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Abstract
Liver cancer is the fifth and seventh most common cause 
of cancer in men and women, respectively. Wnt/β-catenin 
signalling has emerged as a critical player in both the 
development of normal liver as well as an oncogenic 
driver in hepatocellular carcinoma (HCC). Based on 
the current understanding, this article summarizes the 
possible mechanisms for the aberrant activation of this 
pathway with specific focus on HCC. Furthermore, we 
will discuss the role of dickkopfs (DKKs) in regulating 
Wnt/β-catenin signalling, which is poorly understood 
and understudied. DKKs are a family of secreted pro-
teins that comprise at least four members, namely 
DKK1-DKK4, which act as inhibitors of Wnt/β-catenin 
signalling. Nevertheless, not all members antagonize 
Wnt/β-catenin signalling. Their functional significance in 
hepatocarcinogenesis remains to be further character-
ized for which these studies should provide new insights 
into the regulatory role of DKKs in Wnt/β-catenin signal-
ling in hepatic carcinogenesis. Because of the important 
oncogenic roles, there are an increasing number of 
therapeutic molecules targeting β-catenin and the Wnt/
β-catenin pathway for potential therapy of HCC. 
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hepatocellular carcinoma anD 
the unmet meDical neeDS
Liver cancer ranks the fifth most common cancer in men 
and the second leading cause of  cancer-related death. In 
women, it is the seventh most frequent cancer and sixth 
leading cause of  cancer death[1]. Hepatocellular carci-
noma (HCC) is the most common primary malignancy 
of  liver. Men are three times more likely to develop HCC 
than women and the incidence increases with age[2]. HCC 
is prevalent in Asia and Africa, but recently it is on the 
rise in the Western world due to an increase in hepatitis 
C virus (HCV) infection[3]. Risk factors for HCC include 
chronic hepatitis B virus (HBV) and HCV infections, 
cirrhosis, chronic alcohol abuse, aflatoxin ingestion, 
non-alcoholic steatohepatitis and other metabolic liver 
diseases[4,5]. Much of  HCC occurs in the background 
of  cirrhosis. About 80%-90% of  patients with cirrhosis 
go on to develop HCC eventually and the remaining 
10%-20% of  cases develop HCC without cirrhosis. Fur-
thermore, HBV and HCV infections increase the risk of  
developing cirrhosis and later HCC. Among the HCC 
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cases with cirrhosis, HCV infection has been identified in 
27%-73% and HBV infection in 12%-55%[6,7].

HCC suffers from a high mortality rate due to lack of  
effective diagnostic methods for early detection as well 
as lack of  treatment options especially for those with ad-
vanced disease conditions. Despite vigorous attempts to 
screen for early HCC by common surveillance techniques 
using serum α-fetoprotein (AFP) and ultrasound exami-
nation, early HCC is asymptomatic and most HCC cases 
are presented late when surgical treatments are not ame-
nable[8]. Although surgical resection remains the treatment 
of  choice for patients with well-preserved liver function, 
it is associated with a high risk of  post-operative compli-
cations and tumour recurrence[7]. Liver transplantation 
is another treatment option for early HCC but this is 
limited by the shortage of  suitable liver grafts[9]. Other 
surgical treatments for HCC include radio-frequency 
ablation (RFA), microwave ablation (MWA) and trans-
catheter arterial chemoembolization (TACE). RFA and 
MWA techniques utilise high frequency radio-waves and 
micro-waves, respectively, to kill tumour tissues by heat. 
Although several studies have reported better disease-
free survival and a lower frequency of  recurrence after 
surgical resection compared to RFA[10,11], others report 
better overall survival and disease-free survival for HCC 
patients with multi-nodular tumours following RFA[12]. 
Recently, Simo et al[13] reported no difference regarding 
the efficacies of  MWA and RFA procedures. TACE is 
routinely performed on HCC patients who are not eli-
gible for surgical resection or tumour ablation techniques. 
However, the survival benefits of  TACE depend on care-
ful patient selection. Patients with multi-nodular HCC, 
without vascular invasion and no extrahepatic metastases 
show a better 2-year survival (63%) after TACE than 
HCC patients with vascular invasion undergoing TACE 
(31%)[14,15]. However, tumour recurrence is an important 
limitation to any of  the HCC treatments, and thus, un-
derstanding the molecular biology of  HCC is crucial for 
the development of  novel therapies.

In recent years, studies have shed light on the clinical 
implications of  signalling pathways in HCC, including the 
Ras/Raf/MEK/ERK pathway[16], the PI3K/Akt/mTOR 
pathway[17], the JNK pathway[18] and the NF-κB path-
way[19]. A promising approach would be to identify mo-
lecular pathways responsible for initiating and sustaining 
HCC as targets for HCC therapy. The canonical Wnt/
β-catenin signalling pathway is another such oncogenic 
pathway, which is frequently activated in HCC and is 
reported to play a pivotal role in tumourigenesis[20]. This 
article reviews the canonical Wnt/β-catenin signalling 
pathway and its involvement in HCC development. In ad-
dition, antagonists of  this pathway and their implications 
in HCC are described and discussed. From this prior 
knowledge, we hope to identify members of  this pathway 
that could serve as potential targets for HCC therapy. 

oVerVieW oF Wnt/β-catenin 
pathWaY
The Wnt/β-catenin pathway is a well-conserved path-

way that is important in embryonic development, cell 
proliferation, survival, regeneration and self-renewal[21-23]. 
Likewise, a great deal of  understanding has been achieved 
by studying pathological specimens and using mouse 
models of  liver diseases to understand the aberrations 
of  this pathway in liver diseases ranging from hepatitis 
to HCC[24-26]. Based on these earlier studies, the Wnt/
β-catenin pathway is a central player in maintaining liver 
health and is dysregulated in hepatic cancers, which makes 
it an attractive candidate for potential therapies of  HCC.

