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Abstract We consider the Traveling Salesman Problem with Neighborhoods (TSPN)
in doubling metrics. The goal is to find a shortest tour that visits each of a collection
of n subsets (regions or neighborhoods) in the underlying metric space. We give a
quasi-polynomial time approximation scheme (QPTAS) when the regions are what
we call a-fat weakly disjoint. This notion combines the existing notions of diameter
variation, fatness and disjointness for geometric objects and generalizes these notions
to any arbitrary metric space. Intuitively, the regions can be grouped into a bounded
number of types, where in each type, the regions have similar upper bounds for their
diameters, and each such region can designate a point such that these points are far
away from one another.

Our result generalizes the polynomial time approximation scheme (PTAS) for
TSPN on the Euclidean plane by Mitchell (in SODA, pp. 11-18, 2007) and the QP-
TAS for TSP on doubling metrics by Talwar (in 36th STOC, pp. 281-290, 2004). We
also observe that our techniques directly extend to a QPTAS for the Group Steiner
Tree Problem on doubling metrics, with the same assumption on the groups.
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1 Introduction

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in a met-
ric space (V, d). An instance of the problem is given by a collection W of n subsets
{P1, P,..., P;} in V. Each subset P; C V is known as a neighborhood or region.
The objective is to find a minimum length tour that visits at least one point from each
region.

This problem generalizes the well-known Traveling Salesman Problem (TSP),
for which there are polynomial time approximation schemes (PTAS) for low-
dimensional Euclidean metrics [3, 26, 29], and a quasi-polynomial! time approxi-
mation scheme (QPTAS) for doubling metrics [31]. The neighborhood version of the
problem was first introduced by Arkin and Hassin [1], who gave constant approxi-
mation for the case when the regions are in the plane and “well-behaved” (e.g., disks,
parallel and similar length segments, bounded ratio between the largest and smallest
diameters). The general version of the problem was shown to have an inapproxima-
bility threshold of € (log?>~€n) for any € > 0 by Halperin and Krauthgamer [20].
There is an almost matching upper bound of O (log N log k log n)-approximation, us-
ing the results of Garg et al. [17] and Fakcharoenphol et al. [15], where N is the total
number of points in V and k is the maximum number of points in each region.

Special cases are considered where (V, d) is taken to be the Euclidean plane. How-
ever, if the regions are allowed to be intersecting connected subsets, the problem
remains APX-hard [9, 30]. Further restrictions are placed on the regions. For con-
nected polygonal regions, Mata and Mitchell [24] gave an O (logn)-approximation,
and Gudmundsson and Levcopoulos [18] reduced the running time to O(N?log N),
where N is the total number of vertices of the polygons. Very recently, Mitchell [28]
gave a constant factor approximation for the case of disjoint connected regions of
arbitrary shape.

Regions are often assumed to be “fat”? and disjoint. In fact, no constant factor
approximation algorithm is known for the case of intersecting non-fat regions. Du-
mitrescu and Mitchell [11] considered connected regions that are all about the same
size, fat and disjoint, and gave a PTAS in this case, using the “guillotine” method.

De Berg et al. [9] gave constant approximation for slightly more general regions
of varying size, but still disjoint, fat and convex. Elbassioni et al. [13] generalized this
to the discrete case where each neighborhood consists of a discrete set of points in
a fat though not necessarily convex region, and gave a constant approximation. This
constant approximation was further generalized in [14], where the neighborhoods are
intersecting, connected and have comparable diameters.

The best previously known result for getting a (1 4 &)-approximation is by
Mitchell [27], who obtained a PTAS for the Euclidean plane, where the regions are fat
and almost disjoint. This result is obtained by the “guillotine subdivision” technique,
which unfortunately only works for 2 dimensions. On the other hand, the hierarchical

A non-negative function f(n) is quasi-polynomial in n if there exists a constant ¢ such that f(n) <
exp(O (log€ n)).

2Intuitively, the fatness of a region measures the ratio between the smallest circumscribing radius and the
largest inscribing radius. A disk is fat, while a line segment is not.
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decomposition technique by Arora [3] and Talwar [31] is applicable to more general
metrics. However, as pointed out by Mitchell [27], previous attempts in applying this
technique have led to only limited success.

Feremans and Grigoriev [16] suggested a PTAS by using Arora’s framework [3] in
the case where regions are of similar size and bounded perimeter. They proposed that
the regions are never divided in the decomposition. However, there were some techni-
cal issues® that were unfortunately not addressed in the short paper. We instead allow
regions to be divided, but have to overcome a major technical hurdle and successfully
use Arora’s framework to design an approximation scheme for TSPN.

