the

mean current density:

�Iz ¼ L
k
21P��z þ L

k
22E��z ; (27)

where

P��z �
�fNS

l
Pz and E��z �

�2f2
NS

lL2
Ez (28)

are the forcing parameters with dimensions of current density.

Note that they are so defined that their ratio is equal to that of

those with dimensions of velocity: E��z =P��z ¼ E�z=P�z . The

dimensionless phenomenological coefficients are given by

L
k
21 ¼ Â0 ĵd̂k �

1

ĵĥ

� �
tanhðĵĥÞ þ 1

� �

þ 1

2

XM

n¼1

ÂnĈn b̂n tanhðb̂nĥÞ � ân tanhðânĥÞ
h i

; (29)

L
k
22¼ ĵ2r̂� ĵ2Â2

0

2
sech2ðĵĥÞþ tanhðĵĥÞ

ĵĥ

" #

� ĵÂ0B̂0

ĥ
tanhðĵĥÞ� ĵ2

4

XM

n¼1

Â2
n sech2ðb̂nĥÞþ tanhðb̂nĥÞ

b̂nĥ

" #

� 1

2ĥ

XM

n¼1

ÂnB̂n b̂n tanhðb̂nĥÞ� ân tanhðânĥÞ
h i

; (30)

where

r̂ ¼ lr

�2j2f2
NS

(31)

is the normalized electric conductivity. The coefficients L
k
21

and L
k
22 are respectively known as the streaming current con-

ductance and the electrical conductance. Equations (23) and

(27) are the Onsager relations for the flow and ionic fluxes

under longitudinal forcings. By reciprocity of the Onsager

relations, the non-conjugate coefficients are equal to each

other: L
k
12 ¼ L

k
21. A simple yet formal proof of this symmetry

is as follows. When normalized with respect to their respec-

tive forcings, the two velocity components are governed by,

from Eq. (12),

r2wEO þ qe ¼ 0; (32)

r2wPO þ 1 ¼ 0: (33)

On multiplying Eq. (32) by wPO, we get

wPOr2wEO þ qewPO ¼ 0

) r � wPOrwEO � wEOrwPOð Þ þ wEOr2wPO þ qewPO ¼ 0

) r � wPOrwEO � wEOrwPOð Þ � wEO þ qewPO ¼ 0;

(34)

where Eq. (33) is used in the last step. On integrating over a

unit sectional area, one finds that the integral of the diver-

gence term above will vanish. This is because, using Gauss’s

law, ð ð
X
r � wPOrwEO � wEOrwPOð ÞdA

¼
ð
@X

wPOrwEO � wEOrwPOð Þ �~ndS; (35)

where ~n is the unit outward normal to the boundary @X of

the unit sectional area X. Over the boundary where the con-

dition is no slip, wPO¼wEO¼ 0, the integrand of the line in-

tegral is zero. Over the boundary where the condition is

partial slip, wPO ¼ �krwPO �~n and wEO ¼ �krwEO �~n, the

integrand is also zero. Over the remaining boundary which is

periodic, the line integral will cancel to zero. Hence, the sec-

tional averaging of Eq. (34) will result in

�wEO ¼ qewPO; (36)

which serves as a proof to the equality L
k
12 ¼ L

k
21. We have

confirmed with numerical calculations that Eqs. (25) and

(29) will indeed produce the same values for the same

inputs.

Let us look into two cases in particular. First, consider

the case when the wall potential is uniform so that fNS¼ fS

or f̂S ¼ 1. It follows that Â0 ¼ 1 and Ân ¼ 0. It is immedi-

ately clear from Eqs. (17), (18), (20), and (21) that B̂n and Ĉn

are collinear vectors related by B̂n ¼ �ĵ tanhðĵĥÞĈn. Further

using Eqs. (19) and (22), we get B̂0 ¼ �ĵd̂k tanhðĵĥÞ � 1.

Substituting this into Eq. (25), we have the streaming flow

conductance be given by

L
k
12 ¼ 1þ ĵd̂k tanhðĵĥÞ � tanhðĵĥÞ

ĵĥ
for f̂S ¼ 1: (37)
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In terms of dimensional quantities, the mean EOF velocity is

given by

�wEO ¼ 1þ jdk tanhðjhÞ � tanhðjhÞ
jh

� �
� �f

l
Ez

� �
for

fNS ¼ fS ¼ f: (38)

Note that the EO flow is enhanced by the slip through the

term jdk tanh jhð Þ, which is linearly proportional to the

effective slip length dk. A limiting case of this result has

been derived previously by Squires,9 whose formula, valid

for a thin EDL, reads as follows:

UEOF ¼ � �fE

l
� Iþ jbEð Þ for uniform zeta potential f;