In an unstimulated cell, endogenous β-catenin is found 
at the adherens junctions, where it interacts with compo-
nents of  the cadherin-associated protein complexes to 
confer cell-cell adhesion functions[27,28]. On the other hand, 
surplus β-catenin in the cytoplasm is degraded by the ac-
tion of  a destruction complex which consists of  glycogen 
synthase kinase 3β (GSK3β), Axin, adenomatous polypo-
sis coli (APC) and casein kinase Iα (CKIα)[29]. β-Catenin 
is first phosphorylated at serine-45 (Ser45) by CKIα to 
further prime it for phosphorylation by GSK3β at Ser33, 
Ser37 and threonine-41 (Thr41). The phosphorylated 
β-catenin is then ubiquitinated by β-transducin repeat-
containing protein (β-TrCP) and subsequently degraded 
by the proteasome[30] (Figure 1A). Maher et al[31] reported 
that β-catenin phosphorylated at Ser45 and not at Ser33/
Ser37/Thr41 is predominantly located in the nucleus, 
whereas β-catenin phosphorylated at Ser33/Ser37/Thr41 
is mostly localized to the cytoplasm. This spatial separa-
tion of  β-catenin suggests that phosphorylation at Ser45 
and at Ser33/Ser37/Thr41 is not necessarily coupled. It 
may also imply that phosphorylation at Ser45 by CKIα 
serves another function, yet to be delineated, other than 
priming β-catenin for further phosphorylation by GSK3β.

For diseased condition, the Wnt/β-catenin signalling 
pathway is activated upon binding of  Wnt to one of  
the members of  the frizzled (FZD) family and to low-
density lipoprotein receptor-related protein 5 (LRP5) or 
LRP6. The FZD recruits dishevelled (Dvl) to the plasma 
membrane, which in turn recruits Axin and GSK3β to 
LRP5/LRP6[32]. The intercellular domain of  LRP5/LRP6 
contains five reiterated PPPSPxS motifs, which are dually 
phosphorylated by GSK3β and CKIα[33]. The phosphor-
ylation of  LRP5/LRP6 disrupts the formation of  the 
destruction complex, thereby preventing GSK3β from 
phosphorylating β-catenin. Therefore, β-catenin is not 
degraded and accumulates in the cytoplasm from where 
it translocates to the nucleus. In the absence of  Wnt, 
T-cell factor (TCF)/lymphoid enhancer factor (LEF) re-
presses gene expression by interacting with co-repressor 
Groucho, which promotes histone deacetylation and 
chromatin modelling in the nucleus[34]. Nuclear accumu-
lation of  β-catenin displaces Groucho from TCF/LEF 
and recruits other transcriptional co-activators, e.g. CREB 
binding protein (CBP), for upregulation of  target genes 
that are implicated in cell proliferation, anti-apoptosis, 
and angiogenesis, such as cyclin D1[35] (Figure 1B). Recent 
studies have supported receptor-mediated endocytosis 
for Wnt induced signalling[36,37]. Specifically, Wnt3a was 
shown to induce caveolin-dependent internalization of  
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LRP6, which would in turn recruit Axin to LRP6 phos-
phorylated by GSK3β and CKIα, and thereby lead to 
β-catenin accumulation. Thus, caveolin plays a critical 
role in activating Wnt/β-catenin signalling[37]. 

Very recently, Chairoungdua et al[38] showed a novel 
mechanism of  reducing cytoplasmic β-catenin levels 
independently of  GSK3β phosphorylation or ubiquitina-
tion by exporting β-catenin out of  the cell via exosomes. 
Exosomes are vesicles that form inside endosomes and 
the vesicles are then secreted when the endosomes fuse 
with the plasma membrane[39]. These exosomes are en-
riched in E-cadherin and tetraspanin proteins (CD9 and 
CD82). Expression of  these tetraspanins was shown to 
decrease β-catenin protein levels, but further experiments 
showed that E-cadherin was also necessary for β-catenin 
secretion in exosomes. The molecular mechanism for the 
inclusion of  CD9, CD82 and E-cadherin in exosomes 
warrants further investigation. Furthermore, how these 
tetraspanins induce exosome formation remains to be 
characterized. Although much remains to be investigated, 

this important and novel mechanism offers an alterna-
tive route for the regulation of  Wnt/β-catenin activity, 
further highlighting the significance of  keeping the Wnt/
β-catenin pathway under check. 

aBerrant Wnt/β-catenin SiGnallinG 
in hcc
Role of aberrant β-catenin activation in HCC
HCC is one of  the cancers with a high rate of  dys-
regulation in the Wnt/β-catenin pathway and although 
40%-70%[40-43] of  HCC patients have tumours with high 
levels of  β-catenin accumulation, there is little agreement 
on the use of  β-catenin in prognosis. Nuclear accumula-
tion of  β-catenin is strongly associated with β-catenin 
mutations[41]. A majority of  β-catenin mutations in HCC 
are missense mutations occurring at exon 3. This region 
is responsible for phosphorylation and ubiquitination of  
β-catenin, and therefore, mutation in this region results 
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Figure 1  Wnt/β-catenin signalling in the absence and presence of Wnt stimulus. A: Wnt/β-catenin signalling is regulated by several antagonists to prevent the 
formation of frizzled (FZD)-Wnt-low-density lipoprotein receptor-related protein 5/6 (LRP5/6) complex. Secreted frizzled-related protein (sFRP) and Wnt inhibitory 
factor (WIF) bind directly to Wnt, whereas dickkopfs (DKKs) bind to LRP5/6. Furthermore, human homologue of Dapper (HDPR1) and Prickle-1 inhibit the action of 
dishevelled (Dvl). In the absence of Wnt stimulus, β-catenin is first primed for phosphorylation by casein kinase Iα (CKIα) followed by phosphorylation by glycogen 
synthase kinase 3β (GSK3β) at three residues. The phosphorylated β-catenin is targeted for ubiquitination by β-transducin repeat-containing protein (β-TrCP) and is 
subsequently degraded by the proteasome. In the nucleus, T-cell factor (TCF)/lymphoid enhancer factor (LEF) represses transcription of the Wnt/β-catenin pathway 
target genes by interacting with co-repressor Groucho; B: Wnt binds to and activates FZD and LRP5/6 receptors. Dvl is recruited to the plasma membrane and binds 
to FZD. This results in the recruitment of Axin and GSK3β to LRP5/6. LRP5/6 is then phosphorylated by CKIα and GSK3β, resulting in an inactivation of the destruc-
tion complex and leading to β-catenin accumulation in the cytoplasm. β-catenin then subsequently translocates to the nucleus where it binds with TCF/LEF and other 
co-activators e.g. CREB binding protein (CBP) to mediate transcription of genes and microRNAs responsible for proliferation and growth. APC: Adenomatous polypo-
sis coli; NLK: Nemo-like kinase; p: Phosphorylated; Ub: Ubiquitinated. 
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in stable β-catenin that consequently accumulates in the 
nucleus. Mao et al[44] associated nuclear β-catenin accu-
mulation to β-catenin mutation, non-invasive form of  
tumour and good prognosis. HCC tumours with mutant 
nuclear β-catenin resulted in a better 5-year survival 
than HCC tumours with wild-type nuclear β-catenin ac-
cumulation. This is suggestive of  the fact that wild-type 
β-catenin accumulation and mutant β-catenin accumula-
tion are not equivalent. Furthermore, in this study of  37 
HCC tumours with nuclear mutant β-catenin accumula-
tion, 19 mutations occurred at the sites of  GSK3β phos-
phorylation (Ser45, Ser33, Ser37 and Thr41), 3 tumours 
had β-catenin deletions, and 15 mutations were reported 
at other sites. However, several studies have correlated 
nuclear β-catenin accumulation to tumour progression 
and poor prognosis[43,45,46]. Kondo et al[46] reported that 
β-catenin accumulation and β-catenin mutation do not 
occur early in hepatocarcinogenesis, but could be as-
sociated with malignant progression of  HCC. Similar to 
these findings, Inagawa et al[45] observed poor prognosis 
in HCC patients with nuclear β-catenin accumulation 
in grade Ⅲ HCC tumours and not in grade Ⅰ or grade 
Ⅱ HCC tumours. Furthermore, nuclear β-catenin ac-
cumulation in HCC has also been correlated to Ki67 
(a marker for tumour cell proliferation), suggesting 
that β-catenin promotes tumour progression[43]. The 
discrepancy in β-catenin accumulation and HCC prog-
nosis could be due to the type of  β-catenin mutations. 
Functional studies on the role of  different mutations on 
β-catenin stability may offer insights into mechanisms 
involved in β-catenin regulation. Other reasons for the 
discrepancy may include tumour histology and the size 
of  the tumour. Additionally, the presence of  β-catenin 
mutations demonstrates different phenotypical features 
in HCC. Cieply et al[47] reported that HCC tumours har-
bouring a missense mutation at exon 3 exhibit a more 
aggressive phenotype and may develop HCC without 
cirrhosis compared to HCC with non-mutated β-catenin. 
Thus, β-catenin mutations may serve as an independent 
risk factor for the development of  HCC in the absence 
of  cirrhosis. Greater tumour size has also been reported 
in HCC tumours with β-catenin mutations as compared 
to those without mutation in β-catenin[48]. Some stud-
ies have correlated cytoplasmic β-catenin (non-nuclear 
β-catenin) with poor cellular differentiation, large tu-
mour size (> 5 cm in diameter) and short disease-free 
survival[41]. For reasons not yet elucidated, HCV-associat-
ed HCC has a greater frequency of  β-catenin mutations 
than the HBV-associated type[42].