Our Contribution We give a (1 4 ¢)-approximation for instances on metrics with
bounded doubling dimension [4, 8, 19].4 This includes low-dimensional Euclidean
metrics, and hence is a generalization of Mitchell’s result [27] for 3 or more dimen-
sions. Moreover, since the doubling dimension is well defined for any metric, our
framework covers metrics that do not have any geometric structure, and the regions
need not be convex or even connected, where such notions might not even be applica-
ble in the first place. For more applications of doubling metrics, the reader is referred
to [7, 21-23].

Nevertheless, we still need to place some restrictions on the regions, because the
problem is APX-hard in general on the plane [12], which has bounded doubling di-
mension. We combine the notions of diameter variation, fatness and disjointness for
geometric spaces, and define for regions in general metrics the notion of a-far weak
disjointness. We assume that the regions are partitioned into A groups. One specific
way is to put regions of similar diameters (within a factor of 2 of one another) into
one group. For the regions in the same group, there is some p > 0 such that there
is a p-packing® consisting of one point from each region, and all the regions have
diameters at most O («p). The precise definition of weak disjointness is given in Def-
inition 2.2. For the time being, the readers can think of Euclidean space as a special
example: for regions of the same group, there is some p > 0 such that each region
has a ball of radius p as its inner core, where the inner cores of different regions are
disjoint; moreover, each point in a region is within a distance of «p from the center
of its inner core.

Our definition allows very general regions. Intuitively, all we require is that re-
gions in each group should have similar diameters and each region designates a point
within, such that these points are far away from one another; the regions can other-
wise intersect arbitrarily, and need not even be connected. The assumption that there
are only a bounded number of types of region diameters is also necessary, as we show
in the Appendix that otherwise the problem remains APX-hard for doubling metrics.°
Of course, the catch with working on such weak assumptions is that the running time

3In particular, keeping regions intact would destroy the so-called “padding property” of the decomposition,
which is essential in Arora’s argument [3] for the existence of a good portal respecting tour.

4Intuitively, a metric space has bounded doubling dimension if any subset in the space can be covered by
a bounded number of subsets with half its diameter.

SA p-packing is a set of points with inter-point distance larger than p.

SHowever, as we shall see, this assumption is not necessary in the case of Euclidean metric.
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of our algorithm is only quasi-polynomial, which is not surprising, because there is
only a QPTAS known even for TSP on doubling metrics by Talwar [31].

The Main Result We augment the hierarchical decomposition method [3, 31] for
TSP to give a randomized algorithm that approximates TSPN.

Theorem 1.1 Suppose that we are given an instance of TSPN, where the underlying
metric space has doubling dimension at most k, and there are A groups of o-fat
weakly disjoint regions. Then, there is a QPTAS that, with constant probability, gives

a TSP tour of length at most (1 4 ¢)OPT in time exp{O(%)k O(a)O(kz) logk n}.

For the case of Euclidean metrics, we can remove the dependence on A if we use
a stronger notion of fatness as in [9, 32].

Theorem 1.2 Suppose that we are given an instance of TSPN, where the underlying
metric is the k-dimensional Euclidean space, and the regions are disjoint and o -fat in
the sense defined in [9]. Then, there is a QPTAS that, with constant probability, gives

a TSPN tour of length at most (14 ¢)OPT in time exp{ O (é)o(k) (0] (oz)O(kz) logo(k) nj.

Our Techniques Our approximation scheme is built on top of the hierarchical de-
composition method used for TSP by Arora [3] and Talwar [31]. The main technical
hurdle is that a cluster can partially intersect many regions, causing an exponential
number of dynamic program entries for that cluster. We resolve this issue via the
following approaches.

1. When a region is separated by clusters, we charge the extra cost incurred to the
radius of the cluster. The sum of the diameters of the clusters can be charged to
the length of the optimal tour. This is done by extending a lemma appearing in
[13, 27] to doubling metrics, which gives a lower bound on the length of any tour
that hits all weakly disjoint regions with similar diameters.

2. By considering the probability that a region is separated by the clusters, we care-
fully prune the search in lower levels of the dynamic program. The number of
partially intersecting regions that a cluster needs to explicitly consider is greatly
reduced to polylogarithmic, and hence this allows the running time of the approx-
imation scheme to be quasi-polynomial.

Extension to Group Steiner Tree Problem (GSTP) Observing that the optimal length
for GSTP is at least half of that for TSPN, we have the corresponding version of
Corollary 3.2 for GSTP, which leads to a QPTAS using the same techniques.

2 Notation and Preliminaries

We denote a metric space by M = (V, d).% (For basic properties of metric spaces,
we refer the reader to standard texts [10, 25].) A ball B(x, p) is the set {y € V|

7By f= O(g)k we mean there exists some constant C such that f < (Cg)k.

