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Abstract—Evolutionary Monte Carlo (EMC) algorithm is an
effective and powerful method to sample complicated distribu-
tions. Short adjacent repeats identification problem (SARIP),
i.e., searching for the common sequence pattern in multiple
DNA sequences, is considered as one of the key challenges
in the field of bioinformatics. A recently proposed Markov
chain Monte Carlo (MCMC) algorithm has demonstrated its
effectiveness in solving SARIP. However, high computation time
and inevitable local optima hinder its wide application. In this
paper, we apply EMC to parallelize the MCMC algorithm
to solve SARIP. Our proposed EMC scheme is implemented
on a parallel platform and the simulation results show that,
compared with the conventional MCMC algorithm, EMC not
only improves the quality of final solution but also reduces the
computation time.

Keywords-Evolutionary Monte Carlo, parallel tempering,
repetitive pattern, short adjacent repeats, sequence motif

I. INTRODUCTION

Short tandem repeats (STR) analysis has been drawing
extensive attention in the field of forensics and bioinfor-
matics since the late 1990s. A tandem repeat is a segment
containing two or more contiguous, approximate copies of a
pattern of nucleotides [1]. The pattern width of STR ranges
from 2 to 16 base pairs (bp). An example of STR would be

. . .
︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴

︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴

︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴 . . . ,

where the sequence pattern (also called repeat unit)
𝑇𝐺𝐺𝐶𝐴 repeats three times. STR can be used for genetic
fingerprinting [2]. Recent research efforts have also studied
their association with genetic diseases [3]. For example,
Huntington’s disease, which affects muscle coordination, is
the result of explosive growth in the copy number of a
trinucleotide pattern 𝐶𝐴𝐺 [4].

We generalize STR by introduce short adjacent repeats
(SAR) that allows gaps between neighboring repeat units.
Such inter-unit insertions frequently occur due to errors in
genetic manipulations and mutations during the evolutionary
process. As a result, it is possible to have a sequence

. . .
︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴𝐶𝐶

︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴𝑇

︷ ︸︸ ︷
𝑇𝐺𝐺𝐶𝐴 . . .

with the insertions of 𝐶𝐶 and 𝑇 in nature. In other words,
STR is a special type of SAR where the length of any gap
is zero. Note that, besides the application in bioinformatics,
the SAR identification problem (SARIP) can also be used
in data analysis such as recognizing repetitive patterns in
speeches, texts or images. In this paper, we mainly focus on
the problem of identifying SAR in multiple DNA sequences.

Evolutionary Monte Carlo (EMC) algorithm, proposed by
Liang and Wong [5] and further developed by Goswami
and Liu [6], can be considered as a method for evolving
a population of Markov chain Monte Carlo (MCMC) chains
in an effort to explore multi-modal multivariate distributions.
It can also be regarded as an extension of parallel tem-
pering (PT) algorithm, or replica exchange, originated by
Swenden and Wang [7], and then extended by Geyer [8].
EMC and PT have been successfully applied to solve hard
computational problems in many fields including biology,
chemistry, physics, engineering and material science [9]. The
key idea of EMC and PT is to execute multiple independent
replicas simultaneously under different conditions. Usually
the condition difference is defined by temperature, which
tunes the smoothness of the target distribution. The systems
with high temperature are generally able to sample a wide
range of energy landscape, while those at low temperature
have the ability to explore the “local details”. In the sim-
ulation process, replicas at neighboring temperature levels
are allowed to exchange at certain frequency according
to the Metropolis-Hastings rule. By virtue of the good
balance between exploration and exploitation, EMC is able
to achieve good performance, especially in complex systems
with rough energy landscapes, where canonical Monte Carlo
methods are easily trapped in the local free energy minima.

Due to its population-based nature, EMC is quite suitable
to be performed on parallel machines. Replicas in PT can
be executed concurrently on different processors which
communicate with each other from time to time. Meanwhile,
with the advance of multicore CPU and the improvement of
the network environment, more computation resources are
readily available, rendering parallel and distributed comput-
ing a trend in the future. Thus, in this paper, we implement
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EMC on a parallel platform to improve the quality of the
solution as well as reduce the computation time.