(39)

where UEOF is the effective EO flow velocity over a surface

with an arbitrary distribution of microscopic slip, E is the

electric field vector, I is the identity tensor, and bE is the

effective slip length tensor. This result led Squires to remark

that EOF with a constant wall potential over an arbitrarily

slipping surface is enhanced by precisely the same amount as

would be found by naively assuming the effective slip length

to apply homogeneously. We have here obtained a more gen-

eral expression, and Squires’ remark still holds. The effective

slip length that has been found in the hydrodynamic problem

can be used directly in the electrokinetic problem as if the slip

were homogeneous (i.e., with a constant microscopic slip

length equal to the macroscopic effective slip length), as long

as the wall potential is constant. Squires9 made the following

assumptions in his proof: a very thick channel ĥ� 1, and an

extremely thin electric double layer ĵ� 1. Equation (38) is a

more general result as it holds even for finite values of ĥ and

ĵ (i.e., arbitrary channel height and EDL thickness as long as

the EDLs are not strongly overlapped). For longitudinal flow

through a thick channel with perfect slip stripes, the formula

by Philip21 can be used

dk ¼
2L

p
ln sec

pa

2

� �h i
for k̂ ¼ 1; ĥ� 1: (40)

When the stripes are partial slipping, one may use the ap-

proximate formula derived by Belyaev and Vinogradova22

dk ’
2L

p
ln sec

pa

2

� �h i
1þ 2L

pk
ln sec

pa

2

� �
þ tan

pa

2

� �h i for any k̂; and ĥ� 1:

(41)

In this work, finite channel height is considered, and the

effective slip length d̂k is to be computed numerically as

mentioned above. Further, for a very thin electric double

layer, the EOF velocity in Eq. (38) reduces to

�wEO � ð1þ jdkÞ �
�f
l

Ez

� �
for jh� 1; (42)

which matches the longitudinal component of Eq. (39)

derived by Squires.9 Hence, in this thin EDL limit, the EOF

is enhanced by a factor equal to the ratio of the effective slip

length to the Debye length. Such a linear factor of EOF

enhancement due to boundary slip was first proposed by

Churaev et al.,6 and later verified with molecular dynamics

simulations by Joly et al.23 By this factor, slip lengths in the

nano- to micrometer range can result in a very large

enhancement, as much as two orders of magnitude, owing to

the much thinner electric double layer.24 Such an enhance-

ment was measured by Bouzigues et al.25 Any measurement

of the zeta potential in the presence of slip will lead to an

apparent zeta potential that is larger than the true one by the

enhancement factor 1þjd. We caution that one should be

mindful of the sensitivity of this result near the limit a¼ 1.

We shall show in Sec. III, with numerical results, how the

slip-induced EOF enhancement will vary as a function of the

area function a.

Second, let us consider, for any values of the wall

potentials, the limiting condition of a very thin EDL,

ĵ� 1, such that ĵĥ� 1 and b̂n � ĵ. From Eq. (11), we

get
PM

n¼1 Ân cosðânx̂Þ ¼ f̂S � Â0 where 0 < x̂ < a, andPM
n¼1 Ân cosðânÞ ¼ 1� Â0. Under this limiting condition,

the right-hand side of Eq. (20) can be simplified to

RHSð20Þ ¼ �Â0ĵk̂ tanhðĵĥÞ�
XM

n¼1

Ân cosðânx̂Þ

þ
XM

n¼1

Ân cosðânÞ

�
XM

n¼1

Ânb̂nk̂cosðânx̂Þ tanhðb̂nĥÞ ð0< x̂< aÞ

� 1� f̂Sð1þ ĵk̂Þ when ĵ� 1: (43)

Since this right-hand side has become a constant independent

of x̂, then from Eqs. (17), (18), (20), and (21) we see that B̂n

and Ĉn are nearly collinear vectors, related by

B̂n � ½1� f̂Sð1þ ĵk̂Þ	Ĉn=k̂. It follows from Eqs. (19), (22),

and (25) that

L
k
12 � �B̂0 � 1þ

d̂k

k̂
½f̂Sð1þ ĵk̂Þ � 1	 for ĵ� 1; (44)

which agrees with the expression for EO mobility recently

obtained by Belyaev and Vinogradova,15 who considered EO

flow over a surface in a thick channel with stripes of partial

slip. Here, we have shown that the same expression holds

even for a channel of finite height, where the channel height

will affect the effective slip length d̂k.
Some particular cases readily follow from Eq. (44). For

equal wall potentials f̂S ¼ 1, we get L
k
12 � 1þ ĵd̂k, which

recovers Eq. (42). For perfect-slip stripes k̂ ¼ 1, we get

L
k
12 � 1þ f̂Sĵd̂k as has been previously deduced by Squires9

and Bahga et al.12 (see also Vinogradova and Belyaev,26

who have corrected some erroneous expressions given in

Bahga et al.12). If the perfect-slipping region is uncharged,

f̂S ¼ 0, the result further reduces to L
k
12 � 1. In other words,
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in this limiting case, the EOF velocity is simply equal to the

Helmholtz-Smoluchowski velocity without seeing any slip

effect on it

�wEO ¼ �
�fNS

l
Ez for f̂S ¼ 0; k̂ ¼ 1; ĵ� 1: (45)

This interesting result was first pointed out by Squires,9

whose formula, valid for a thin EDL, reads as follows:

UEOF ¼ � �fNSE

l
for uncharged slipping regions fS ¼ 0:

(46)

This result led Squires to remark that surfaces with

uncharged perfect-slipping regions will give rise to no

enhancement due to the slip, instead giving precisely the

same EOF as if the surface were non-slipping and homoge-

neously charged. This phenomenon, confirmed by molecu-

lar dynamics simulations by Huang et al.,27 can be

reasoned easily. Under the condition jh� 1, the EOF is a

plug flow with the velocity equal to the Helmholtz-

Smoluchowski velocity. The plug flow, which itself is

unsheared, will experience neither retardation nor forcing

from the perfect-slip and uncharged regions of the wall. As

a result, the hydrodynamic slip loses influence as the flow

already attains perfect EO slip. We caution that the limiting

results in Eqs. (44) and (45) are valid only for very large ĵ.