Several studies on transgenic animal models have 
shown that overexpression of  mutant or stable forms of  
β-catenin on its own is not sufficient to induce tumours 
in liver[49-51]. However, deletion of  APC in mice results in 
hepatomegaly, hepatocyte hyperplasia and rapid mortal-
ity[52]. Thus, β-catenin mutations or accumulation may co-
operate with other genes or signalling pathways to result 
in hepatocarcinogenesis. However, it is also important to 
take into account the functional roles of  APC that are 

independent of  β-catenin, e.g. APC maintains epithelial 
integrity in non-transformed mouse mammary epithelial 
cells[53] and it regulates cell cycle progression through the 
S phase by inhibiting DNA replication via direct interac-
tion with DNA in colon cancer cell lines[54]. New mouse 
models are required that mimic irregular Wnt/β-catenin 
pathway to understand the role of  this pathway as well as 
its therapeutic implications.

Wnt/β-catenin pathway target genes in HCC
Several β-catenin target genes in association with liver 
carcinogenesis were identified by their high expression in 
chronic liver diseases and HCC. However, their specific 
role in hepatocarcinogenesis remains unknown. Fre-
quent amplification and overexpression of  c-Myc and 
cyclin D1 in HCC is associated with cytoplasmic and 
nuclear β-catenin accumulation along with poor prog-
nosis[55-61]. However, there is little consensus on whether 
the overexpression of  c-Myc and cyclin D1 is a result 
of  mutations in β-catenin. Cadoret et al[49] did not report 
c-Myc or cyclin D1 induction in the liver of  transgenic 
mice that express a mutant form of  β-catenin, although 
such mice did exhibit hepatomegaly and marked hepa-
tocellular proliferation. In contrast, de La Coste et al[62] 
reported activating somatic mutations in β-catenin in 
50% of  hepatic tumours in c-Myc transgenic mice. In 
addition to cyclin D1 and c-Myc, several other genes 
have been identified as downstream molecules of  the 
Wnt/β-catenin pathway in HCC (Table 1). Expression 
of  these genes was discovered in HCC transgenic mice 
or in HCC tissues exhibiting accumulation of  wild type 
or mutated β-catenin. For example, glutamine synthetase 
and orphan G-protein-coupled receptor are frequently 
overexpressed in HCC with mutation in β-catenin[63,64]. 
Further studies are warranted to understand whether 
mutated or stable β-catenin results in transcription of  
different target genes, and if  silencing these target genes 
affects aberrant Wnt/β-catenin pathway in a negative 
feedback manner. More importantly, can the expression 
of  β-catenin target genes in HCC, e.g. glutamine syn-
thetase or cyclin D1, be sufficient to identify β-catenin 
activation? 

314 August 10, 2011|Volume 2|Issue 8|WJCO|www.wjgnet.com

Table 1  Downstream molecules of the Wnt/β-catenin pathway 
with overexpression in hepatocellular carcinoma

Gene Ref.

c-Myc [159]

Cyclin D1 [57]

Dickkopf 1 [126]

Epidermal growth factor receptor [51]

Glutamine synthetase [63]

Glutamate transporter [63]

Leukocyte cell-derived chemotaxin 2 [160]

Ornithine aminotransferase [63]

Orphan G-protein-coupled receptor [64]

Regenerating islet-derived 1 α [161]

Regenerating islet-derived 3 α [161]
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Alterations of Wnt/β-catenin pathway components in 
HCC
Accumulation of  β-catenin can also occur in the absence 
of  β-catenin mutation or due to aberrant expression of  
other members of  the Wnt/β-catenin pathway[65]. Table 2 
summarizes the aberrant expression of  Wnt/β-catenin sig-
nalling components in HCC.