The rest of the paper is organized as follows. In Section
II, we describe the generative model of SARIP as well
as the adopted canonical MCMC algorithm. Section III
addresses our proposed EMC model. Experimental results
are reported and discussed in Section IV. Finally, in Section
V, we summarize the paper and give suggestions for future
investigation.

II. PROBLEM DESCRIPTION

In this section, a brief overview of SARIP is presented in
two parts: generative model and proposed MCMC algorithm.
For more detailed description of this problem, see [10], [11].

A. Generative Model

Given a set of 𝑁 DNA sequences with different lengths
(𝐿𝑛)𝑁×1, R = (𝑅𝑛)𝑁×1 =

(
(𝑟𝑛,𝑙)1×𝐿𝑛

)
𝑁×1

, 𝑟𝑛,𝑙 ∈
{𝐴, 𝑇,𝐶,𝐺}, each of which is embedded with a repeat
segment in a homogeneous background, our goal is to find
the most probable location and structure for each repeat
segment. We denote by A = (𝑎𝑛)𝑁×1 and S = (s𝑛)𝑁×1

the sets of repeat segment starting positions and structures,
respectively. Each s𝑛 is a base-(𝐺+ 1) numeral vector
(𝑔𝑛,𝜔)1×(Ω𝑛−1) , 0 ≤ 𝑔𝑛,𝜔 ≤ 𝐺 where Ω𝑛 is the copy
number, 𝐺 is the maximal allowed gap length, and 𝑔𝑛,𝜔
is the gap length between the 𝜔-th repeat unit and the
(𝜔 + 1)-th repeat unit. All repeat units with predetermined
pattern width 𝐽 are instances sampled from the motif matrix
Θ = (𝜃𝑘,𝑗)4×𝐽 , 𝑘 ∈ {𝐴, 𝑇,𝐶,𝐺}, where 𝜃𝑘,𝑗 specifies
the probability of generating the nucleotide 𝑘 at the 𝑗-
th position. The background distribution can be written
as Φ = (𝜙𝑘)4×1 , 𝑘 ∈ {𝐴, 𝑇,𝐶,𝐺}, where 𝜙𝑘 specifies
the probability of generating the nucleotide 𝑘 at a non-
unit position. For ease of presentation, Figure 1 (adapted
from [11]) shows an example of schematic diagram of the
model, where Ω is the maximal allowed copy number for
all repeat segments. In this example, there are 5 sequences
with corresponding length equal to 𝐿𝑛, 1 ≤ 𝑛 ≤ 5. For
each repeat segment, as represented by the gray area, the
corresponding starting position and structure are shown on
top of it. In order to avoid a trans-dimensional model, we fill
the Ω𝑛-th to the Ω-th elements with the trivial variable −1
for each s𝑛. The background area is painted in white with
dotted borderline. Each white square with solid borderline
represents a gap with length 1.

For Bayesian inference of these independent parame-
ters A, S, Θ, and Φ, we first specify prior knowledge
for each parameter, write the complete data likelihood
𝑃 (R∣A,S,Θ,Φ) and derive the joint posterior probability
𝑃 (A,S,Θ,Φ∣R) via Bayes’ rule. Then, a collapsing tech-
nique [12] is adopted to reduce the dimensionality of the
solution space by integrating out nuisance parameters Θ and
Φ. Lastly, in this 𝑁Ω-dimension space, we explore the target

Figure 1. Schematic diagram of the model under the setting 𝑁 = 5 and
Ω = 9

distribution 𝑃 (A,S∣R) that can give us a whole probability
density landscape. The particular A and S corresponding to
the maximum a posteriori (MAP) of the target distribution
is considered to be the best solution for the input data set
R.

