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Abstract We give three results related to online nonclairvoyant speed scaling to
minimize total flow time plus energy. We give a nonclairvoyant algorithm LAPS,
and show that for every power function of the form P(s) = s%, LAPS is O(1)-

competitive; more precisely, the competitive ratio is 8 for « = 2, 13 for o = 3, and
202

N for @ > 3. We then show that there is no constant ¢, and no deterministic nonclair-
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voyant algorithm A, such that A is c-competitive for every power function of the form
P(s) = s”. So necessarily the achievable competitive ratio increases as the steepness
of the power function increases. Finally we show that there is a fixed, very steep,
power function for which no nonclairvoyant algorithm can be O (1)-competitive.

Keywords Speed scaling - Power management - Online scheduling - Competitive
analysis

1 Introduction

Energy consumption has become a key issue in the design of microprocessors. Major
chip manufacturers, such as Intel, AMD and IBM, now produce chips with dynam-
ically scalable speeds, and produce associated software, such as Intel’s SpeedStep
and AMD’s PowerNow, that enables an operating system to manage power by scal-
ing processor speed. Thus the operating system should have a speed scaling policy
for setting the speed of the processor, that ideally should work in tandem with a job
selection policy for determining which job to run. The operating system has dual
competing objectives, as it both wants to optimize some schedule quality of service
objective, as well as some power related objective.

In this paper, we will consider the objective of minimizing a linear combination of
total flow and total energy used. For a formal definition of the problem that we con-
sider, see Subsect. 1.2. This objective of flow plus energy has a natural interpretation:
suppose that the user specifies how much improvement in flow, call this amount p, is
necessary to justify spending one unit of energy. For example, the user might spec-
ify that he is willing to spend 1 erg of energy from the battery for a decrease of 5
micro-seconds in flow. Then the optimal schedule, from this user’s perspective, is the
schedule that optimizes p = 5 times the energy used plus the total flow. By chang-
ing the unit of either energy or time, one may assume without loss of generality that
p=1.

In order to be implementable in a real system, the speed scaling and job selection
policies must be online since the system will not in general know about jobs arriving
in the future. Further, to be implementable in a generic operating system, these poli-
cies must be nonclairvoyant, since in general the operating system does not know the
size/work of each process when the process is released to the operating system. All of
the previous speed scaling literature on this objective has considered either offline or
online clairvoyant policies. In Subsect. 1.1, we survey the literature on nonclairvoy-
ant scheduling policies for flow objectives on fixed speed processors, and the speed
scaling literature for flow plus energy objectives.

Our goal in this paper is to study nonclairvoyant speed scaling policies using com-
petitive analysis.

We first analyze the nonclairvoyant algorithm whose job selection policy is Lat-
est Arrival Processor Sharing (LAPS) and whose speed scaling policy is to run at
the speed such that the power equals the number of active jobs. LAPS shares the
processor equally among the latest arriving constant fraction of the jobs. We adopt
the traditional model that the power function, which gives the power as a function of
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the speed of the processor, is P(s) = 5%, where o > 1 is some constant. Of particu-
lar interest is the case o = 3 since, according to the well known cube-root rule, the
dynamic power in CMOS based processors is approximately the cube of the speed.
Using an amortized local competitiveness argument, we show in Sect. 2 that this al-
gorithm is O (1)-competitive for each power function of the form P(s) = s“. More

precisely, the competitive ratio is 8 for « =2, 13 for « = 3, and % for a > 3. The
potential function that we use is an amalgamation of the potential function used in
[9] for the fixed speed analysis of LAPS, and the potential functions used for ana-
lyzing clairvoyant speed scaling policies. This result shows that it is possible for a
nonclairvoyant policy to be O (1)-competitive if the cube-root rule holds.