Wnt and FZD
The Wnt family is composed of  nineteen secreted gly-
coproteins[66]. They bind to the extracellular domain of  
FZDs and activate the Wnt/β-catenin pathway[67]. Ten 
different FZD genes have been identified in mammals 
and all of  them encode seven transmembrane recep-
tors[68]. Wnt1 is upregulated in HCC tissues compared 
to adjacent non-tumour tissues and its expression has 
been associated with tumour recurrence[69]. Furthermore, 
three other Wnt genes (Wnt3, Wnt4 and Wnt5A), and 
three FZD genes (FZD3, FZD6 and FZD7) are also up-
regulated in HCC tissues and preneoplastic peritumoural 
tissues as compared with normal liver tissues, suggesting 
that their overexpression may be an early event in hepa-
tocarcinogenesis. However, only the overexpression of  
FZD7 has been associated with nuclear and/or cytoplas-
mic accumulation of  β-catenin in HCC[70-72].

GSK3β, CKIα, Axin and APC 
There are no reports of  mutations or aberrant expression 
of  CKIα in HCC. A few studies have reported overex-
pression of  phosphorylated GSK3β (phospho-GSK3β, 

inactive form of  GSK3β) in HCC cells and tissues, but 
this has not been found to be associated with β-catenin 
accumulation[73,74]. 

There are two Axin genes. Axin1 is constitutively 
expressed, whereas Axin2 (also known as Axil or Con-
ductin) is induced by Wnt/β-catenin signalling and takes 
part in a negative feedback loop[75]. Kim et al[76] recently 
observed reduced Axin1 expression only in HCC tissues 
and not in cirrhotic nodules, implying that its reduced ex-
pression is independent of  cirrhosis. There are currently 
no reports of  Axin2 expression in HCC. However, Axin1 
and Axin2 mutations are rare in HCC occurring in only 
10% and 3% of  HCC cases, respectively[48,77,78]. A majority 
of  these mutations are frameshift or nonsense mutations 
and more than half  of  HCC cases with Axin1 or Axin2 
mutations have β-catenin accumulation in the cytoplasm 
or nucleus[77]. Interestingly, Zucman-Rossi et al[79] recently 
demonstrated that the loss of  Axin1 function is not 
equivalent to gain-of-function of  β-catenin, suggesting 
that Axin1 could also be participating in other pathways in 
HCC. APC mutations are very rare in HCC and promoter 
methylation has been reported to play an important role 
in its inactivation[80]. 

Dvl and Peptidyl-prolyl cis/trans isomerase
Dvl is a positive regulator of  Wnt/β-catenin signalling 
and prevents GSK3β from phosphorylating β-catenin, 
leading to β-catenin stabilisation[81]. Its overexpression 
has been shown to be critical in Wnt/β-catenin signal-
ling activation and β-catenin accumulation in various 
cancers including HCC[82]. Two inhibitors of  Dvl have 
been identified including Prickle-1[82] and human homo-
logue of  Dapper[83] both of  which are reduced in HCC 
and their reduced expression has significant association 
with β-catenin accumulation. Peptidyl-prolyl cis/trans 
isomerase (PIN1) is another positive regulator of  the 
Wnt/β-catenin pathway and functions by inhibiting the 
interaction between β-catenin and APC[84]. It is also over-
expressed in more than 50% of  HCC cases and this has 
been correlated to increased β-catenin and cyclin D1 ac-
cumulation. Furthermore, β-catenin mutation and PIN1 
overexpression are mutually exclusive events in HCC, 
suggesting that mechanisms other than β-catenin muta-
tion also lead to β-catenin stabilisation and accumula-
tion[65].

TCF/LEF
The human TCF/LEF family consists of  four members, 
LEF-1, TCF-1, TCF-3 and TCF-4, and all members con-
tain a conserved high mobility group box to bend DNA 
to allow binding of  transcription factors, a β-catenin-
binding domain to bind β-catenin and a transcription re-
pression domain to recruit co-repressors like Groucho[85]. 
When β-catenin translocates to the nucleus, it binds to 
the β-catenin-binding domain of  TCF/LEF and activates 
transcription of  target genes. The TCF/LEF family has 
several spliced forms with unknown functional signifi-
cance and it is suggested that they may activate preferen-
tial genes[86]. In HCC, mutations of  TCF-4 are rare with 
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Table 2  Aberrant expression of Wnt/β-catenin pathway com-
ponents in liver cancer

Component Expression in 
tumour tissues 

vs  non-tumour/
healthy tissues

Incidence 
(%)

Method Ref.

β-catenin High 40-70 IHC [40-43]

Wnt1 High 41 PCR [69]

Wnt3 High 39-76 PCR [70,71]

Wnt4 High 20 PCR [71]

Wnt5A High 25 PCR [71]

FZD3 High 41 PCR [71]

FZD6 High 31 PCR [71]

FZD7 High 33-90 PCR [70-72]

phospho-GSK3β High 52 IHC [73]

Axin1 Low 67 IHC [76]

Dvl High 71 Western 
blotting

[82]

Prickle-1 Low 55 PCR [82]

HDPR1 Low 58 PCR [83]

PIN1 High 53 Western 
blotting

[65]

TCF-4 High 91 PCR [87]

LEF-1 High 52 IHC [88]

CDH17 High 72 IHC [90]

CDH17: Cadherin-17; Dvl: Dishevelled; FZD: Frizzled; phospho-GSK3β: 
Phosphorylated glycogen synthase kinase 3β; HDPR1: Human homologue 
of Dapper; IHC: Immunohistochemistry; LEF: Lymphoid enhancer 
factor; PCR: Polymerase chain reaction; PIN1: Peptidyl-prolyl cis/trans 
isomerase; TCF: T-cell factor.
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Jiang et al[87] reporting mutations in 2 of  32 HCC cases, 
whereas Cui et al[25] did not report any mutation in 34 
HCC cases. However, overexpression of  TCF-4 in HCC 
tissues has been correlated to c-Myc overexpression, tu-
mour capsule status and intrahepatic metastasis[87]. LEF-1 
is also overexpressed in HCC and associated with cyclin 
D1 overexpression, but it is not found to be correlated 
with any clinicopathological parameters[88]. Therefore, it 
is not known whether the aberrant expression of  TCF-4 
and LEF-1 is a primary event in HCC or a result of  ab-
errant Wnt/β-catenin signalling in HCC. Expression of  
other TCF/LEF family members in HCC has not been 
reported. 