B. MCMC Algorithm

The key idea of addressing this optimization problem is
to use Metropolis-in-Gibbs scheme [13], [14] as shown in
Table I (adapted from [11]). The MCMC algorithm proceed
through iterations after initialization, each of which updates
𝑎𝑛 and s𝑛 one sequence after another in ascending order
from 1 to 𝑁 . Within each iteration, to update the repeat
segment starting position 𝑎𝑛 and structure s𝑛 for the 𝑛-
th sequence, we pretend that the starting positions and
structures of the remaining 𝑁−1 repeat segments are known,
and we stochastically predict 𝑎𝑛 and s𝑛. More specifically,
we use the given information, A[−𝑛] and S[−𝑛], to estimate
the current ‘motif matrix’ Θ̂𝑛 and ‘background distribution’
Φ̂𝑛 so as to determine new 𝑎𝑛 via Gibbs sampling and
new s𝑛 via Metropolis-Hastings sampling sequentially. Here,
A[−𝑛] denotes the set A excluding the element 𝑎𝑛 and S[−𝑛]

denotes the set S excluding the element s𝑛. Intuitively, the
more accurate the estimated motif matrix Θ̂𝑛 and back-
ground distribution Φ̂𝑛 constructed in the predictive update
step, the more accurate the determination of 𝑎𝑛 and s𝑛 in
the following sampling steps, and vice versa.

Table I
THE SCHEMATIC PROCEDURE OF THE MCMC ALGORITHM

Step 1: Initialize A and S;
Step 2: for 𝑛 from 1 to 𝑁 do

2.1: Predictive update Θ̂𝑛 and Φ̂𝑛 via A[−𝑛] and S[−𝑛];
2.2: Sample and update 𝑎𝑛 via 𝑃 (𝑎𝑛∣s𝑛, Θ̂𝑛, Φ̂𝑛,R);
2.3: Sample and update s𝑛 via 𝑃 (s𝑛∣𝑎𝑛, Θ̂𝑛, Φ̂𝑛,R);

Step 3: Repeat Step 2 until monitoring convergence;

Gibbs sampling [15] is employed to renew each 𝑎𝑛.
Conditional on the current values of all other parameters
A[−𝑛] and S, we first break down the sequence 𝑅𝑛 into
overlapping segments of fixed length Ω𝑛𝐽 +

∑Ω𝑛−1
𝜔=1 𝑔𝑛,𝜔 ,

then calculate the corresponding probability of generating
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Figure 2. The full state transition diagram under the setting 𝐺 = 1 and
Ω = 4.

those matching repeat units within each possible segment,
and finally sample the new 𝑎𝑛 according to such probabilis-
tic weights. We use Metropolis-Hastings algorithm [16] to
update each s𝑛 because it is extremely difficult to compute
the normalization constant of 𝑃 (s𝑛∣𝑎𝑛, Θ̂𝑛, Φ̂𝑛,R). In order
to make the Markov chain ergodic and fast-convergent, we
design three types of moves: rear indel (insert a unit behind
the current last unit or delete the current last unit), partial
shift (make a selected sub-segment shifted left or right), and
front indel (insert a unit in front of the current first unit or
delete the current first unit). For more details, see [11]. For
ease of presentation, Figure 2 (adapted from [11]) shows
an example of full state transition diagram for s𝑛. Since the
maximal allowed gap length 𝐺 = 1 and the maximal allowed
copy number Ω = 4, each state of s𝑛 can be described as
a 3-dimension binary vector. For convenience, we erase the
nuisance variable −1 for all vectors. The three categories of
moves are represented by different types of two-way lines.
The upwards directed lines mean deleting a unit while the
backwards directed lines mean inserting a unit within the
repeat segment.

III. IMPLEMENTATION OF EMC ALGORITHM

Generally we sample the points in a target distribution
with the expression

𝜓(𝑥) ∝ 𝑒−𝐸(𝑥)/𝑇 , 𝑥 ∈ ℜ𝑑, 𝑇 > 0

where the objective function 𝐸(𝑥) is interpreted as the
energy of a thermodynamic system, and 𝑇 is the temperature
parameter used to control the shape of the distribution
𝜓(𝑥). Thereby, the higher the temperature, the “flatter”
the target distribution, which means the sampling points
can easily get over the energy barriers. As mentioned in
Section II, 𝑃 (A,S∣R) is our probability density function,
and for our problem we would like to find the maximal
value in the posterior distribution. However, thermodynamic
systems tend to stay in the lowest free energy state, which
is accordingly a minimization problem. Thus, we define the
energy density function 𝐸(𝑥) = −𝑙𝑛(𝑃 (A,S∣R)). In this

way, target density function 𝜓(𝑥) can be written as:

