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Abstract 

Ageing in mammals remains an unsolved mystery. Anti-ageing is a recurring topic 

in the history of scientific research. Lifespan extension evoked by Sir2 protein in lower 

organisms has attracted a large amount of interests in the last decade. This review 

summarizes recent evidence supporting the role of a Sir2 mammalian homologue, 

SIRT1 (Silent information regulator T1), in regulating ageing and cellular senescence. 

The various signaling networks responsible for the anti-ageing and anti-senescence 

activity of SIRT1 have been discussed. In particular, a counter-balancing model 

involving the cross-talks between SIRT1 and AMP-activated protein kinase (AMPK), 

another stress and energy sensor, is suggested for controlling the senescence program in 

mammalian cells.    
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1. Cellular senescence 

Senescence, originating from the Latin word senex, refers to a physiological 

program towards permanent cell cycle arrest. The first evidence of cellular senescence 

dates back to fifty years ago when Hayflick and Moorhead observed that after a limited 

number of divisions, embryo-derived fibroblasts entered an irreversible state of growth 

arrest [1]. Similar phenomena have been subsequently observed in human hepatocytes, 

keratinocytes, lymphocytes, smooth muscle and endothelial cells [2-6], leading to the 

concept of 'Hayflick limit', i.e. the finite replicative life span or the restricted 

cumulative population doubling of somatic cells in vitro. Morphologically, senescent 

cells are characterized by cellular enlargement and flattening with a concomitant 

increase in the size of the nucleus and nucleoli, augmented number of lysosomes and 

Golgi, and the appearance of vacuoles in the cytoplasm [7].  

For a number of years, the occurrence of senescence in vivo has been questioned, 

due mainly to the lack of specific markers. In 1995, Dimri and colleagues reported that 

several types of human senescent cells expressed a β-galactosidase that was detectable 

by a histochemical assay at pH 6 [8]. An age-dependent increase in this 

senescence-associated β-galactosidase (SA-ß-Gal) staining was observed in human 

skin. On the other hand, this marker was absent in pre-senescent and quiescent 

fibroblasts, and terminally differentiated keratinocytes. Since then, other senescence 

biomarkers have been identified, including telomere attrition [9,10], active checkpoint 

kinase ATM [11], heterochromatin proteins [12], and the cyclin-dependent kinase 

(CDK) inhibitors p21CIP1 (p21), p16INK4a (p16) and p27KIP1 (p27) [13-16], most of 
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which are actively participated in pathways that affect cellular senescence. Using 

selective markers, an age-dependent increasing of senescent cells has been validated 

various mammal tissues in vivo [11,17-19]. Cellular senescence is now considered to 

the hallmark of mammalian ageing. 

The physiological roles of senescence remain controversial. In general, 

can be viewed as an alternative response program to cellular stresses and damages 

otherwise may cause programmed cell death [20]. When confronted with metabolic
 

hyperglycemia) and/or environmental stressors (e.g. oxidative
 
stress), a self-protective 

mechanism of senescence may be initiated to halt the energy-consuming process of 

proliferation (Figure 1). However, a feedback-regulation should be in place to prevent 

cellular senescence from becoming
 
irreversible (as is the case with terminal ageing of 

the organism), which, most of the time is independent of the initial stress conditions. 

The duration of cell survival in the non-dividing state after cessation of proliferation 

also a characteristic of longevity [21]. The fate of senescent cells in the living 

is largely unknown. The persistent presence of senescent cells can exert adverse 

on tissue functions, thus representing a pivotal underlying cause of ageing-related 

dysfunctions and diseases [22]. For example, in healthy postnatal tissues, the 

endothelial cells (referring to those line the inner surface of blood
 
vessels) are mostly 

quiescent
 
and rarely proliferate. In response to vascular injury, tissue ischemia, or

 

other stress conditions, a remarkable
 
phenotypic plasticity allows them to proliferate

 

rapidly. However, their regenerative capacities declines progressively
 
and coincides 

with the development of senescence [23]. Senescent endothelial cells in vascular 
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lesions release less available nitric oxide for vasodilator regulation, and become 

pro-inflammatory, pro-thrombotic and pro-atherosclerotic,
 

which accelerate the
 

development of cardiovascular diseases [24,25].  