Cadherin-17
Cadherin-17 (CDH17) belongs to the cadherin superfam-
ily comprising transmembrane glycoproteins that mediate 
calcium-dependent cell-cell adhesion[89]. Since β-catenin 
plays an essential role in cadherin-mediated cell-cell adhe-
sion as well as in Wnt/β-catenin signalling, our laboratory 
identified CDH17 to affect Wnt/β-catenin signalling in 
HCC. CDH17 is overexpressed in HCC cells and in more 
than 70% of  HCC cases[90]. In addition, overexpression 
of  an alternative splice variant of  CDH17 (lacking exon 7) 
in more than 50% of  HCC is correlated to tumour recur-
rence, venous infiltration and reduced overall survival[91]. 
Interestingly, the CDH17 splice variant is found to be 
triggered by two single nucleotide polymorphisms that are 
identified as genetic factors contributing to the high devel-
opment of  HCC in Asia[92]. Furthermore, RNA interfer-
ence (RNAi)-mediated knockdown of  CDH17 in meta-
static HCC cells has been shown to inhibit tumourigenesis 
in vivo and reduce Wnt/β-catenin signalling by decreasing 
phospho-GSK3β and cyclin D1. This was accompanied 
by re-localisation of  β-catenin to the cytoplasm[93].

Tetraspanins
Tetraspanins are transmembrane proteins known to af-
fect a wide range of  functions including cell-cell adhe-
sion, cell growth and suppression of  metastasis[94]. The 
recent involvement of  tetraspanins CD9 and CD82 in a 
novel mechanism to antagonize Wnt/β-catenin signalling 
by exosomal release of  β-catenin is an exciting avenue to 
explore in HCC. This exosomal release of  β-catenin may 
be compromised in cancers with high Wnt/β-catenin 
signalling. CD9 and CD82 are suppressors of  metastasis 
and their expression is reduced in HCC with portal vein 
invasion and/or intrahepatic metastasis[95]. Chairoungdua 
et al[38] demonstrated Wnt/β-catenin signalling inhibition 
in a metastatic cell line following restoration of  CD82 
expression. Thus, these tetraspanins may suppress metas-
tasis by antagonizing Wnt/β-catenin signalling by target-
ing β-catenin for exosomal release. It will be important to 
investigate the correlation between CD9 and CD82 with 
β-catenin in HCC.

MicroRNAs
MicroRNAs (miRNAs) are small non-coding RNAs that 

regulate post-transcriptional gene expression[96]. They 
are aberrantly expressed in HCC compared to their non-
tumour liver tissues[97-99] and contribute to liver tumou-
rigenesis[100,101]. Several miRNAs have been identified 
to affect the Wnt/β-catenin pathway[102]. Using a global 
microarray-based miRNA profiling approach, Ji et al[103] 
identified miRNA-181 (miR-181) to be upregulated in 
HCC tumours that were positive for epithelial cell adhe-
sion molecule (EpCAM) and AFP (EpCAM+AFP+). Such 
tumours demonstrated cancer stem cell properties and 
an activation of  Wnt/β-catenin signalling. In vitro studies 
showed a correlation between overexpression of  miR-181 
and β-catenin in HCC cells and further demonstrated 
that miR-181 promoted the stemness of  EpCAM+AFP+ 
HCC cells by targeting CDX2 (caudal type homeobox 
transcription factor 2), GATA6 (GATA binding protein 6, 
a hepatic transcriptional regulator of  differentiation) and 
nemo-like kinase (NLK, an inhibitor of  Wnt/β-catenin 
signalling). These findings provide evidence that miR-181 
is transcriptionally activated by Wnt/β-catenin signalling 
and in turn inhibits its regulators. In addition, miR-375 is 
another miRNA involved in the Wnt/β-catenin pathway 
and it is downregulated by β-catenin in HCC[104]. How-
ever, the function of  miR-375 and the mechanisms by 
which it is regulated by β-catenin are not clear. Further 
research is needed to investigate the involvement of  miR-
NAs in Wnt/β-catenin signalling in HCC.

Yes-associated protein
The Hippo signalling pathway controls organ size by 
regulating cell proliferation and apoptosis. The signalling 
cascade of  this pathway ultimately leads to the phosphor-
ylation of  yes-associated protein (YAP), a downstream 
effector of  this pathway. YAP is a transcriptional co-ac-
tivator and its phosphorylation causes it to remain in the 
cytoplasm and prevent the transcription of  genes respon-
sible for cell proliferation and inhibition of  apoptosis[105]. 
Recently, a few studies have described the Hippo pathway 
as a negative regulator of  Wnt/β-catenin signalling[106,107]. 
Varelas et al[106] reported phosphorylated Taz (component 
of  the Hippo pathway) to inhibit the activation of  Dvl, 
thereby preventing β-catenin stabilisation and activation. 
Heallen et al[107] recently showed nuclear interaction of  
unphosphorylated YAP and β-catenin in cardiac cells of  
mice with dysregulated Hippo signalling. These mice had 
enlarged hearts and overexpressed Wnt/β-catenin target 
genes. Additionally, dysregulation of  the Hippo signalling 
pathway and inhibition of  β-catenin resulted in restric-
tion of  cardiomyocyte overgrowth. This study offered 
insights into the direct interaction between the down-
stream effectors of  these two important pathways. In 
HCC, nuclear overexpression of  YAP (unphosphorylated 
YAP) has been reported in 62% of  HCC and has been 
associated with short disease-free survival and overall 
survival[108]. Since β-catenin is also found to accumulate 
in the nucleus of  HCC patients[43,45], further studies are 
warranted to understand the clinical implications of  YAP 
and β-catenin overexpression in HCC.
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Wnt SiGnallinG antaGoniStS
As mentioned above, there are many factors affecting the 
Wnt/β-catenin pathway in HCC. However, the occur-
rence of  these factors is not absolute in each clinical case 
of  HCC. Therefore, the involvement of  other factors in 
modulating the Wnt/β-catenin pathway is speculated. 
Factors upstream of  GSK3β/Axin/APC protein com-
plex, like those occurring at the extracellular level, may 
also be those involved. For this, secreted Wnt antagonists 
are distinguished examples. These antagonists can be 
divided broadly into two groups based on their different 
mechanisms in preventing the interaction of  Wnt with 
LRP5/LRP6[109]. Group Ⅰ consists of  Wise, sclerostin 
and dickkopfs (DKKs) that bind directly to LRP5/LRP6. 
Group Ⅱ comprises Wnt inhibitory factor and secreted 
frizzled-related protein that act by directly binding to Wnt 
proteins and prevent the formation of  the Wnt receptor 
complex. This review will focus on the role of  DKKs on 
the Wnt/β-catenin pathway in HCC.