It is known that for essentially every power function, there is a 2-competitive clair-
voyant speed scaling policy [2, 5]. In contrast, we show in Sect. 3 that the competi-
tiveness achievable by nonclairvoyant policies must depend on the steepness of the
power function. We show that there is no constant ¢, and no deterministic nonclair-
voyant algorithm A, such that A is c-competitive for every power function of the form
P(s) = s“. And we show that there is a fixed, very steep, power function for which
no nonclairvoyant algorithm can be O (1)-competitive. The adversarial strategies for
these lower bounds are based on the adversarial strategies in [13] for fixed speed
processors. Perhaps these lower bound results are not so surprising given the fact that
it is known that without speed scaling, resource augmentation is required to achieve
O (1)-competitiveness for a nonclairvoyant policy [10, 13]. Still a priori it wasn’t
completely clear that the lower bounds in [13] would carry over. The reason is that in
these lower bound instances, the adversary forced the online algorithm into a situa-
tion in which the online algorithm had a lot of jobs with a small amount of remaining
work, while the adversary had one job left with a lot of remaining work. In the fixed
speed setting, the online algorithm, without resource augmentation, can never get a
chance to get rid of this backlog in the face of a steady stream of jobs. However, in a
speed scaling setting, one might imagine an online algorithm that speeds up enough
to remove the backlog, but not enough to make its energy usage more than a constant
times optimal. Our lower bound shows that it is not possible for the online algorithm
to accomplish this.

1.1 Related Results

We start with some results in the literature about scheduling with the objective of
total flow time on a fixed speed processor. It is well known that the online clairvoyant
algorithm Shortest Remaining Processing Time (SRPT) is optimal. The competitive
ratio of deterministic nonclairvoyant algorithm is € (n!/3), and the competitive ra-
tio of every randomized algorithm against an oblivious adversary is €2 (logn) [13].
A randomized version of the Multi-Level Feedback Queue algorithm is O (logn)-
competitive [6, 11]. The non-clairvoyant algorithm Shortest Elapsed Time First
(SETF) is scalable, that is, (1 + €)-speed O(1)-competitive [10]. SETF shares the
processor equally among all jobs that have been run the least. The algorithm Round
Robin RR (also called Equipartition and Processor Sharing) that shares the processor
equally among all jobs is (2 4 €)-speed O (1)-competitive [8].

Let us first consider the traditional model where the power function is P(s) = s“.
Most of the literature assumes the unbounded speed model, in which a processor can
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be run at any real speed in the range [0, 0o). In this model [15] gave an efficient offline
algorithm to find the schedule that minimizes average flow subject to a constraint on
the amount of energy used, in the case that jobs have unit work. Culminating a line of
several papers [1, 3, 12] on online algorithms for arbitrary work jobs, [5] showed that
the speed scaling algorithm that uses Shortest Remaining Processing Time (SRPT)
for job selection and power equal to one more than the number of unfinished jobs for
speed scaling, is 3-competitive for the objective of total flow plus energy on arbitrary-
work unit-weight jobs for essentially arbitrary power functions. This analysis was
improved to show that this algorithm is 2-competitive in [2].

[5] further showed that the scheduling algorithm, that uses Highest Density First
(HDF) for job selection and power equal to the fractional weight of the unfinished
jobs for speed scaling, is (2 + €)-competitive for the objective of fractional weighted
flow plus energy on arbitrary-work arbitrary-weight jobs. [3] then showed how to
modify this algorithm to obtain an algorithm that is O (1)-competitive for (integral)
weighted flow plus energy for power functions of the form P(s) = s%, using the
known resource augmentation analysis of HDF [7].

[4] extended the result of [3] for the unbounded speed model to the bounded speed
model, which was later improved by [12].

1.2 Formal Problem Definition and Notations

We study online scheduling on a single processor. Jobs arrive over time and we have
no information about a job until it arrives. For each job j, its release time and work
requirement (or size) are denoted as r(j) and p(j), respectively. We consider the
nonclairvoyant model, i.e., when a job j arrives, p(j) is not given and it is known
only when j is completed. Preemption is allowed and has no cost; a preempted job
can resume at the point of preemption. The processor can vary its speed dynamically
to any value in [0, co). When running at speed s, the processor processes s units of
work per unit time and consumes P(s) = s units of energy per unit time, where
o > 1 is some fixed constant. We call P (s) the power function.

Consider any job sequence I and a certain schedule A of /. For any job j in I,
the flow time of j, denoted F4(j), is the amount of time elapsed since it arrives until
it is completed. The total flow time of the schedule is F4 = ) jer Fa (j). We can
also interpret F4 as follows. Let n4(f) be the number of jobs released by time ¢ but
not yet completed by time 7. Then Fy = fooo na(t)dt. Let s4(¢) be the speed of the
processor at time ¢ in the schedule. Then the total energy usage of the schedule is
Es= fooo (so(1))¥ dt. The objective is to minimize the sum of total flow time and
energy usage, i.e., Fg + E4.