In addition to acting as a barrier of unlimited cell growth and division, senescence 

functions as a tumor suppressive mechanism to restrict excessive cell growth. 

Senescent cells are present in pre-malignant tissues [26]. Escaping from senescence, 

or immortality, is important for malignant transformation [26-29]. However, the 

additional levels of complexity suggest that senescence functions as a biological 

'double edged sword' during tumorigenesis. On the one hand, it prevents activated 

oncogenes from initiating a clone of neoplastic cells and limit the replicative capacity 

of an incipient tumor cell [30,31]. On the other hand, although senescent cells 

themselves cannot become neoplastic, they promote the growth of nearby 

preneoplastic cells and in this way may contribute to the age-related increase in tumor 

incidence [32,33].  

 

2. Sirtuins - the longevity regulator 

Sirtuins are a family of NAD
+
-dependent protein deacetylases that exert multiple 

cellular functions by interacting with, and deacetylating a wide range of signaling 

molecules, transcription factors, histones and enzymes [34-36]. Sir2 (silent 

information regulator 2), the first gene discovered in this family, was originally shown 

to regulate transcriptional silencing at cell-mating loci, telomeres, and ribosomal DNA 

(rDNA) in yeast, through deacetylation of the epsilon-amino groups of lysines in the 



6 

 

amino-terminal domains of histones [37-42]. The anti-ageing effects of Sir2 was 

firstly demonstrated by Kaeberlein et al, who showed that the integration of extra 

copies of Sir2 extended lifespan up to 30% in S. cerevisiae [43]. Similar effects of 

Sir2 on lifespan extension were subsequently observed in C. elegans and Drosophila 

melanogaster [44-47].  

Sirtuins are highly conserved during the evolution from bacteria to humans. In 

mammals, the family is represented by seven members assigned as SIRT1-7, which 

share the catalytic domain of ~275 amino acids with Sir2 [48-51]. SIRT1-7 show 

diverse cellular localizations. SIRT6 and SIRT7 are localized in the nucleus, while 

SIRT3, SIRT4 and SIRT5 reside in the mitochondria. [51]. SIRT1 and SIRT2 shuttle 

between the cytoplasm and the nucleus. Mammalian sirtuins have been implicated in 

a wide range of biological processes, including metabolism, cell survival, 

development, chromatin dynamics and DNA repair. SIRT1 is the mammalian ortholog 

most highly related to Sir2. Protein expression and transcription levels of SIRT1 

decline with ageing in animals and human tissues, including lung, fat, heart and blood 

vessels [52-54]. Sirtuins have attracted considerable interest because of their role as 

the longevity regulator and their therapeutic potentials for the prevention/treatment of 

ageing-associated medical complications, in particular cardiovascular diseases, 

diabetes and neurodegenerative disorders.  

In 1935, McCay and co-workers reported that long-term caloric restriction without 

malnutrition almost doubled lifespan in rats [55]. This lifespan-extending effect of 

caloric restriction has been confirmed in a wide range of organisms ranging from 
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yeast to rodents, and primates [56-60]. These observations lead to the concept that 

caloric restriction regulates lifespan by reducing the metabolic rate and thus 

diminishing the accumulation of macromolecule damage over time. In higher 

organisms, caloric restriction is the only non-genetic intervention capable of 

promoting longevity and reducing the incidence of age-related disorders, such as 

diabetes, cardiovascular disease, and cancer. Both Sir2 and SIRT1 have been 

implicated in the anti-ageing activity of caloric restriction. Decreasing the expression 

of Sir2 blocks the lifespan-extending effect of caloric restriction in S. cerevisiae and 

Drosophila [46,61]. Likewise, in rodents, caloric restriction stimulates SIRT1 

expression in a variety of tissues, including brain, visceral fat, kidney and liver [56]. 