The range of validity of these limiting relations will be

examined in Sec. III.

B. Transverse flow

We next consider flow that is driven by a constant pres-

sure gradient Px¼�dp=dx and a constant electric field

strength ~Eext ¼ ðEx; 0; 0Þ both purely in the x-direction (i.e.,

perpendicular to the stripes), the flow is two-dimensional in

the (x, y) plane, and the velocity ~u � ðuðx; yÞ; vðx; yÞÞ is gov-

erned by

r �~u ¼ 0; (47)

0 ¼ �ðPx; 0Þ � rpþ lr2~uþ qe
~E; (48)

where p(x, y) is the locally induced pressure, and the electric

field strength is ~E ¼ �rwþ ðEx; 0Þ in which w is the elec-

tric double-layer potential given in Eq. (3). The primitive

variables (u, v, p) are periodic functions of x as a result of

the periodic stick-slip boundary conditions. By symmetry or

anti-symmetry of the flow field, u is even in both x and y, v is

odd in both x and y, and p is odd in x but even in y.

Let us decompose the flow into the pressure-driven or

Poiseuille (PO) and the electro-osmotic (EO) components:

~u ¼ ~uPO þ~uEO. The corresponding momentum equations are

0 ¼ �ðPx; 0Þ � rpPO þ lr2~uPO; (49)

and

0 ¼ �rpEO þ lr2~uEO þ qe
~E: (50)

The hydrodynamic velocity components ~uPO ¼ ðuPO; vPOÞ
are readily found to be

uPOðx̂; ŷÞ ¼
ĥ2

2
1� ŷ2

ĥ2

� �
þ ĥd̂? þ ĥ

X1
n¼1

D̂n
cosðânx̂Þ

coshðânĥÞ

(

 coshðânŷÞ � tanhðânĥÞ

ânĥ
coshðânŷÞ þ ânŷ sinhðânŷÞ½ 	

" #)
P�x ; (51)

vPOðx̂; ŷÞ ¼ ĥ
X1
n¼1

D̂n
sinðânx̂Þ

coshðânĥÞ

 sinhðânŷÞ � tanhðânĥÞ ŷ

ĥ

� �
coshðânŷÞ

� �( )
P�x ; (52)

where d̂? is the dimensionless effective hydrodynamic slip length for flow perpendicular to the stripes on the wall and

P�x � � L2=lð ÞPx is the pressure forcing parameter with dimensions of velocity.

For the EOF, after substituting for qe and ~E, Eq. (50) can be written as

0 ¼ �rp0EO þ lr2~uEO � �j2wðEx; 0Þ; (53)

where p0EO ¼ pEO � �j2w2=2 is the effective pressure (i.e., electrostatic pressure being subtracted from the total pressure) of

the EOF. After some algebra solving for the particular solution, the velocity components ~uEO ¼ ðuEO; vEOÞ satisfying continu-

ity and zero normal flux on the walls are found to be

uEOðx̂; ŷÞ ¼ � Â0

coshðĵŷÞ
coshðĵĥÞ

þ F̂0

(
þ
X1
n¼1

Ân
cosðânx̂Þ

1� â2
n=b̂

2
n

� � coshðb̂nŷÞ
coshðb̂nĥÞ

� ân

b̂n

tanhðb̂nĥÞ
coshðânĥÞ

"

 coshðânŷÞ

ânĥ
þ ŷ

ĥ
sinhðânŷÞ

� ��

þ
X1
n¼1

F̂n
cosðânx̂Þ

coshðânĥÞ
coshðânŷÞ � tanhðânĥÞ

ânĥ

"

 coshðânŷÞ þ ânŷ sinhðânŷÞ½ 	

#)
E�x ; (54)
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vEOðx̂; ŷÞ ¼ �
X1
n¼1

Ân
ân sinðânx̂Þ

b̂n 1� â2
n=b̂

2
n

� � sinhðb̂nŷÞ
coshðb̂nĥÞ

� tanhðb̂nĥÞ
coshðânĥÞ

ŷ

ĥ

� �
coshðânŷÞ

" #8<
:

þ
X1
n¼1

F̂n
sinðânx̂Þ

coshðânĥÞ
sinhðânŷÞ � tanhðânĥÞ ŷ

ĥ

� �
coshðânŷÞ

� �)
E�x ; (55)

where Â0, Ân are given in Eq. (10) and E�x � � �fNS=lð ÞEx is the electric forcing parameter with dimensions of velocity.