For any job sequence 7, a scheduling algorithm ALG needs to specify at any time
the speed of the processor and the jobs being processed. We denote ALG(/) as the
schedule produced for I by ALG. Let Opt be the optimal offline algorithm such that
for any job sequence I, Fop(1) + Eopi(1) is minimized among all schedules of /. An
algorithm ALG is said to be c-competitive, for any ¢ > 1, if for all job sequence 1,

Faroay + EaLcay = ¢ (Fopr(ry + Eopi(r)) -
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o )-Competitive Algorithm

2 An 0,

In this section, we give an online nonclairvoyant algorithm and show that it is
0(%)—competitive for total flow time plus energy. We say a job j is active at time
t if j is released by time ¢ but has not yet completed by time ¢. Our algorithm is
defined as follows.

Algorithm (LAPS(8)) Let 0 < 8 < 1 be any real. At any time ¢, let n,(¢) be the
number of active jobs remaining in LAPS. Then LAPS runs at speed (14 (r))'/%, and
it processes the [Bn,(¢)] active jobs with the latest release times (ties broken by job
identity) by splitting the processor speed equally among these jobs.

Our main result is the following.

Theorem 1 For any 0 < B < 1 LAPS(,B) is c-competitive for total flow time plus
energy, where ¢ = max{ a zﬂ)(, B a1

The proof of Theorem 1 is based to a large extent on the techniques from [9]. We
start with some definitions and notations. Recall that n,(¢) is the number of active
jobs under LAPS at time ¢. Let s,(¢) = (ng())/® which is the speed of LAPS at
time ¢. Let

t t
Ga(l)ZFa(f)-i-Ea(t):f ng(x)dx + | (sq(x))" dx
0 0

be the total flow time plus energy incurred up to time ¢ by LAPS. Note that dG“t(t)

ng(t) + (sq (1)) is its instantaneous cost at time ¢. Similarly, define n,(t), s,(¢), and
G,(¢) for that of Opt. Since LAPS uses the common technique of balancing its flow
and energy costs (e.g., as in [3, 12]), we have that

t ¢ t
Ga(t)=/ na(x)dx+f P(s,(x)” dx:/ 2nq(x)dx.
0 0 0

It follows that dG"(’) =2n4(t). Opt may choose to set its speed differently.

We use an amortlzed local competitiveness argument (see for example [14]). To
show that LAPS is c-competitive, it suffices to give a potential function ®(¢) such
that the following four conditions hold.

e Boundary condition: ® = 0 before any job is released and after all jobs are com-
pleted.

e Job arrival: When a job is released, ® does not increase.

e Job completion: When a job is completed by LAPS or Opt, ® does not increase.

e Running condition: At any other time, the rate of change of G, plus the rate of

change of @ is no more than ¢ times the rate of change of G,, i.e., dG”(t) + === d®(t) <

c- %, during any period of time without job arrival or Completlon.

We define our potential function as follows.

@ Springer



512 Algorithmica (2011) 61:507-517

Potential function ®(r) Consider any time ¢. For any job j, let g,(j,t) and
qo(j,t) be the remaining work of j at time ¢ in LAPS and Opt, respectively. Let
{Jj1, .-+, jnar)} be the set of active jobs in LAPS, ordered by their release times such
that r(j1) <r(j2) <+ <r(n,)- Then,

nq(t)

oy =y Y (I max(0, guii» ) = 4oGii- D))

i=1

where y > 0 is some constant that we will set later. We call i1=1/% the coefficient
of j;.

We first check the boundary, job arrival and job completion conditions. Before
any job is released or after all jobs are completed, there is no active job in both LAPS
and Opt, so ® = 0 and the boundary condition holds. When a new job j arrives at
time #, g, (j,t) — qo(j, t) = 0 and the coefficients of all other jobs remain the same,
so @ does not change. If LAPS completes a job j, the term for j in & is removed.
The coefficient of any other job either stays the same or decreases, so ® does not
increase. If Opt completes a job, ® does not change.