𝑒−𝐸(𝑥)/𝑇 = 𝑒−(−𝑙𝑛𝑃 (A,S∣R))/𝑇 = (𝑃 (A,S∣R))1/𝑇

and when 𝑇 = 1, it becomes the original 𝑃 (A,S∣R).
Subsequently, the Gibbs sampling for updating A in [11]

should be modified as

𝑃 (𝑎𝑛∣Θ̂𝑛,A[−𝑛],S,R) ∝ (𝑃 (R∣Θ̂𝑛,A,S)𝑃 (𝑎𝑛))
1/𝑇

and the Metropolis-Hasting sampling for updating S in [11]
needs to be rewritten as

𝜆 = (
𝑃 (𝑠∗𝑛∣Θ̂𝑛,A,S[−𝑛],R)𝑃 (𝑠𝑛; 𝑠

∗
𝑛)

𝑃 (𝑠𝑛∣Θ̂𝑛,A,S[−𝑛],R)𝑃 (𝑠∗𝑛; 𝑠𝑛)
)1/𝑇

= (
𝑃 (R∣Θ̂𝑛,A,S)𝑃 (𝑠∗𝑛)𝑃 (𝑠𝑛; 𝑠

∗
𝑛)

𝑃 (R∣Θ̂𝑛,A,S)𝑃 (𝑠𝑛)𝑃 (𝑠∗𝑛; 𝑠𝑛)
)1/𝑇 .

EMC adopts a sequence of temperature ladder {𝑇1 >
𝑇2 > ⋅ ⋅ ⋅ > 𝑇𝑁 > 0}, and in our simulation, we
assume 𝑇𝑁 = 1. Thus, the target density function for each
replica 𝑥𝑖 can be expressed as 𝜓(𝑥𝑖) ∝ 𝑒−𝐸(𝑥𝑖)/𝑇𝑖 , where
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . Consequently, the solution in the composite
system can be specified as 𝑋 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑁}, and
accordingly, the target distribution for the whole system is:

Ψ(𝑋) ∝
𝑁∏
𝑖=1

𝑒−𝐸(𝑥𝑖)/𝑇𝑖

Replica exchange only happens between neighboring tem-
perature levels (𝑥𝑖 ↔ 𝑥𝑖+1). According to the Metropolis-
Hastings criterion, this transition is accepted with probabil-
ity:

𝜃(𝑥𝑖 ↔ 𝑥𝑖+1) = 𝑚𝑖𝑛(1,
Ψ(𝑥1, ⋅ ⋅ ⋅𝑥𝑖+1, 𝑥𝑖, ⋅ ⋅ ⋅ , 𝑥𝑁 )

Ψ(𝑥1, ⋅ ⋅ ⋅𝑥𝑖, 𝑥𝑖+1, ⋅ ⋅ ⋅ , 𝑥𝑁 )
)

= 𝑚𝑖𝑛(1, 𝑒
(𝐸(𝑥𝑖)−𝐸(𝑥𝑖+1))

(
1
𝑇𝑖

− 1
𝑇𝑖+1

)
).

Based on the above design, EMC can be guaranteed
to follow the reversibility condition (also called “detailed
balance” or “time reversibility”). The pseudocode for the
EMC algorithm is shown in Table II. Its process includes
three stages: initialization, iterations, and the final output
stage. In the initialization step, we generate the initial replica
(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑁 ) on each processor, and set the correspond-
ing temperature for them. Then, the EMC enters the iteration
part. Basically, each processor runs the modified MCMC al-
gorithm simultaneously, and with certain frequency, replicas
are switched in terms of the Hastings ratio. The results are
reported in the final stage.

IV. EXPERIMENT

In order to explore the potential of applying EMC to
SARIP, we construct synthetic data for testing. In this
section, we first illustrate the testing data, and then describe
the simulation scenario. Finally, we give and discuss the
simulation results.