Mice lacking SIRT1 fail to show an increased activity in response to caloric 

restriction [62]. By contrast, elevation of SIRT1 expression results in a beneficial 

phenotype resembling that of caloric restriction [63-65]. Despite these suggestive 

findings, there is yet no foolproof evidence that mammalian sirtuins are either 

indispensible or sufficient to lifespan extension in response to caloric restriction. In 

fact, the available evidence suggests that sirtuins mediate the anti-ageing effects of 

caloric restriction largely by regulating cellular energy metabolism in ways that 

directly benefit normal physiology [66-70].  

 

3. Sirtuins and senescence in mammalian cells 

In yeast, senescence is characterized by the accumulation of extrachomosomal 

rDNA circles (ERCs), which occurs in mother cells as they go through successive cell 
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divisions [71]. The Sir2 protein acts as a transcriptional silencer to suppress ERC 

formation, and as a consequence, increases longevity. The first evidence that sirtuins 

regulate mammalian cellular senescence was provided by Langley and colleagues, 

using the primary mouse embryonic fibroblasts as a model system [72]. SIRT1 

antagonizes premature cellular senescence, induced by pro-myelocytic leukemia 

protein, by interacting with and deacetylating p53. Subsequently, the anti-senescence 

effects of SIRT1 have been demonstrated in other cell types, including human cancer 

cells (breast cancer MCF-7, lung cancer H1299 and prostate cancer cells) [73,74], 

human diploid fibroblasts [75] and a human umbilical vein endothelial cell line 

(HUVEC) [76-78]. In most of these studies, when the effects of SIRT1 are prevented 

with specific pharmacological inhibitors or siRNA, a premature senescence-like 

phenotype can be observed. Conversely, overexpression or activation of SIRT1 

prevents both stress- and replication-induced cellular senescence. In HUVECs, 

cellular senescence occurs in parallel with an increased expression of plasminogen 

activator inhibitor-1(PAI-1) and a decrease in that of endothelial nitric oxide synthase 

(eNOS). SIRT1 exerts protective effects against endothelial dysfunction by preventing 

stress-induced premature senescence and deranged expression of PAI-1 and eNOS 

[76]. Cilostazol, a selective cAMP phosphodiesterase 3 inhibitor, exerts protective 

effects against endothelial senescence and dysfunction through upregulation of SIRT1, 

whereas sirolimus and everolimus induce endothelial senescence involving 

down-regulation of SIRT1 [77,78]. The latter studies suggest that p53 might be of the 

utmost
 
importance in mediating the senescence signaling and the protective effect of
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SIRT1. By contrast,
 
it is not conclusive whether or not eNOS activation is directly 

involved in the anti-senescence activity of SIRT1, although the bioavailability of 

nitric oxide is impaired when SIRT1 is down-regulated [76]. Nevertheless, the 

increase in eNOS expression caused by caloric restriction is associated with 

mitochondrial biogenesis and enhanced expression of SIRT1 [79], whereas SIRT1 

deacetylates and activates
 
eNOS [80], indicating that a positive feedback mechanism

 

exists between these two signaling molecules.  

Endothelial regeneration is essential to maintain the functionality of the 

vasculature, in particular after mechanical endothelial
 
injury and ischemia or during 

wound healing [81]. SIRT1 is highly expressed in the vasculature and regulates the 

proliferative
 
activity of endothelial cells during tissue

 
regeneration [82,83]. It has been 

implicated in the regeneration and proliferation of endothelial progenitor cells (EPCs) 

[83,84]. Exposure to high glucose accelerates EPC senescence and decreases EPC 

number, which is accompanied by a reduced SIRT1 expression and activity. 