Hence, it remains to check the running condition. In the following, we focus on
a certain time ¢ without job arrival or completion. We omit the parameter ¢ from
the notations as ¢ refers only to this certain time. For example, we denote n,(¢) and
qa(j,t) as ng and g, (j), respectively.

For any job j, j is a lagging job at time ¢ if LAPS has processed less than Opt on
juptotimet,i.e., g,(j) —qo(j) > 0. Let £ be the number of lagging jobs that LAPS
is processing at time 7. We start by evaluating ‘fi—?.

Lemma 2 At time t,

dod 1 .  (a=p)
ar =V o= g T g

1
no _VE(I - Bng.

Proof First consider the easier case when n, = 0 at time ¢. Then the claim of the

lemma becomes that dd—(f =v; (1_}3)“,1 sS4y (1/_3’3 )n(,. Note that the right hand side

is non-negative, and % = 0 when n, = 0. Hence the lemma is true when n, = 0.
The rest of the proof considers the case when n, > 0.
We consider < d - as the combined effect due to the processing of LAPS and Opt.

Let dc1>1 and dcpz be the rates of change in ® due to Opt and LAPS, respectively. Then

do _ Yo, | do do
G = g+ g Forany job j, g,(j) is decreasing or remains the same. Hence, -

is non- negatlve Similarly, = dq)z is non-positive.

We first bound dq)‘ . The Worst case is that Opt is processing the job with the largest
coefficient, i.e., nl~ /a . Hence djzl is at most ynh V% (— %) ynd V%, We

apply Young’s Inequality, which is formally stated in Lemma 3, by setting f(x) =
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(ﬁ)“il, 1) =1 = B)y@D ¢ =5, and h =nt "% Then, we have

1-1/a

I-1/a _ of x \*7! ta
Y Soh <y / (—) dx—l—/
o o \I—-8 0

1 . 1

We then bound %. LAPS works on the [Bn,] jobs with the latest arrival times.
Ideally, for each of these jobs j, the term max{O qq(j) — qo( j)} in the potential
£-2 would be minimized.
However, LAPS may be ahead of Opt on some ]obs J, thatis, g, (j) — qo(j) <O0.
For these non-lagging jobs, max{0, q,(j) — g,(j)} is zero and will not decrease. To
address this issue, recall that £ is the number of lagging jobs LAPS is processing at
time ¢. Let j be one of these lagging jobs. Then j is among the [Bn,] active jobs with
the latest release times and its coefficient is at least (n, — [Bn,] + 1)!~1/%. Also, j
is being processed at speed F;Tl;]’ 80 g4 (j) is decreasing at this rate. It follows that

ddy
“dr

(1— ﬂ)y”(“”dy>

is at most
. I
yl(ng — [Bng1+1) (fﬁnﬂ)

<yl(ng — na)'~ ”“(r; “]) (since — [Bng]+ 1> —Bny)

<yl(1—p)— (since s = nt/* and (1 — B)' =% > 1 — B).
[Bn aT
Summing up dl‘ and d;?, we obtain that
A l o tr(! (1= Byng +yt(l — B)—
el - _ - — B _
dt _ya(l — pya—17° v a ¥ [Bn ﬂ
1 o, U=Png 1
=—y— H—y—>1- .
ya(l_ﬂ)a,lsow g (Bl =0 =y (1= ing
We observe that BT = ﬂ",;‘a = % and that the number of non-lagging jobs being

processed by LAPS, [Bn,] — £, is at most the number of jobs 7, unfinished by Opt.
Thus, we have

d_d)< ;0‘4_ w _ 1(1_13)
dt _ya(l—ﬁ)ailso y '3 no Va Ng. D

Below is the formal statement of Young’s Inequality, which is used in the proof of
Lemma 2.

Lemma 3 (Young’s Inequality) Let f be any real-valued, continuous and strictly
increasing function such that f(0) = 0. Then, for all g,h > 0, fogf(x) dx +

foh fY(y)dy = gh, where f~V is the inverse function of f.
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We are now ready to show the following lemma about the running condition.

Lemma 4 Let y = B and ¢ = max{(1 i ﬂ 21, Then at time t, dG“ + 4 dt <
dG,
dr *
Proof Plugging y = ﬂ into Lemma 2, we obtain that
dG, do 2 o 20 dG,
dt d[ _Zna—l-mso—i-gno—ZnaSc. dt . D

Combining Lemma 4 with the discussion on the boundary, job arrival and job com-
pletion conditions, Theorem 1 follows. Below we choose appropriate § to optimize
the competitive ratio ¢ for different values of «; in particular, for large «, ¢ grows as

OGL).