Structure of DKKs
The DKK family consists of  four members (DKK1 to 
DKK4). They are secreted glycoproteins of  225-350 ami-
no acids with molecular weights between 25 and 29 kDa 
for DKK1, DKK2 and DKK4, and 38 kDa for DKK3. 
DKKs contain two conserved cysteine-rich domains, 
each of  which is separated by a linker region of  various 
lengths[110]. Each cysteine-rich domain contains ten cys-
teine residues. The amino-terminal cysteine-rich domain 
(Cys-1) is unique to each DKK, whereas the carboxyl-
terminal cysteine-rich domain (Cys-2) is highly conserved 
among all members of  the DKK family. The position 
of  each cysteine residue in the Cys-2 domain closely re-
sembles proteins in the colipase family[111]. Because of  the 
role of  colipases in lipid hydrolysis[112], the presence of  
this feature suggests the ability of  DKKs to interact with 

lipids in regulating Wnt/β-catenin signalling[111]. Among 
all DKKs, DKK3 is the most divergent member[113]. It 
contains an extended amino-terminal domain preceding 
the Cys-1 region and an extended carboxyl-terminal do-
main following the Cys-2 domain. All DKKs possess sev-
eral potential sites for proteolytic cleavage by furin-type 
proteases, indicating that they may be subjected to post-
translational modifications[114]. Figure 2A and B illustrate 
the differences between different DKKs. 

Functions of DKKs on the Wnt/β-catenin pathway 
Members of  the DKK family differ not only in their 
structures but also in their mRNA expression in HCC 
and in their ability to modulate Wnt/β-catenin signalling. 
Table 3 summarizes these differences between members 
of  the DKK family. 

DKK1 is the most studied member of  the DKK 
family. It was originally identified as a head inducer when 
its mRNA was injected into Xenopus embryos[115]. Experi-
ments inactivating Xenopus DKK1 with anti-DKK1 anti-
bodies[115] and involving DKK1 knockout mice[116] show 
a lack of  anterior head structures, highlighting its impor-
tance in head formation. DKK1 inhibits Wnt-induced 
stabilisation of  β-catenin and two models have been pro-
posed. The first model proposes that DKK1 binds to the 
extracellular domain of  LRP5/LRP6 and prevents the 
formation of  the FZD-Wnt-LRP5/LRP6 complex in re-
sponse to Wnt, thereby attenuating Wnt activity[117]. The 
second model proposes that DKK1 inhibits Wnt signal-
ling by inducing clathrin-dependent internalisation of  
LRP6[37]. However, contrary to the results of  Yamamoto  
et al[37], Blitzer et al[118] used mouse fibroblast cells to show 
that clathrin-dependent internalisation of  LRP6 is required 
to propagate Wnt/β-catenin signalling, and disturbing this 
clathrin-mediated endocytosis blocks Wnt activity. These 
recent findings suggest that mechanisms of  DKK1 an-
tagonistic activity may vary in different cell types.

Figure 2  Domain structure and phylogenetic tree of human dickkopf proteins. A: Each dickkopf (DKK) contains two cysteine-rich domains, each of which is 
separated by a linker region of various lengths. The amino-terminal cysteine-rich domain (Cys-1) domains are unique to each DKK, whereas the carboxyl-terminal 
cysteine-rich domain (Cys-2) domains are conserved among all members of the DKK family; B: Phylogenetic tree of the DKK proteins. Amino acid sequences were 
aligned by the Clustal W program, and the phylogenetic tree was constructed by the neighbour joining method. The scale bar indicates the estimated number of sub-
stitutions per 50 amino acids. SP: Signal peptide.
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In addition to binding to LRP5/LRP6, DKK1 also 
binds to Kremen 1 (Krm1) and Krm2, which belong to 
another class of  transmembrane receptors[119,120]. DKK1 
binds to Krm1 and Krm2 with high affinity and this 
inhibits Wnt/β-catenin signalling[121]. Despite that, gene 
knockout studies in mice have shown that Krm1 and 
Krm2 are not universally required for DKK1-associated 
function[122]. It was demonstrated that DKK1 mutants are 
able to antagonize Wnt activity without binding to Krm1 
or Krm2[123]. Therefore, Krms may not be essential for 
DKK1 function and further studies are needed to under-
stand their involvement in Wnt/β-catenin signalling.

Among all DKKs, DKK4 demonstrates similar an-
tagonistic activity towards the Wnt/β-catenin pathway as 
DKK1 by binding to LRP5/LRP6 and Krms[120]. While 
functioning upstream of  the Wnt/β-catenin pathway, 
DKK1 and DKK4 are also downstream targets of  the 
Wnt/β-catenin pathway, creating a negative feedback 
loop to regulate Wnt/β-catenin signalling[124,125]. However, 
this feedback mechanism is often abrogated in cancers 
including HCC[125,126].

Like DKK1 and DKK4, DKK2 also binds to LRP5/
LRP6 and Krms. However, DKK2 may serve as an an-
tagonist or an agonist to the Wnt/β-catenin pathway 
depending on cellular context. For instance, overexpres-
sion of  DKK2 in 293 fibroblast cells results in Wnt/
β-catenin pathway activation, whereas co-transfection 
of  DKK2 and Krm2 in the same cell type inhibits this 
pathway[127]. To explain this phenomenon, Chen et al[128] 
identified YWTD β-propeller domains of  LRP5/LRP6 
as the docking sites for Cys-2 of  mouse DKK2, while 
this Cys-2 domain also contains binding site for Krm1 
and Krm2. Therefore, the expression of  Krms serves as 
a switch for the dual role of  DKK2 on the Wnt/β-catenin 
pathway. 

Unlike other DKKs having a role in Wnt/β-catenin 
signalling by binding to LRP5/LRP6 and Krms, the 
receptor for DKK3 has not been identified and its ef-
fect on this pathway remains unclear. Earlier studies in 
Xenopus suggested that DKK3 is not involved in Wnt/
β-catenin signalling[113,115], but recent studies have demon-

strated that DKK3 is associated with a reduction in cyto-
plasmic and nuclear accumulation of  β-catenin in Saos-2 
osteosarcoma cells, lung cancer cells and cervical cancer 
cells[129-131]. Interestingly, Lee et al[130] identified β-TrCP as 
a binding partner to DKK3, and possibly DKK3 may 
reduce β-catenin levels via ubiquitination. Therefore, the 
potential role of  DKK3 in Wnt/β-catenin pathway re-
mains to be determined.