Knockdown of SIRT1 with siRNA results in diminished EPC angiogenesis and 

increased senescence. SIRT1 controls the angiogenic activity of endothelial cells via a 

deacetylation-dependent inactivation of forkhead box O transcription factors 1 

(FoxO1), a crucial negative transcriptional regulator of blood vessel development 

[82,85,86]. The acetylation of FoxO1 in EPC is increased significantly following 

exposure to high glucose. Resveratrol reduces, whereas inhibitors of SIRT1 

(nicotinamide and suramine) potentiate the acetylation [83]. SIRT1 also deacetylates 

FoxO3 and/or FoxO4, attenuating FoxO-induced apoptosis and potentiating 
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FoxO-induced cell-cycle arrest [87-89]. While the implications of these FoxO 

modifications are still uncertain, it appears overall that deacetylation of FoxO proteins 

by SIRT1 promotes cell survival under stress conditions.  

During the process of replicative senescence in primary porcine aortic endothelial 

cells, both mRNA and protein expressions of SIRT1 are progressively decreased [53]. 

Overexpression of SIRT1 stimulates proliferation and prevents senescence by 

targeting the tumor suppressor kinase LKB1. In these cells, LKB1 promotes cellular 

senescence and retards endothelial proliferation through activation of AMPK, a 

master regulator of energy metabolism. SIRT1 is activated by increases in 

NAD/NADH ratio [90,91], whereas AMPK senses AMP/ATP levels through its 

upstream kinase LKB1 [92,93]. A cross-regulation of these two pivotal energy- and 

stress-sensor pathways has been implied in the context of endothelial ageing [23]. The 

endothelium-specific elevation of SIRT1 activity protects mice from developing 

drug-induced premature vascular senescence [53]. There are presumably various 

interactions between the SIRT1 and AMPK pathways [94-97]. However, the precise 

connections between these two nutrient sensing enzymes in cellular senescence are 

largely uncharacterized and warrant further investigations.  

In addition to SIRT1, SIRT6, a mammalian sirtuin associated with 

heterochromatic regions and nucleoli [98], has also been implicated in the regulation 

of cellular senescence. Indeed, SIRT6 depletion in mice leads to premature cellular 

senescence and telomere dysfunction with end-to-end chromosomal fusions, a pattern 

resembling the defects observed in Werner syndrome, a human premature ageing 
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disease [99]. SIRT6 modulates genome stability by interacting with and deacetylating 

histone H3 at telometic chromatin [100]. It also regulates CtIP [C-terminal binding 

protein (CtBP) interacting protein] to facilitate DNA end resection at the 

double-strand breaks (DSB) [101]. Moreover, SIRT6 forms a macromolecular 

complex with DNA-PK [DNA-dependent protein kinase] and promotes DSB repair 

[102]. The NFκB RelA subunit is also regulated by SIRT6, which enhances the 

NFκB-dependent gene expression changes involved in cellular senescence [103]. 

Mechanisms other than these have also been suggested to mediate the regulatory 

effects of this protein on energy metabolism in enhancing insulin signaling and 

glucose uptake [104]. Effects of other sirtuins, in particular SIRT2 and SIRT7, on 

mammalian ageing have also been proposed [105-108]. However, the functional 

relationship among these members of the sirtuin family remains poorly understood at 

this stage.  

 

4. Anti-senescence activity of SIRT1 – focus on the cross-talks with AMPK 

signaling pathway 

SIRT1 elicits its various effects by regulating the acetylation/deacetylation status 

of a wide range of protein targets involved in heterochromatin silencing, cycle 

progression, cell survival and metabolism [72,88,91,109-112]. By binding with and 

deacetylating the target proteins, SIRT1 is able to regulate their activities, intracellular 

localizations, stabilities and posttranslational modifications. With respect to cellular 

senescence, the plethora
 
of substrates that SIRT1 targets for deacetylation includes 
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p53, NFκB, PGC-1α [peroxisome proliferator-activated receptor-γ coactivator 1α], 

eNOS, mTOR and FoxOs (Figure 1). The
 
tumor suppressor p53 is among the first 

non-histone substrates identified to be functionally involved in the anti-senescence 

activity of SIRT1 [72]. Activation of the p53-p21 pathway acts as a major mediator of 

cellular senescence [113]. Deacetylation of p53 by SIRT1 results in an inhibition of 