Corollary 5 If « = 2, then LAPS(0.5) is 8-competitive. If (x =3, then LAPS(0.46)
is 13-competitive. If & > 3 and 8 = lna , then LAPS(B) is ——competmve

Ino

Proof If « =2 and B = 0.5, then ¢ evaluates to 8. If « =3 and g = 0.46, then ¢

lna

evaluates to 13. We now show that if we pick § = ==, then for @ > 3, we have
2 2a) 2a?
c=maxy ———, — ¢ < —.
1-p) B Ino
Since f = &=, we have that = ln . It remains to show that
2 202 . Ino
— oo ST, or equivalently, Ilna < 21— —) .
(11—« " Ina o

Observe that the function ﬁ is increasing with « and the function (1 — %)" is in-
creasing with x. Hence, for o > 3, we have

o e na nis'lna
(1 _ _1“"‘> - (1 - —i ) > (1 - —i )' =0.28",
o — =
Ina In3

We take a loose bound that 0.28 > ¢~ 13, 50 0.28"¢ > ¢~ Hence, «2(1 — 1“7‘")“ >

%3 Finally, we can check easily (by differentiation) that &% > In« for & > 3, and
the corollary follows. g

3 Lower Bounds
In this section, we show that necessarily the competitive ratio achievable by a de-
terministic nonclairvoyant algorithm grows with «, and there is a sufficiently steep

power function such that no deterministic nonclairvoyant algorithm can be O(1)-
competitive.
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Lemma 6 Let P(s) be any non-negative, continuous and super-linear power func-
tion. Let k, v > 1 be any real such that P(v) > 1. Then every deterministic nonclair-
voyant algorithm is Q2 (min{k, P (v + m)/P(v)})-competitive.

Proof Let ALG be any algorithm and Opt be the offline adversary. We start with an
intuitive roadmap of the proof, which is similar to the lower bound in [13] on the
competitive ratio for nonclairvoyant algorithms on a fixed speed processor. Initially
ALG is given n jobs at time 0. If ALG runs these jobs too fast, unnecessarily wast-
ing too much energy, then this is the final instance that establishes the lower bound.
Otherwise, at some later point in time, ALG intuitively learns that it has one unit of
work left unprocessed on each job, while the adversary has n units of work left on
one job. Further at this time, a stream of unit work job arises. After this time, the
adversary can go at unit speed incurring a cost of ®(1) per unit time. If ALG goes
at an average speed of 1 or less, then ALG incurs a cost of ®(n) per unit time for
flow time. If ALG averages faster than speed 1, then by the steepness of the power
function, it uses much more energy than optimal.

We now make this intuition more formal. Let n = [k P (v)]. We release n jobs
J1sj2, ..., jn at time 0. Let T be the first time that some job in ALG is processed
for at least n units of work. Let G(T') be the total flow time plus energy incurred
by ALG up to T. We consider two cases depending on G(T) > kn3 or G(T) < kn3.
If G(T) > kn>, Opt reveals that all jobs are of size n. By running at speed 1, Opt
completes all jobs by time n?. The total flow time plus energy of Opt is at most
n3 +n?P(1) <2n3,s0 ALG is Q2 (k)-competitive.

The rest of the proof assumes G(T) < kn3. Let q1,92, ..., qn be the amount of
work ALG has processed for each of the n jobs. Without loss of generality, we assume
gn = n. Opt reveals that the size of each job j; is p; = ¢; + 1. Thus, at time T, ALG
has n remaining jobs, each with remaining processing time equal to 1. For Opt, it
runs at the same speed as ALG during [0, T'] and processes exactly the same job as
ALG except on j,. By distributing the »n units of work processed on j, to all the n
jobs, Opt can complete ji, ..., j,—1 by time T and the remaining size of j, is n. As
Opt is simulating ALG on all jobs except j,, the total flow plus energy incurred by
Optup to T is at most G(T).