645



Table II
THE PSEUDOCODE FOR THE EMC ALGORITHM

1: Initialize the 𝑁 replicas (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑁 ), and set the temperature
ladder 𝑇1 > 𝑇2 > ⋅ ⋅ ⋅ > 𝑇𝑁 > 0 with 𝑇𝑁 = 1;

2: While stopping criterion not met;
3: While replica exchange rate not met;
4: Perform the modified MCMC algorithm on each processor;
5: Try to exchange the replicas;
6: Randomly select an integer variable 𝑖 from [1, 𝑁 − 1];
7: Calculate the acceptance probability 𝜃(𝑥𝑖 ↔ 𝑥𝑖+1);
8: Generate a random value 𝛼 from the uniform distribution [0,1];
9: If 𝛼 < 𝜃(𝑥𝑖 ↔ 𝑥𝑖+1);
10: Swap the replica: 𝑥𝑖 ↔ 𝑥𝑖+1;
11: Else
12: Keep the replica unmovable;
13: Output the best value of the posterior distribution: 𝑃 (A,S∣R)

A. Testing Data

DNA sequences are unbranched polymers with several
thousands of nucleotide bases, and the corresponding input
data are quite huge. Thus, for SARIP, the energy landscape
is likely to have multiple local optima. Meanwhile, as
mentioned previously, the advantage of EMC lies in its
ability to help the solution escape from the local optima.
Therefore, we test the proposed EMC on the synthetic DNA
sequences, which are generated with many local optima. The
main parameters for the test case are as follows: 𝑁 = 5,
𝐿𝑛 = 2000, 1 ≤ 𝑛 ≤ 5, 𝐺 = 2, 𝐽 = 9, Ω = 9,
Φ =

[
0.25 0.25 0.25 0.25

]𝑇
and Θ =

⎡

⎢
⎣

0.85 0.07 0.07 0.07 0.07 0.80 0.07 0.07 0.85
0.05 0.80 0.07 0.07 0.07 0.07 0.07 0.80 0.05
0.05 0.07 0.80 0.06 0.06 0.07 0.06 0.07 0.05
0.05 0.06 0.06 0.80 0.80 0.06 0.80 0.06 0.05

⎤

⎥
⎦ .

Figure 3 shows the locations of multiple segments (marked
as blocks) within each sequence. For simplicity, we are
mainly interested in locating the most probable segment
(marked as red block) within each sequence.

Figure 3. Location of Multiple Segments within Each Sequence

B. Simulation Setup

In both EMC and PT, one of the crucial steps is to
establish the temperature ladder. In our problem, we assume
the heat of the system is constant, and thus, a geometric
progression [17] can be utilized to approximate the temper-
ature ladder set {𝑇1 > 𝑇2 > ⋅ ⋅ ⋅ > 𝑇𝑁 > 0}. As discussed
in Section III, the lowest temperature 𝑇𝑁 is set to 1.000. For
the highest temperature, we assign the value of 2.500 to 𝑇1,
which is big enough to produce a “flatter” energy landscape.
Other temperatures 𝑇2, ⋅ ⋅ ⋅ , 𝑇𝑁−1 can be calculated via

𝑇𝑗 = 𝑇1𝜇
𝑗−1, 𝜇 = 𝑁−1

√
𝑇1
𝑇𝑁

In the preliminary simulation, we use four processors, and
the temperature ladder can be configured as {1.000, 1.357,
1.841, 2.500}. Meanwhile, taking into account the “detailed
balance”, each processor should do the same number of eval-
uations before the replica exchange. Thus, for convenience,
EMC is parallelized in a synchronized manner. The replica
exchange between neighboring temperature lever is triggered
every 10 iterations. When the exchange is accepted, we swap
the configurations, namely, the starting positions A and the
segment structures S.

Since EMC is a stochastic algorithm, different runs may
yield diverse results. Thus, we repeat each scenario 20 times,
and record the average value. Our EMC algorithm is coded
in C++, and the simulations are conducted on a cluster
of computers with an Intel Core Quad 2.66GHz CPU and
4G RAM connected in a Ethernet. The replica exchanges
among processors are realized by the MPICH2 [18], which
is high-performance and widely used implementation of the
Message Passing Interface (MPI). This software library is
fairly flexible and convenient for the parallel design.

C. Analysis of Results

MAP [10] is adopted as the metric to weigh the quality
of the solution (A and S). The higher the MAP, the better
the solution we obtain. Since it is extremely difficult to
compute the normalization constant of the posterior prob-
ability, without influencing on the final results, we employ
the unnormalized natural logarithm posterior probability.