Again, we have expressed the results in such a way that the forcings have the same dimensions as the response, while the

coefficients are all non-dimensional. In the solutions above, the coefficients d̂?, D̂n, F̂0, and F̂n are to be determined on apply-

ing the stick-slip boundary condition

u ¼ �k̂@u=@ŷ in 0 < x̂ < a; ŷ ¼ ĥ
0 in a < x̂ < 1; ŷ ¼ ĥ

:

�
(56)

On substituting the velocities in Eqs. (51) and (54) into the condition above, the following equations are obtained

XM

n¼1

cosðânx̂Þ � cosðânÞ½ 	 sech2ðânĥÞ � tanhðânĥÞ
ânĥ

" #(
� 2k̂

ĥ

 !
cosðânx̂Þ tanh2ðânĥÞ

)
D̂n ¼ k̂ ð0 < x̂ < aÞ; (57)

XM
n¼1

cosðânx̂Þ � cosðânÞ½ 	 sech2ðânĥÞ � tanhðânĥÞ
ânĥ

" #( )
D̂n ¼ 0 ða < x̂ < 1Þ; (58)

d̂? ¼ �
XM

n¼1

cosðânÞ sech2ðânĥÞ � tanhðânĥÞ
ânĥ

" #
D̂n; (59)

XM

n¼1

cosðânx̂Þ � cosðânÞ½ 	 sech2ðânĥÞ � tanhðânĥÞ
ânĥ

" #(
� 2k̂

ĥ

 !
cosðânx̂Þ tanh2ðânĥÞ

)
F̂n

¼ �Â0ĵk̂ tanhðĵĥÞ �
XM

n¼1

Ân

ð1� â2
n=b̂

2
nÞ

 cosðânx̂Þ � cosðânÞ½ 	 1� tanhðb̂nĥÞ

b̂nĥ
� ân

b̂n

tanhðb̂nĥÞ tanhðânĥÞ
" #(

þ b̂nk̂ cosðânx̂Þ tanhðb̂nĥÞ 1� 2
ân

b̂n

tanhðânĥÞ
b̂nĥ

� â2
n

b̂2
n

" #)
ð0 < x̂ < aÞ; (60)

XM

n¼1

("
cosðânx̂Þ � cosðânÞ

#"
sech2ðânĥÞ � tanhðânĥÞ

ânĥ

#)
F̂n ¼ �

XM

n¼1

Ân

ð1� â2
n=b̂

2
nÞ

(
½cosðânx̂Þ � cosðânÞ	

"
1� tanhðb̂nĥÞ

b̂nĥ

� ân

b̂n

tanhðb̂nĥÞ tanhðânĥÞ
#)

ða < x̂ < 1Þ; (61)

F̂0 ¼ �
XM

n¼1

cosðânÞ sech2ðânĥÞ � tanhðânĥÞ
ânĥ

" #
F̂n � Â0 �

XM

n¼1

Ân cosðânÞ
ð1� â2

n=b̂
2
nÞ

1� tanhðb̂nĥÞ
b̂nĥ

� ân

b̂n

tanhðb̂nĥÞ tanhðânĥÞ
" #

; (62)

where we have truncated the series each to M terms. Again,

by the method of point collocation, we impose the two pairs

of Eqs. (57) and (58) and Eqs. (60) and (61) at M discrete

points evenly distributed in the domain 0 � x̂ < 1 while

avoiding the junction point x̂ ¼ a. This forms two M
M sys-

tems of linear equations for the unknowns D̂1;���;M and F̂1;���;M,

which can be solved readily by a standard routine. The coeffi-

cients d̂? and F̂0 are then found from Eqs. (59) and (62).

On averaging across the channel height, we get the

mean velocity for the transverse flow
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�u ¼ L?11P�x þ L?12E�x ; (63)

where

L?11 ¼ ĥ2 1

3
þ d̂?

ĥ

 !
; (64)

L?12 ¼ �Â0

tanhðĵĥÞ
ĵĥ

� F̂0 (65)

are, respectively, the hydrodynamic conductance and the

streaming flow conductance, both dimensionless. The driv-

ing forces are P�x � � L2=lð ÞPx and E�x � � �fNS=lð ÞEx,

which have dimensions of velocity. The parameter E�x is the

Helmholtz-Smoluchowski velocity.

The axial electric current density is given by

Ix ¼ rEx þ qeu; (66)

where r is the electric conductivity of the fluid. On substi-

tuting Eqs. (3), (51), and (54) for qe ¼ ��j2w and

u¼ uPOþ uEO, and taking average over one periodic unit

volume that spans in both streamwise and lateral directions

of the channel, we get the following expression for the mean

axial current density:

�Ix ¼ L?21P��x þ L?22E��x ; (67)

where P��x � �fNS=lð ÞPx, E��x � �2f2
NS=lL2

	 

Ex are the

hydrodynamic and electric forcing parameters with dimen-

sions of current density. The streaming current conductance

and the electrical conductance, both dimensionless, are

respectively given by

L?21 ¼ Â0 ĵd̂? �
1

ĵĥ

� �
tanhðĵĥÞ þ 1

� �
þ 1

2

XM

n¼1

ÂnD̂n 
 1� tanhðânĥÞ
ânĥ

 !
b̂n tanhðb̂nĥÞ � ân tanhðânĥÞ
h i(

� tanhðânĥÞ 2ânb̂n tanhðb̂nĥÞ � ðb̂2
n þ â2

nÞ tanhðânĥÞ
ĵ2ĥ

"
þ b̂n tanhðb̂nĥÞ tanhðânĥÞ � ân

#)
; (68)