DNA damage- and stress-mediated cellular senescence [114]. NF-κB is a major 

culprit that mediates ageing-associated pro-inflammatory responses [115]. Oxidative 

stress and reactive oxygen species (ROS) production modulates the promoter binding 

activity of NF-κB, which promotes cellular senescence by transactivating the 

expressions of cell cycle regulators [116]. SIRT1 physically interacts with the 

RelA/p65 subunit of NFκB and inhibits the transactivation potential of this protein 

[112]. Mitochondrial function changes during cellular senescence lead to metabolic 

inefficiency and increased generation of ROS [117]. SIRT1 promotes mitochondrial 

functions and reduces the production of ROS through regulating the master controller 

of mitochondrial biogenesis, PGC-1α, and the eNOS- and nitric oxide-dependent 

pathway [118,119]. A number of SIRT1 targets, including mTOR and FoxOs, are 

coordinately involved in the process of autophagy, a housekeeping process for 

maintaining energy balance via self-digestion [120,121]. The extension of lifespan by 

SIRT1 has been linked to the efficient maintenance of autophagic degradation, either 

directly or indirectly through a downstream signaling network [122,123].  

Mammalian senescence is triggered by a complex signaling network involving the 

interactions of multiple proteins [19]. Unlike Sir2 in yeast, which functions 
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exclusively in the
 
nucleoli and heterochromatic regions, nucleocytoplasmic shuttling 

of SIRT1 has been demonstrated in various mammalian cellular systems [98,124-127]. 

Thus, when attempting to unravel the molecular events upstream and downstream of 

the SIRT1 pathway in regulating cellular senescence, one has to consider searching 

far beyond the border of nucleus or any single cellular compartment, and cover not 

only long-term DNA damages and telomere shortening, but also short-term metabolic 

adaptations. In that context, the remainder of this article will attempt to elucidate the 

interplays between SIRT1 and LKB1/AMPK signaling, the two well-known stress 

resistance and longevity-regulating pathways. 

 

4.1 AMPK, LKB1 and cellular senescence 

AMPK is the primary regulator of cellular responses to reduced ATP levels and 

acts as a sensor to maintain the energy balance within a cell [128,129]. In general, 

activation of AMPK down-regulates synthetic pathways such as protein, fatty acid and 

cholesterol biosynthesis, yet switches on the catabolic pathways that generate ATP, 

such as fatty acid oxidation, glucose uptake and glycolysis. It achieves this not only 

through direct phosphorylation of a variety of key metabolic enzymes, but also by 

altering gene expressions in a tissue-specific manner [130,131]. Depending on the 

tissue types, the targeted genes include PGC-1α, the FoxO family of transcription 

factors, SREBP [sterol regulatory element binding protein] and ChREBP 

[carbohydrate response element binding protein]. AMPK is a trimeric serine/threonine 

protein kinase comprising a catalytic α subunit and non-catalytic β and γ subunits. 



14 

 

The α subunit contains an NH2-terminal catalytic kinase domain and a 

COOH-terminal regulatory domain to which the β and γ subunits bind. The γ subunits 

contain four tandem repeats of a sequence motif “CBS domain”, which represents the 

regulatory AMP- and ATP-binding sites of the AMPK complex. Stresses (e.g. 

metabolic poisoning, free radical production, heat-shock, hypoxia, or nutrient 

deprivation) that cause a rise in AMP/ATP ratio can activate AMPK, by facilitating 

phosphorylation of the α subunit at a specific residue (Thr172) located within the 

activation loop. This process can cause at least 50- to 100-fold activation of AMPK 

and is mediated by upstream kinases (AMPKK), one of which is the tumor suppressor 

LKB1 [92]. This complex regulatory system results in a superb sensitivity of AMPK 

to respond to even a very small change in AMP levels.  