Since different DKKs exhibit different effects on 
Wnt/β-catenin activity, it will be important to study the 
mechanisms by which each member of  the DKK family 
exerts its effect on the Wnt/β-catenin pathway. Further-
more, as reported by Yamamoto et al[37] and Blitzer et al[118], 
DKKs may have different mechanisms of  action in dif-
ferent cell types. Additionally, sharing the same receptor 
may not imply exhibiting the same effect as in the case 
of  DKK1 and DKK2. For instance, they both bind to 
LRP5/LRP6 and Krms, but DKK1 serves as an antago-
nist, whereas DKK2 serves as both an agonist and an 
antagonist to the Wnt/β-catenin pathway.

DKKs in HCC
As mentioned above, the Wnt/β-catenin pathway plays a 
critical role in HCC and not surprisingly, Wnt inhibitors, 
including DKKs, are involved. More research studies 
have been dedicated to studying the role of  DKKs in 
HCC over the past few years. 

DKK1
Several studies have reported overexpression of  DKK1 
in HCC cell lines and tissues[126,132,133], while Yu et al[126] was 
the first to demonstrate a correlation between DKK1 
overexpression and cytoplasmic/nuclear β-catenin accu-
mulation in HCC. It was demonstrated through in vitro as-
says that DKK1 failed to inhibit TCF-mediated transcrip-
tional activity in HCC cells with cytoplasmic or nuclear 
β-catenin accumulation, suggesting an abrogation of  
the negative feedback loop of  DKK1 in HCC. Survival 
analysis correlated overexpression of  DKK1 with poor 
prognosis of  HCC patients, and DKK1 was identified as 
an independent prognostic marker for overall survival and 

Cys-1: Amino-terminal cysteine-rich domain; Cys-2: Carboxyl-terminal cysteine-rich domain; HCC: Hepatocellular carcinoma; LRP: Lipoprotein receptor-
related protein; DKK: Dickkopf.

Table 3  Differences between the DKK family members

Property DKK1 DKK2 DKK3 DKK4 Ref.

Variants Unknown Unknown   2 Unknown [130]

Location of Cys-1 85-138 amino acids 78-127 amino acids 147-195 amino acids 41-90 amino acids [110]

Location of Cys-2 189-263 amino acids 183-256 amino acids 208-284 amino acids 145-218 amino acids [110]

Length of linker region 
(number of amino acids)

50 56 12 54 [110]

Receptor LRP5/LRP6 LRP5/LRP6 Not identified LRP5/LRP6 [113]

Activity in Wnt/β-catenin 
signalling in HCC

Antagonist Not reported Not reported Not reported [126]

Expression in HCC tissues Overexpressed Reduced Reduced Not reported [126,143]

Phenotype of knockout 
mice

Embryonic lethality Viable, fertile, blindness, 
osteopaenia 

Viable, fertile, hyperactive, 
increased IgM, natural killer 
cells and haematocrit levels 

Not reported [116,162-164]
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disease-free survival. The 5-year overall survival and dis-
ease-free survival rates for HCC patients overexpressing 
DKK1 (43.4% and 34.2%, respectively) were significantly 
lower than HCC patients with reduced DKK1 expres-
sion (59.3% and 55.2%, respectively). Although elevated 
levels of  AFP remain the gold standard for screening 
HCC, there are, however, a subgroup of  patients who 
have HCC and normal levels of  AFP. When patients were 
stratified according to AFP levels, DKK1 overexpression 
demonstrated worse prognosis for AFP-normal HCC 
patients, suggesting that DKK1 may serve as a prognostic 
marker for this group of  patients. Furthermore, HCC 
patients with high DKK1 and β-catenin expression also 
showed poor prognosis. The 5-year overall survival and 
disease-free survival rates were 66.0% and 59.8%, respec-
tively, for HCC patients without DKK1 and β-catenin 
expression, and 46.0% and 18.0% for HCC patients with 
high DKK1 and high β-catenin expression[126]. This study 
highlights the important role of  DKK1 in Wnt/β-catenin 
signalling in HCC.

Other than total AFP levels, lens culinaris agglutinin–
reactive AFP (AFP-L3) and prothrombin induced by 
vitamin K absence-Ⅱ (PIVKA-Ⅱ) have been reported 
as tumour markers for HCC. High serum AFP-L3 levels 
have recently been reported as a prognostic marker even 
in HCC patients with low AFP levels[134]. Additionally, 
high serum levels of  PIVKA-Ⅱ have been associated 
with advanced HCC with portal vein invasion[135].

Because of  its high expression in HCC tissues and its 
secretory nature, DKK1 is hypothesized to be present 
at high levels in the serum of  HCC patients. However, 
there are no studies evaluating high DKK1 serum levels 
on HCC progression or prognosis and it would be im-
portant to conduct such a study to understand the clinical 
significance of  DKK1 in HCC. On the other hand, high 
levels of  DKK1 in patients’ serum are associated with 
poor prognosis in various cancers including oesophageal 
squamous cell carcinoma[136], lung cancer[137], breast can-
cer[138] and cervical cancer[138], suggesting that the serum 
level of  DKK1 may also reflect the prognosis of  HCC 
patients. In multiple myeloma, high DKK1 serum levels 
are associated with osteolytic bone lesions[139] and patients 
responding to anti-myeloma treatment show a decrease 
in DKK1 serum levels[140], suggesting the involvement of  
DKK1 in this aspect. Recently, Fulciniti et al[141] evaluated 
the effect of  anti-DKK1 monoclonal antibody (BHQ880) 
in a multiple myeloma mouse model and found that it 
induced bone formation and inhibited tumour-induced 
osteolytic bone lesions. Like multiple myeloma, HCC is 
also osteolytic in nature with 20% of  HCC patients hav-
ing bone metastasis[142], making it important to assess the 
role of  DKK1 in bone metastasis in HCC.

DKK2
In HCC, a higher level of  DKK2 methylation was de-
tected in HCC tissues compared to corresponding non-
cancerous cirrhotic tissues[143], suggesting its role in 
hepatocarcinogenesis. Epigenetic silencing of  DKK2 
has also been reported in gastric cancer[144], oesophageal 

squamous cell carcinoma[145] and renal cell carcinoma[146]. 
In renal cell carcinoma, no significant relationship was 
found between DKK2 methylation and β-catenin expres-
sion[146]. Although the effect of  DKK2 on Wnt/β-catenin 
signalling depends on the expression of  LRP5/LRP6 
and Krms, DKK2 expression has not been studied in 
the context of  these molecules. Furthermore, there are 
currently no reports on the effect of  DKK2 on Wnt/
β-catenin signalling in HCC.