Figure 4 shows the comparison of MAP values between
EMC and MCMC algorithms for different number of iter-
ations. Note that on these two curves, the MAP of each
dot is the average value from 20 independent runs. It can
be observed that MAP obtained from EMC are higher than
those from MCMC algorithm through the whole iteration
process, and the difference reaches the peak when these
two algorithms converge. As mentioned above, the energy
landscape in our problem is rugged with many local optima.
MCMC can easily get stuck in the local minimum as shown
in Figure 4, while EMC is able to jump out of the energy
barrier by swapping replicas at different temperature levels.
We can also observe that MCMC converges faster than
EMC, although its final solutions are much worse than those
of EMC. This is because EMC explores a wider range of
the solution space, thus requiring many more iterations.

Table III compares the average and standard deviation val-
ues of the MCMC and EMC algorithms. After 600 iterations,
MAP obtained by EMC exceeds the MCMC’s, which is
reached by MCMC at around 1000 iterations. In other words,
to acquire the same quality of solution, EMC only needs half
of the number of iterations as that of MCMC. Equivalently,
EMC only requires half of the computation time as that
of MCMC ignoring the communication overhead. Actually,
by analyzing the computation time of MCMC and EMC
in Table IV, we discover that communication overhead
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Figure 4. The Comparison of MAP between EMC and MCMC Algorithms
for Different Number of Iterations

Table III
AVERAGE AND STANDARD DEVIATION VALUES OF EMC AND MCMC

ALGORITHMS

No. of iterations 200 400 600 800 1000
AVG MCMC 1202.1 1283.3 1318.4 1329.8 1340.7
AVG EMC 1230.7 1330.7 1367.5 1397.0 1411.0
SD MCMC 101.2 92.0 63.4 62.6 75.6
SD EMC 84.3 65.1 43.5 45.9 39.4

No. of iterations 1200 1400 1600 1800 2000
AVG MCMC 1344.1 1343.2 1345.4 1348.6 1348.1
AVG EMC 1418.2 1429.3 1435.8 1438.4 1439.2
SD MCMC 43.5 53.0 57.2 49.1 77.2
SD EMC 40.8 41.9 33.5 39.4 36.7

occupies less than 10% of the total running time. Thus, EMC
can also reduce the computation time when compared with
MCMC. Moreover, all of the standard deviations of EMC
are smaller than those of MCMC, which means EMC is
more robust than MCMC. This is of great significance in
practice, as we would not like the algorithm to have to run
many times to get a relatively good solution.

Table IV
COMPARISON OF COMPUTATION TIME BETWEEN MCMC AND EMC

ALGORITHMS

No. of iterations 200 400 600 800 1000
MCMC 2.949 7.150 12.023 16.476 21.053
EMC 3.209 8.009 12.74 17.645 22.791

No. of iterations 1200 1400 1600 1800 2000
MCMC 26.838 30.083 37.831 39.450 48.333
EMC 27.950 34.924 38.330 43.209 51.413

V. CONCLUSION

EMC or PT have been developed as useful tools to
solve optimization problems in science and engineering.
The basic idea behind EMC and PT is to properly set
a series of temperatures, based on which replicas explore
the solution space in various degree. Information exchange
between replicas enables one in lower temperature to have
the opportunity to surmount the barrier. The contributions of

this paper are mainly in two parts: (1) An EMC model was
proposed to solve SARIP, parallelizing the MCMC algorithm
by introducing the parameter temperature, and by doing
this, the MCMC was reconstructed as an EMC; (2) The
EMC was then deployed on a parallel platform MPICH2 to
handle a case of SARIP, which has multiple local optima.
The simulation results show that with appropriate design of
EMC, it not only enhances the quality of final solution but
also cut the computation time. Additionally, its robustness
makes EMC suited to be deployed in practice.

For our future investigations, in order to get a compre-
hensive understanding of EMC for SARIP, more accurate
temperature ladder designs can be tried, such as the feedback
scheme [19]. In addition, other operators such as mutation
and crossover may be incorporated into the EMC. We may
also employ more processors to see if further progress can
be made.
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