L?22 ¼ ĵ2r̂� ĵ2Â2
0

2
sech2ðĵĥÞ þ tanhðĵĥÞ

ĵĥ

" #
� ĵÂ0F̂0

ĥ
tanhðĵĥÞ � ĵ2

4

XM
n¼1

Â2
n

ð1� â2
n=b̂

2
nÞ

sech2ðb̂nĥÞ þ tanhðb̂nĥÞ
b̂nĥ

� 2
ân

b̂n

tanhðb̂nĥÞ
(


 b̂n tanhðb̂nĥÞ � ân tanhðânĥÞ
ânĵ2ĥ2

þ 2ânb̂n tanhðb̂nĥÞ � ðb̂2
n þ â2

nÞ tanhðânĥÞ
ĵ4ĥ2

"
þ b̂n tanhðb̂nĥÞ tanhðânĥÞ � ân

ĵ2ĥ

#)

� 1

2ĥ

XM

n¼1

ÂnF̂n 
 1� tanhðânĥÞ
ânĥ

 !
b̂n tanhðb̂nĥÞ � ân tanhðânĥÞ
h i(

� tanhðânĥÞ 2ânb̂n tanhðb̂nĥÞ � ðb̂2
n þ â2

nÞ tanhðânĥÞ
ĵ2ĥ

"
þ b̂n tanhðb̂nĥÞ tanhðânĥÞ � ân

#)
; (69)

where r̂ is the normalized electric conductivity defined in

Eq. (31). Equations (63) and (67) are the Onsager relations

for the flow and ionic fluxes under transverse forcings.

Again, by reciprocity, the non-conjugate coefficients are

equal to each other: L?12 ¼ L?21. The proof of this symmetry

(not given here) can be performed in a manner similar to that

we have presented earlier for the longitudinal flow. The

equality of these coefficients by Eqs. (65) and (68) has also

been checked numerically.

Also, for the particular cases that we have looked into

for the longitudinal flow, exactly analogous results can be

deduced for the transverse flow. Without repeating essen-

tially the same details, let us state the results as follows.

First, consider the special case when the wall potential is uni-

form so that fNS¼ fS or f̂S ¼ 1. The streaming flow conduct-

ance is found to be given by

L?12 ¼ 1þ ĵd̂? tanhðĵĥÞ � tanhðĵĥÞ
ĵĥ

for f̂S ¼ 1: (70)

In terms of dimensional quantities, the mean EOF velocity is

given by

�uEO ¼ 1þ jd? tanhðjhÞ � tanhðjhÞ
jh

� �


 � �f
l

Ex

� �
for fNS ¼ fS ¼ f: (71)

The EOF is enhanced by the slip through the term

jd? tanh jhð Þ, which is linearly proportional to the effective

slip length d?. For transverse flow over perfect-slip slots, the

effective slip length is obtainable from Philip21
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d? ¼
L

p
ln sec

pa

2

� �h i
for k ¼ 1; ĥ� 1: (72)

When the stripes are partial slipping, one may use the ap-

proximate formula derived by Belyaev and Vinogradova22

d? ’
L

p
ln sec

pa

2

� �h i
1þ L

pk
ln sec

pa

2

� �
þ tan

pa

2

� �h i for any k̂; and ĥ� 1:

(73)

Further, for a very thin electric double layer, the EOF veloc-

ity in Eq. (71) reduces to

�uEO ¼ ð1þ jd?Þ �
�f
l

Ex

� �
for jh� 1; (74)

which matches the transverse component of Eq. (39) derived

by Squires.9 Hence, in this limit, the EOF is enhanced by a

factor equal to the effective slip length divided by the Debye

length. Our remarks made earlier for the longitudinal flow

apply to the transverse flow as well.

Second, consider the limiting case of a very thin EDL,

ĵ� 1, such that b̂n � ĵ. Under this limiting condition, the

streaming conductance in Eq. (65) approximates to

L?12 � 1þ d̂?

k̂
f̂Sð1þ ĵk̂Þ � 1
h i

for ĵ� 1: (75)

If the slip surface is perfectly slipping but uncharged, k̂ ¼ 1
and f̂S ¼ 0, the result further reduces to L?12 � 1. In other

words, in this limiting case, the EOF velocity is simply equal

to the Helmholtz-Smoluchowski velocity without subject to

any slip effect

�uEO ¼ �
�fNS

l
Ex for fS ¼ 0; k̂ ¼ 1; ĵ� 1: (76)

Again, like the longitudinal flow, the transverse EO plug

flow is not affected by the uncharged perfect-slipping

regions. The remarks made earlier for the longitudinal flow

also apply to the transverse flow.

In summary, analogous expressions are obtainable for the

macroscopic flow behaviors when the flow is in a principal

direction either longitudinal or transverse to the wall pattern.