LKB1 is a serine/threonine protein kinase possessing proliferation-inhibitory and 

anti-tumor activities. It was originally discovered as a tumor suppressor gene mutated 

in patients with Peutz-Jeghers syndrome, a dominantly inherited human disorder 

characterized by an increased predisposition to cancer [132,133]. Loss-of-function of 

LKB1 is frequently found in non-small cell lung carcinomas [134]. Inactivation of 

LKB1 has also been reported in pancreatic cancers, melanomas, prostate, endometrial 

and cervical cancers, papillary breast cancers, testicular cancers, as well as colon and 

gastric cancers [135-137]. Overexpression of LKB1 suppresses cancer cell growth by 

inducing a G1 cell cycle arrest [138,139]. LKB1 is not only considered to be a tumor 

suppressor kinase that regulates cell proliferation, but also actively involved in 

controlling cell motility, metabolism, polarity and senescence [140-142].  



15 

 

LKB1 mediates AMPK activation in response to various cellular stresses- and 

pharmacological agents [143-150]. While activation of LKB1/AMPK signaling 

protects cells against energy stress by maintaining energy homeostasis and ensuring a 

slow consumption of energy stores [151,152], this pathway can also cause cellular 

senescence, cell cycle arrest and apoptosis in eukaryotic systems [153,154]. In another 

word, a certain level of AMPK activation is beneficial, whereas over-activation may 

be destructive. For example, mild energy restriction promotes AMPK activation and 

triggers neurogenesis, whereas severe diet restriction-induced AMPK leads to 

neuroapoptosis, possibly due to insufficient cell resources to reverse AMP:ATP ratio 

[155]. LKB1 is significantly up-regulated in senescent primary endothelial cells and 

overexpression of this kinase induces senescence through AMPK activation in young 

cells [53]. LKB1 deficiency prevents culture-induced senescence in murine embryonic 

fibroblasts [156]. In senescent fibroblasts, AMP:ATP ratios are two to three folds 

higher than those in young fibroblasts, and senescence is accompanied by a marked 

elevation in AMPK activity [157,158]. In mice, caloric restriction down-regulates 

AMPK activity in the liver [159]. Activation of LKB1/AMPK and inhibition of 

mTOR contribute to the premature ageing phenotype of Zmpste24-/- mice [153]. 

AMPK hyper-activation has also been reported in the skeletal muscle and liver of old 

rodents [160,161]. In the aorta of old mice, LKB1 and phosphorylated AMPK(Thr172) 

levels are much higher than those of young mice [53]. The regulation of ageing by 

AMPK is evolutionarily preserved. In yeast, the AMPK homologue Snf1 is a pivotal 

regulator of glucose-related gene expression at times of low fuel availability [162]. 
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Snf1 is a heterotrimer composed of a catalytic α subunit (Snf1p) that phosphorylates 

target proteins at Ser/Thr residues, an activating γ subunit (Snf4p), and a β subunit 

(Sip1p, Sip2p, or Gal83). snf1 null mutants are viable, but are unable to grow on 

sucrose, galactose, maltose, melibiose or nonfermentable carbon sources and do not 

contain any detectable peroxisomes, whereas overproduction of Snf1p causes 

accelerated ageing [163]. Loss of Snf4p, an activator of Snf1p, extends generational 

life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an 

accelerated ageing [164].  

In summary, these findings suggest that chronic activation of the LKB1-AMPK 

catabolic pathway may turn an originally pro-survival strategy into a pre-ageing 

mechanism and contribute to the progressive degeneration during cellular senescence.  

 

4.2 Reciprocal regulations of SIRT1 and LKB1/AMPK signaling in cellular 

senescence 

Interactions between SIRT1 and AMPK pathways occur in different types of 

tissues and cells [95,97,165-172]. In liver, while AMPK and SIRT1 may act in an 

autoregulatory loop to regulate lipid metabolism, their impacts on gluconeogenesis 

during fasting conditions appear to diverge [165]. In skeletal muscle, AMPK enhances 

SIRT1 activity by increasing cellular NAD
+
 levels [94,173], and this amplification of 