DKK3
There are few reports on the clinical significance of  
DKK3 in HCC[143,147]. Reduction in DKK3 expression 
is associated with increased frequency of  methylation in 
HCC tissues compared to corresponding non-cancerous 
cirrhotic tissues, implying that DKK3 methylation may 
not be an early event in HCC, but may function in the 
progression of  HCC. Furthermore, DKK3 methylation 
has been significantly associated with short progression-
free survival in HCC patients[143]. The effect of  DKK3 
on Wnt/β-catenin signalling has not been reported in 
HCC, but reduced DKK3 expression has been shown to 
correlate with β-catenin accumulation in lung cancer[131]. 
Although there are no reports of  DKK3 level in HCC 
serum, reduced DKK3 serum levels in ovarian cancer are 
associated with the presence of  lymph node metastasis, 
and high DKK3 serum levels have been associated with 
large tumours in cervical cancer[148]. Interestingly, mul-
tigene methylation status of  a combination of  Wnt an-
tagonist genes, including DKK3 and others, in the serum 
have been proposed as markers for diagnosis, staging and 
prognosis of  renal cell carcinoma[149]. Although different 
Wnt antagonists may function differently, their cumula-
tive silencing may serve as a molecular marker for cancer 
detection.

DKK4
DKK4 is least studied in cancer. It is located on chromo-
some 8p11.2-p11.1 and this chromosomal region experi-
ences frequent loss of  heterozygosity in HCC[150]. This 
may explain reduced expression of  DKK4 in HCC cell 
lines without detection of  DKK4 methylation[144]. Cur-
rently there are no reports on DKK4 expression in HCC 
tissues or its effect on Wnt/β-catenin signalling in HCC. 
Recently, Hirata et al[151] reported a reduction of  Wnt 
target genes after ectopic expression of  DKK4 in renal 
carcinoma-derived Caki cells. However, overexpression of  
DKK4 also resulted in activation of  the JNK pathway 
and enhanced tumour growth in vivo. This suggests that 
DKK4 may be involved in pathways other than Wnt/
β-catenin signalling.

potential therapeutic tarGetS 
For Wnt/β-catenin SiGnallinG in 
hcc
Mounting evidence suggests the role of  β-catenin stabi-
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lisation in promoting tumour proliferation in HCC pa-
tients[43,152]. Such observations make Wnt/β-catenin sig-
nalling an attractive target for cancer therapy. In line with 
this hypothesis, small molecule inhibitors have been de-
veloped to hinder Wnt/β-catenin signalling by disrupting 
protein-protein interactions of  components of  this path-
way. These include the fungal derivatives, PKF115-584 
and CGP049090, that function to impede the interaction 
between β-catenin and the TCF complex[153]. Emami et 
al[154] reported another molecule called ICG-001, which 
disrupts the interaction between β-catenin and CBP. 
More recently, pyrvinium pamoate, an anthelmintic drug, 
was shown to inhibit the Wnt/β-catenin pathway by allo-
steric activation of  CKIα and subsequently increased lev-
els of  β-catenin destruction complex secondary to Axin 
stabilisation[155]. Therapeutic antibodies against Wnt1 and 
Wnt2 have also demonstrated Wnt/β-catenin signalling 
inhibition and suppression of  tumour growth in vivo[156,157]. 
β-catenin suppression through chemoprophylaxis may 
offer another alternative therapy. R-Etodolac (enantiomer 
of  the non-steroidal anti-inflammatory drug Etodolac) 
reduced proliferation and survival of  two HCC cell lines 
(HepG2 and Hep3B) by decreasing the total and active 
forms (dephosphorylated at Ser33/Ser37/Thr41) of  
β-catenin[158]. Further studies will be important to access 
clinical implications of  these potential targets in HCC. 

perSpectiVeS
Aberrant activation of  Wnt/β-catenin signalling is an 
important event in HCC that leads to transcription of  
various target genes involved in carcinogenesis. It will be 
clinically relevant to target the Wnt/β-catenin pathway 
and regulate its activity. However, since the pathway can 
be aberrantly activated by the dysfunction of  several 
genes, it is important to ensure that when one member 
is targeted the other functions of  the same target, if  any, 
are not disrupted. For instance, β-catenin is involved 
in the Wnt/β-catenin pathway and plays a critical role 
in cell-cell adhesion. Therefore, care should be taken 
in designing reagents for disruption of  molecules with 
dual functions. For tumours with mutated β-catenin, 
one approach could be to utilize RNAi targeting mutant 
β-catenin for therapy, as this will target selectively for 
tumour cells, but not healthy cells. However, mutant 
β-catenin-negative tumours with aberrant Wnt/β-catenin 
signalling offer the greatest challenge as there could be a 
multitude of  reasons for aberrant Wnt/β-catenin activa-
tion. Therefore, altering Wnt/β-catenin signalling may 
be advantageous for therapeutic means but there are ca-
veats and limitations involved.

In line with these investigations, DKKs have been 
discovered over the past 12 years for their abilities to in-
terfere in the Wnt/β-catenin pathway. Since then, much 
effort has been dedicated to exploring their functions 
and implications in liver development and disease. Dif-
ferent DKKs exhibit different expressions and functions 
in various cancers. Some important questions remain to 

be answered. For example, where are DKKs localised in 
HCC cells? Is their expression associated with cytoplas-
mic/nuclear β-catenin accumulation in HCC cells? Do 
DKKs have prognostic value in HCC patients? Do they 
exert their effects on both wild type and mutant β-catenin 
in HCC cells? Do DKKs degrade β-catenin via a ubiq-
uitination-dependent mechanism? Are different DKKs 
involved in different stages of  HCC development? What 
is the receptor for DKK3? Are DKKs redundant in their 
functions? Furthermore, the negative feedback mecha-
nism of  DKK1 also warrants further research. Although 
DKK1 inhibits Wnt/β-catenin signalling, its overexpres-
sion has no effect on HCC cells with cytoplasmic/nuclear 
β-catenin accumulation[126]. This may be suggestive of  an 
abrogated negative feedback loop or it may also imply 
that the inhibitory effect of  DKK1 is only functional un-
til reaching a point of  saturation beyond which it cannot 
exert its inhibitory effect. In summary, compared to the 
overwhelming body of  evidence showing the functional 
role of  Wnt/β-catenin signalling in HCC, the biological 
and physiological roles of  DKKs in relation to this path-
way remain to be discovered. DKKs provide a new av-
enue to explore and they add another level of  complexity 
to the already complex Wnt/β-catenin signalling in HCC.
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