III. RESULTS AND DISCUSSIONS

The input parameters for the computations are the fol-

lowing: the slipping area fraction of the wall a, the channel

half-height ĥ, the Debye parameter (or the inverse of the

Debye length) ĵ, the intrinsic or microscopic slip length k̂,

the zeta potential of the slipping region f̂S, and the normal-

ized electric conductivity r̂. The coefficients are numerically

calculated using Fortran programs, where standard subrou-

tines are called for solving the M
M systems of equations

deduced above. Convergence of the solution is ensured by

using a sufficiently large number (M
 300) of collocation

points to be evenly distributed in the domain 0 < x̂ < 1.

For applicability of the Boltzmann equation, the EDLs of

the two walls should not strongly overlap with each other.

Therefore, in the following discussions, we shall limit our-

selves to an electric double layer that is of a thickness compa-

rable to or smaller than the channel height or ĵĥ 
 Oð1Þ. Very

small ĵ or thick EDL is excluded in our discussions below.

Let us revisit the kinds of patterns that we have examined

in particular in the preceding sections. First, consider the case

when the wall is inhomogeneously slipping, but the potential

is uniform so that fNS¼ fS or f̂S ¼ 1. In this case, the stream-

ing conductance is given by Eq. (37) for longitudinal flow and

Eq. (70) for transverse flow. In Figs. 2(a) and 2(c), we show

FIG. 2. The longitudinal and transverse

streaming conductance, L
k
12 and L?12, as

functions of the Debye parameter ĵ and

the slipping area of fraction a, where the

half channel height ĥ ¼ 0:5, intrinsic

slip length k̂ ¼ 1, and wall potential

f̂S ¼ 1. The two insets show the effec-

tive slip lengths, d̂k and d̂?, as functions

of a.
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L
k
12 and L?12 as functions of ĵ and a, where ĥ ¼ 0:5, f̂S ¼ 1,

and k̂ ¼ 1. As ĵ increases, the streaming conductance is

upper-bounded by the limit of unity in the absence of wall

slippage but can increase without bound and almost linearly

with ĵ in the presence of effective slip, where the rate of

increase is larger for larger a. As noted earlier, for ĵ� 1, the

EO flow is enhanced by a factor equal to the effective slip

length divided by the Debye length, which can be very large

when the electric double layer is much thinner than the slip

length. Here, we see that when the wall is uniformly slipping

(i.e., a¼ 1 and d̂ ¼ k̂), the slip-induced EOF enhancement is

indeed large, as given by ĵk̂. However, when part of the wall

becomes non-slipping (i.e., a< 1), the EOF enhancement can

be substantially reduced. It is remarkable that even a very tiny

area fraction of the wall becoming non-slipping will materi-

ally reduce the effective slip length. There is a sharp decrease

of d̂ as the slipping area fraction a slightly drops below unity;

see the insets in Figs. 2(b) and 2(d). This can be confirmed

mathematically from Eqs. (41) and (73) for the case of a thick

channel. From these equations, one can find that the two effec-

tive slip lengths tend to the microscopic slip length k̂, while

their rate of change with a is asymptotically scaled by

(1� a)�1, which is very large, as a approaches unity

d̂k;? ! k̂ as a! 1�; (77)

dd̂k
da
!

2

pð1� aÞ
2

pk̂
ln

4=p
1� a

� �
þ 1

� �

�

4

p2k̂ð1� aÞ
ln

2=p
1� a

� �
2

pk̂
ln

4=p
1� a

� �
þ 1

� �2
as a! 1�; (78)

dd̂?
da
!

1

pð1� aÞ
1

pk̂
ln

4=p
1� a

� �
þ 1

� �

�

1

p2k̂ð1� aÞ
ln

2=p
1� a

� �

1

pk̂
ln

4=p
1� a

� �
þ 1

� �2
as a! 1�: (79)

Hence, the very large rate of change will cause the effective

slip lengths to drop significantly as the slipping area fraction

drops slightly from unity. Consequently, there is a corre-

sponding sharp decrease of the EOF enhancement when the

wall condition deviates slightly from 100% slipping; see

Figs. 2(b) and 2(d). At ĵ ¼ 50, the longitudinal streaming

conductance L
k
12 drops by 28% when a barely decreases

from unity to 0.99. The transverse streaming conductance

L?12 drops by an even larger amount of 44% for the same

minute change of a. Our conclusion here is that the slip-

induced EOF enhancement (which is also interpreted as slip-

enhanced apparent zeta potential) can be dramatically

reduced by a small fraction (as small as 1%) of the wall

being covered by periodically distributed non-slipping

stripes. Should just a small fraction of a slipping surface be

contaminated by non-slipping slots, the mistake will be large

if one ignores such sensitivity and estimates the EO flow

based on the assumption that the wall slippage is perfectly

uniform. Estimation based on small perturbations does not

work at the limit a¼ 1. Also note that because of the aniso-

tropic effective slip d̂k > d̂?, the EO flow enhancement due

to the hydrodynamic slip is always larger in the longitudinal

direction than in the transverse direction, L
k
12 > L?12, for fixed

ĵ and 0< a< 1.