SIRT1 and its downstream signaling pathways is impaired in AMPK-deficient states 

[171]. In neuronal systems, resveratrol-stimulated AMPK activity depends on LKB1 

but does not require SIRT1 [174]. However, other results suggest that resveratrol 
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activates LKB1/AMPK signaling in both SIRT1-dependent and independent manners 

in HepG2 cells [95,175]. In HEK293 cells, over-expression of SIRT1 activates AMPK 

through LKB1 [96]. It should be noted that the regulations of growth, survival, energy 

metabolism and response to stresses in cancer tissues are very different from those of 

normal cells. Cells from SIRT1 knockout mice show either no change [174] or an 

increase in AMPK activity [97,176,177]. Taken in conjunction, the available evidence 

suggests that AMPK and SIRT1 are vital links in an orchestrated network controlling 

cellular homeostasis. Therefore, it is of great importance to understand the 

mechanisms by which they interact and the consequences of the cross-regulations 

under various conditions.  

In endothelial cells, LKB1- and AMPK-induced senescence can be prevented by 

increasing the levels of SIRT1 [53]. By contrast, inhibition of SIRT1 activity or 

over-expression of a dominant negative deacetylase mutant, SIRT1(H363Y), induces 

endothelial senescence and elevates the protein levels of LKB1, resulting in a 

hyperactivation of AMPK [53]. These observations demonstrate the link between the 

anti-senescence activity of SIRT1 and the deregulation of LKB1/AMPK signaling 

[23]. Under normal physiological conditions, LKB1 is constitutively active [131], 

which makes it necessary to have a counter-mechanism available to prevent persistent 

or exaggerated activation of AMPK signaling. The regulation by SIRT1 of LKB1 

protein stability represents such a counterbalancing mechanism (Figure 2). 

Deacetylation mediated by SIRT1 synergizes with the ubiquintination and degradation 

of LKB1 [53]. Because both acetylation and ubiquitination occur on lysine residues, 
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deacetylation of LKB1 by SIRT1 may control the accessibility of these residues for 

ubiquitination and thereby alter its stability in endothelial cells. However, how 

deacetylation affects the biological activities of LKB1 is incompletely understood. 

Structurally, LKB1 kinase domain is poorly related to other protein kinases. In 

particular, the NH2- and COOH-terminal non-catalytic regions of LKB1 possess no 

identifiable functional domains. LKB1 shuttles between the nucleus and the cytoplasm 

[178]. When LKB1 is forced to remain in the cytoplasm by disruption of the nuclear 

localization signal, it retains full growth-suppression activity in a kinase-dependent 

manner [139]. It is highly possible that acetylation/deacetylation of specific residues 

by SIRT1 affect the intracellular localization, protein stability and/or protein-protein 

interactions of LKB1 in primary endothelial cells. Several other molecules involved in 

regulating senescence, including p53 and FoxOs, are also modulated by reversible 

acetylation and targeted by SIRT1 [72,179]. Changes in lysine acetylation may 

represent an important mechanism integrating metabolic and stress signals to govern 

cellular senescence and ageing. 

Cell cycle regulation by AMPK is mediated by inhibition of the TSC2-mTOR 

(mammalian target of rapamycin) pathway as well as up-regulation of the p53-p21 

axis [180,181] (Figure 2). The mTOR pathway is a major controller of protein 

biosynthetic processes. Blockage of this pathway induces protein degradation through 

autophagy and the ubiquitin-proteasome system [131]. Premature ageing activates a 

systemic metabolic response involving induction of autophagy [153]. Actually, the 

physiological ageing process is associated with a declined efficiency of autophagic 
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degradation [121]. Although both SIRT1 and AMPK are implicated in the regulation 

of autophagy [176,182,183], the detailed interactions and the involvement of mTOR 

or other signaling molecules, such as FoxOs, NFκB and p53, remain to be elucidated. 