During [T, T + n*], Opt releases a stream of small jobs. Specifically, let € < ,1517

be any real. Fori =1, ..., "6—4, a small job jl.’ is released at T + (i — 1)e with size €v.
Opt can run at speed v and complete each small job before the next one is released.
Thus, Opt has at most two jobs (one small job and j,) remaining at any time during
[T, T + n*]. The flow time plus energy incurred during this period is 2n* + n* P (v).
Opt can complete j, by running at speed 1 during [T + n*, T + n* 4 n], incurring a
cost of n +nP(1). Since G(T) < kn? then the total flow time plus energy of Opt for
the whole job sequence is at most

knd +2n* +n*P)+n+nP(1) = 0n*P®)).

For ALG, we first show that its total work done on the small jobs during [T, T +
n*]is at least n*v — 1. Otherwise, there are at least }v > nv small jobs not completed

by T +n*. The best case is when these jobs are released during [T + n* — %, T +n*
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and their total flow time incurred is Q(n>). It means that ALG is Q (k)-competitive
asn=[kP(v)].

Wecall ji, ..., j, big jobs. If ALG completes less that %n + 1 big jobs by time T +
n*, then ALG has at least %n — 1 big jobs remaining at any time during [T, T + n*].
The total flow time of ALG is at least Q (n°), meaning that ALG is Q2 (k)-competitive.

If ALG completes at least %n + 1 big jobs by time T + n*, the total work done by
ALG during [T, T +n*] is at least n*v — 1 + %n + 1. The total energy used by ALG
is at least

P<n4v + %n 4_p n 1 45 p n 1 4
—= | xn = v+ — | xn v+ ——— | xn".
e 2n3 - 16(k P (v))3

The last inequality comes from the fact that n = [k P (v)] < 2k P (v). Hence, ALG is

at least Q(P (v + m)/P(v))-competitive. U

We can apply Lemma 6 to obtain the lower bound for the power function
P(s) =s“.

Theorem 7 For every deterministic nonclairvoyant algorithm, and every constant c,
this algorithm is not c-competitive for every power function of the form P(s) = s“.

Proof We look at the competitive ratio of an arbitrary nonclairvoyant algorithm as «
grows. We show that the competitive ratio is €2 (a!/37¢), for every 0 < € < 1/3. We
apply Lemma 6 by putting k = «!/37€ and v = 1. Then, P(v) = 1 and

1 1 o 1 (al’3€)xa3€
P(” " 16<kP(v>>3)/P(”) - (1 " 16(a1/3—€>3) - (1 " 16a1—3f)

Since (1 + yg;)" is increasing with x and &'~ = 1, the last term above is at
least (1 + %)ak- Thus, min{k, P(v + m)/P(U)} > min{al/?’—f, (%)asg} —
Q(Oll/3—6). o

Theorem 8 There exists some power function P such that every nonclairvoyant de-
terministic algorithm is o (1)-competitive.

Proof We want to find a power function P such that for any k > 1, there exists a speed
v such that P(v + lﬁ(kp(v))g )/ P(v) > k. Then by setting k and v correspondingly to

Lemma 6, any algorithm is at least k-competitive for any k > 1. It implies that any
algorithm is w(1)-competitive. For example, consider the power function

1
P(S)=W, O§S<2

Let P’ be the derivative of P. We can verify that P’(s) = (P(s))> forall 0 < s < 2.
For any k, let v > 1 be a speed such that P(v) > 16k*. Then,
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) > P(v)+ P'(v) e (P())° P(v).

P(v L __ L
16(k P (v))? 16(k P (v) 16(kP(v))? =

Thus, P(v + /P (v) > k and the theorem follows. [l

é)
16(kP (v))3

4 Conclusion

We show that nonclairvoyant policies can be O(1)-competitive in the traditional
power model. However, we showed that in contrast to the case for clairvoyant al-
gorithms, there are power functions that are sufficiently quickly growing that non-
clairvoyant algorithms cannot be O (1)-competitive.

The standard and the best nonclairvoyant job selection policy for a fixed speed
processor is Shortest Elapsed Time First (SETF). The most obvious candidate speed
scaling policy would be to use SETF for job selection, and to run at power equal to
the number of active jobs (or perhaps a bit faster). The difficulty with analyzing this
speed scaling algorithm is that it is hard to find potential functions that interact well
with SETF. It would be interesting to provide an analysis of this algorithm.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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