Second, we examine the case when alternate stripes are

perfectly slipping but uncharged: k̂ ¼ 1 and f̂S ¼ 0, and

when the electric double layer is extremely thin: ĵ� 1. A

formal proof of Squires9 has led him to conclude that this

kind of surface (uncharged where it is perfectly slipping, and

charged where it is non-slipping) will not give rise to any

EO flow enhancement due to the slip, instead giving pre-

cisely the same EO flow as if the surface were completely

non-slipping and homogeneously charged. Let us now look

into the range of validity of this theoretical limit. In

Figs. 3(a) and 3(c), we show L
k
12 and L?12 as functions of ĵ

and a, where ĥ ¼ 0:5, f̂S ¼ 0 and k̂ ¼ 1. Indeed, for very

large Debye parameter ĵ > Oð103Þ, either coefficient will

tend to unity for any slipping area fraction 0� a< 1. In other

words, for extremely thin electric double layers, the perfect-

slipping-uncharged regions will indeed have negligible effect

on the EO flow, which is then approximately given by the

Helmholtz-Smoluchowski limit. However, for order unity to

moderately large Debye parameter ĵ ¼ Oð1� 103Þ, it is

clear from the figures that the perfect-slipping-uncharged

regions can have finite effects on the EO flow. The effect is,

however, not enhancement, but inhibition of the EO flow.

The flow is reduced because of decrease in the charged wall

area, which outweighs any enhancement due to increase in

the slipping wall area. The effect is larger for larger a at a

fixed value of ĵ. Figures 3(b) and 3(d) show how the two

coefficients L
k
12 and L?12 will decrease with increasing a for

ĵ ¼ 1000; 50. At ĵ ¼ 1000, the coefficients remain close to

unity until a becomes larger than 0.9. The coefficients drop

abruptly toward zero on approaching the limit of a com-

pletely uncharged wall, a¼ 1. For a smaller ĵ ¼ 50, the

coefficients deviate from the non-slipping limit at a larger

rate with increasing a. When a increases to 0.9, the longitu-

dinal coefficient L
k
12 drops by 20%, while the transverse

coefficient L?12 drops by a larger amount of 30%. Hence, the

flow is more affected when it is normal to the stripes. Our

conclusion here is that slipping-uncharged regions on a sur-

face will have practically no effect on the EO flow only

when the normalized Debye parameter is very large,

ĵ > Oð103Þ. When ĵ is only moderately large, the decreas-

ing effect due to the slipping-uncharged regions should not

be neglected.

We further examine uncharged stripes, f̂S ¼ 0, but with

a finite slip length, k̂ ¼ 1. From Eqs. (44) and (75), the thin

EDL limit is

L
k;?
12 � 1�

d̂k;?

k̂
for ĵ� 1: (80)
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Let us also look into the range of validity of this theoreti-

cal limit. In Figs. 4(a) and 4(b), we show L
k
12 and L?12 as

functions of ĵ and a, where ĥ ¼ 0:5, f̂S ¼ 0, and k̂ ¼ 1.

Here, we see that when the partial-slipping regions are

uncharged, the EO flow is always inhibited by the pres-

ence of these slipping regions, as has been pointed out by

Belyaev and Vinogradova.15 Again, it requires the Debye

parameter to be as large as ĵ > Oð103Þ for the coefficients

to get close to the upper limit given by Eq. (80). The thin

EDL limit should not be used for ĵ < 103, especially for

the transverse case. Note that Fig. 4 shows a case of ani-

sotropy that is in contrast to common expectations.15 The

transverse coefficient is larger than the longitudinal coeffi-

cient: L?12 > L
k
12, as a result of the fact that d̂k > d̂? for

0< a< 1.

We next examine the case when the stripes are perfectly

slipping, k̂ ¼ 1, but are very weakly charged, f̂S ¼ 0:01. In

this case, the thin EDL limit is

L
k;?
12 � 1þ f̂Sĵd̂k;? for ĵ� 1: (81)

Figures 5(a) and 5(b) show L
k
12 and L?12 as functions of ĵ and

a, where ĥ ¼ 0:5, f̂S ¼ 0:01, and k̂ ¼ 1. The weak surface

potential of the slipping regions will have negligible effect

on the coefficients for sufficiently low ĵ such that

f̂Sĵ � Oð1Þ, where the EO flow is retarded by the hydrody-

namic slip. The trend will dramatically change when the

Debye parameter becomes sufficiently large, say

f̂Sĵ > Oð1Þ, for which the EO flow will be significantly

enhanced by the presence of the slipping regions with even a

very small surface potential. Here, the anisotropy is as usual:

L
k
12 > L?12 for fixed ĵ and 0< a< 1.

Finally, let us examine how the present stick-slip wall

pattern may affect electrokinetic energy conversion. Mechani-

cal energy can be converted into electrical energy in a micro-

channel when streaming potential and streaming current are

generated under an applied pressure difference between the

ends of the channel.28 The conversion efficiency at the maxi-

mum generation power is given by Xuan and Li28 to be

gmaxW¼ Z=[2(2� Z)], where Z in the present notation is

Z ¼ L12L21

L11L22

; (82)

FIG. 3. (Color online) The longitudinal

and transverse streaming conductance,

L
k
12 and L?12, as functions of the Debye

parameter ĵ and the slipping area of

fraction a, where the half channel height

ĥ ¼ 0:5, intrinsic slip length k̂ ¼ 1, and

wall potential f̂S ¼ 0.