Opposing effects of the two signaling molecules have been reported in relation to p53 

regulation. Persistent activation of AMPK leads to accelerated p53-dependent cellular 

senescence [180], whereas SIRT1 antagonizes p53-induced cellular senescence 

through promoting its deacetylation [72]. LKB1 acts as an upstream kinase for PTEN 

(phosphatase and tensin homologue), which overcomes growth/survival signaling 

from the PI3K/Akt pathway [184]. The balance between LKB1-AMPK and PI3K/Akt 

pathways may determine cell growth or death in response to the nutritional status and 

stress [185]. The cross-talks between SIRT1 and AMPK in controlling senescence 

could also converge at the level of PI3K/Akt signaling [53].  

Unlike in the metabolic organ skeletal muscle, AMPK does not affect the NAD
+
 

biosynthetic enzyme, NAMPT [nicotinamide phosphoribosyltransferase], in 

endothelial cells [53]. Moreover, NAMPT expression is not different in senescent 

cells from that of young cells. These findings, however, cannot exclude other 

mechanisms that may be involved in the regulation of SIRT1 by AMPK, such as those 

at the posttranscriptional levels (Figure 2). For example, SIRT1 mRNA levels are 

regulated by the RNA binding protein HuR and by microRNA, which repress SIRT1 

protein expression in response to different stress conditions [186-188]. Depending on 

the upstream signal, HuR causes SIRT1 mRNA to be either stabilized or degraded. 

During the progression of cellular senescence, the mRNA and protein levels of SIRT1 
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decrease progressively [53]. AMPK activation causes premature fibroblast senescence 

through a mechanism that involves HuR [157,189]. Moreover, AMPK inhibits the 

transport of HuR to the cytoplasm and thus blocks its ability to stabilize and enhance 

the expression of target mRNAs [189]. HuR levels are lower in senescent cells, and 

the over-expression of HuR restores a “younger” phenotype, whereas a reduction in 

HuR expression accentuates the senescent appearance [190]. Taken in conjunction, 

these studies are consistent with a role of HuR, possibly involving AMPK, in 

regulating the mRNA levels of SIRT1 during the process of replicative senescence.   

 

5. Concluding remarks 

Energy metabolism and metabolic regulators play pivotal roles in controlling 

longevity and cellular senescence. SIRT1 and LKB1/AMPK are the two key energy 

sensor systems regulating cell survival, proliferation and senescence. While acute 

activation of the LKB1/AMPK catabolic pathway permits a rapid adaption or 

resistance to external and internal stresses, sustained stimulation of the same 

pathway leads the cells toward a condition of irreversible senescence, which is 

detrimental to normal physiological functions. The anti-ageing activity of SIRT1 is 

achieved at least in part by fine-tuning the LKB1/AMPK pathway and preventing 

the transition of an originally pro-survival program into a pro-ageing mechanism, 

which results in systemic degeneration (Figure 3). This process is elegantly 

controlled by a complex network involving many signaling proteins, as well as by 

the ratios between low molecular weight metabolites (e.g. NAD/NADH and 
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AMP/ATP). Further studies on the reciprocal regulatory mechanisms and the 

unexplored pathways responsible for the dysregulated balance between SIRT1 and 

LKB1/AMPK signaling may provide important insights for temporal and 

quantitative control of the ageing process. 
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Figure 1. SIRT1 elicits the 

protein substrates that are critically involved in

such as oxidative stresses, DNA damage, mitochondrial biogenesis and 

autophagy.  
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Figure 2. Several potential molecular pathways are involved in cellular senescence 

caused by hyperactivated LKB1/AMPK signaling.  

 

 

  



 

 

Figure 3. A model represents the reciprocal regulations of SIRT1 and AMPK 

pathways in mammalian cellular 

to irreversible senescence is accompanied by a decreased SIRT1 expression and 

activity, and an augmented AMPK function. SIRT1 counter

targeting the upstream kinase LKB1. A possible feed

AMPK is suggested for further investigations
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A model represents the reciprocal regulations of SIRT1 and AMPK 

cellular senescence. The progression from pre-senescence 

to irreversible senescence is accompanied by a decreased SIRT1 expression and 

augmented AMPK function. SIRT1 counter-regulates AMPK through 

targeting the upstream kinase LKB1. A possible feed-back regulation of SIRT1 by 

for further investigations.  
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