FIG. 4. (Color online) The longitudinal

and transverse streaming conductance,

L
k
12 and L?12, as functions of the Debye

parameter ĵ and the slipping area of

fraction a, where the half channel height

ĥ ¼ 0:5, intrinsic slip length k̂ ¼ 1, and

wall potential f̂S ¼ 0. The dashes are the

thin EDL limits for ĵ� 1 given by

Eq. (80).
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which is called the figure of merit of the device. Obviously,

the efficiency increases monotonically with Z, and therefore

it is desirable to achieve as large the figure of merit as possi-

ble. Some recent studies have shown that electrokinetic

energy conversion can achieve a higher efficiency under the

effect of wall slip.29,30 Let us find out how the figure of merit

will be affected by the wall pattern under consideration. In

Figs. 6(a) and 6(c), we show Zk and Z? as functions of ĵ and

a, where ĥ ¼ 0:5, f̂S ¼ 1, k̂ ¼ 1, and r̂ ¼ 0:5. Our observa-

tions are as follows. First, the figure of merit is clearly

enhanced by wall slip. The larger the slipping area fraction

a, the larger the figure of merit Z. Also, for given a, the fig-

ure of merit will attain a maximum value at a particular

value of ĵ, which varies depending on ĥ and r̂. Near the

peak, the enhancement due to slip is more than a factor of 2

between the limiting cases a¼ 1 and a¼ 0. Our results are

qualitatively consistent with the results reported previously

by Davidson and Xuan.29 Second, in the absence of wall

slip, the figure of merit drops to practically zero at ĵ� 1.

With wall slip, the figure of merit maintains a positive finite

value even when ĵ becomes large. Third, as shown in

Figs. 6(b) and 6(d), for any given 0< a< 1, the figure of

merit is larger when the flow is longitudinal than when it is

transverse. Hence, it is more advantageous to orient the flow

along the stripes for a better energy conversion efficiency.

Fourth, we see again the sharp decline of the quantities as a
drops slightly from unity. The extent of sharp decline is

larger for transverse flow than longitudinal flow. One has to

be cautious about this sensitivity on estimating the enhance-

ment effect due to slip on the figure of merit.

IV. CONCLUDING REMARKS

In this paper, we have deduced the Onsager relations for

electroosmotic (EO) flow through a parallel-plate channel, of

which the walls are patterned with periodic stripes of alter-

nating slip lengths (0, k) and alternating zeta potentials

(fNS, fS). Our model is more general than existing ones in

the literature as it can handle finite channel height, arbitrary

electric double layer thickness, and also partial slip length

FIG. 6. The longitudinal and transverse

figures of merit, Zk and Z?, as functions

of the Debye parameter ĵ and the slip-

ping area of fraction a, where the half

channel height ĥ ¼ 0:5, intrinsic slip

length k̂ ¼ 1, and wall potential f̂S ¼ 1.

FIG. 5. (Color online) The longitudinal

and transverse streaming conductance,

L
k
12 and L?12, as functions of the Debye

parameter ĵ and the slipping area of

fraction a, where the half channel height

ĥ ¼ 0:5, intrinsic slip length k̂ ¼ 1, and

wall potential f̂S ¼ 0:01. Note that the

curves tend to the thin EDL limits for

ĵ� 1 given by Eq. (81).
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0� k�1. Flows in the principal directions, i.e., parallel

and normal to the stripes, have been considered. Flow that is

oriented at any other angle with respect to the pattern can be

readily deduced following, e.g., Ajdari.31

We have formally proved the reciprocal symmetry of the

Onsager relations for EO flow over a striped superhydropho-

bic surface. We have also deduced analytical results in agree-

ment of those in the literature9,12,14,15 for some particular

kinds of stripe patterns. When the wall is uniformly charged,

fNS¼ fS, the effective slip length obtained from the hydrody-

namic problem can be used directly in the EO flow as if the

wall were uniformly slipping with slippage equal to the effec-

tive slip length. We have shown that this result is true for any

values of k and the Debye parameter ĵ. For sufficiently large

ĵ, the EOF enhancement factor due to slip is well known to

be the effective slip length multiplied by the Debye parameter.

We point out that as shown by our numerical results, this

enhancement factor can be dramatically reduced when as

small as 1% by area of an otherwise uniformly slipping wall

is contaminated by periodically distributed no-slip slots.

EO flow is theoretically shown to be unaffected by wall

regions which are perfectly slipping but uncharged, under the

condition of very thin electric double layers. Our numerical

results reveal that this theoretical limit is practically achieved

only when the Debye parameter is as large as ĵ > Oð103Þ.
Any smaller Debye parameter will see a decreasing effect of

the slipping-uncharged regions on the EO flow, essentially

because of a decrease in the charged wall area. Uncharged

partial-slipping stripes will always inhibit the EO flow. The

larger the slipping area fraction, the larger the inhibition, as

long as the slipping area is uncharged. However, should the

slipping regions become only slightly charged, the inhibition

trend will be dramatically reversed, and the EO flow will be

appreciably enhanced for sufficiently large Debye parameter

ĵ. We have also shown how the wall pattern may have effect

on the figure of merit of the channel when it is used for elec-

trokinetic energy conversion.
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