80bserve that V could be an infinite set.
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d(x,y) < p}. The diameter Diam(Z) of a set Z is the maximum distance between
points in Z. A set Z of points is a p-packing, if any two distinct points in Z are
at a distance more than p away from each other. Given a positive integer m, we
denote [m] :={1,2,...,m}. In this work, we work with metric spaces with bounded
doubling dimension, which is defined as follows.

Definition 2.1 (Doubling Dimension [4, 19]) The doubling dimension of a metric
space (V,d) is at most k if for all x € V, for all p > 0, every ball B(x,2p) can be
covered by the union of at most 2% balls of the form B(z, p), where z € V.

Observe that a set of points in k-dimensional Euclidean space induces a metric
space with doubling dimension at most O (k). Unless otherwise stated, we use only
the doubling property of Euclidean metrics, and we give explicit emphasis when the
geometric properties of Euclidean metrics are used.

Problem Definition An instance of the metric TSP with neighborhoods (TSPN) is
given by a metric space M = (V, d) and a collection of n neighborhoods or regions
W :={P; | j € [n]}, where each P; is a subset of V. The objective is to find a min-
imum TSP tour that visits at least one point from each region. We assume that the
regions are partitioned into A groups {W;};¢[4], such that for some o > 1, each group
W, satisfies some «-fat weak disjointness condition as follows.

Definition 2.2 («¢-Fat Weakly Disjoint Regions) For o > 1, a group W; of regions is
o-fat weakly disjoint if for some p > 0 the following conditions hold.

1. For each region P € W, there exists some point z(P) € P such that the set
{z(P)}pew, is a p-packing. We say that the region P has center z(P) and the
regions in W; have core radius p.

2. Every region P in W is contained in the ball B(z(P), ap).

Remark 2.3 (Assumptions on the Partition {W;};) We assume that the partition {W;};
of regions and the parameter « are given to us such that each group is guaranteed to
be a-fat weakly disjoint. Within each group W;, our algorithm does not need to know
the core radius or how the centers of the regions are assigned in Definition 2.2.

Observe that the parameter « in Definition 2.2 depends on how the regions are
grouped into the sets {W;};, and also on how the centers of regions are picked within
each set. By decreasing the number A of sets W;, one might possibly increase .
However, in this work, we are not concerned about the optimal way to form the sets
{W;}; and choose the centers for regions to obtain the best « and A.

One way to partition the regions is to put regions of similar diameters into one
group, where regions in one group all have diameters in (2", 2"+!] for some integer r.
The assumption that there are only a bounded number of types of region diameters
is necessary, as we show in the Appendix that otherwise the problem remains APX-
hard, even if the regions are disjoint balls in doubling metrics.

Note that we do not explicitly require that the diameters of regions from different
groups W;’s be very different. We only need the assumption (used in Lemma 3.5)
that for any r > O there are at most O(a)f groups having regions with diameters
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in (2", 2"*1], where k is an upper bound on the doubling dimension. In Sect. 5, we
need to further assign regions of similar diameters into different groups to ensure the
packing property holds in Definition 2.2. Hence, we need this technical assumption.

Examples (1) Suppose the problem is defined in the Euclidean space, and the regions
are continuous disjoint balls, i.e., for each P;, there exist z; € V and p; > 0 such that
Pj = B(zj, pj). Suppose further that the regions are partitioned into A sets {W;};¢(4)
such that any two regions in the same W; have their radii differ by a multiplicative
factor of at most 2. Note that in this case, A < 1 4 log, max{/% | pj > 0}. Suppose
that in some W, all the regions P; = B(z;, p;) satisfy p < p; < 2p. Then, it follows
by the disjointness of the balls that the corresponding {z;}; forms a 2p-packing,
and obviously, P; is contained in B(z;,2p). Hence, these regions are 1-fat weakly
disjoint partitioned into A groups. One may consider, more generally, fat regions in
the sense defined by Mitchell [27], and note that his definition is included in ours.
Hence, our results apply to the class of fat regions considered in [27]. In Sect. 5, we
show that our definition can cover another notion of fatness in Euclidean space, even
when the regions are not connected.

(2) Suppose the problem is defined on a finite metric, and for each region Pj,
there are some p; > 0 and z; € V such that B(z;, p;) € Pj € B(zj,ap;). Suppose
further that two regions are disjoint if their corresponding p;’s are within a factor of 2
from each other. We can partition the regions into A sets {W;};c[4] such that any two
regions in the same W; have their p;’s differ by a multiplicative factor of at most 2.
One can check that we also have A <1 4 log, max{ % | pj > 0}, and with respect to
such {W;}; the regions are 2a-fat weakly disjoint.

(3) The next example shows that our notion of fat weak disjointness is strictly
more general than previous notions. Consider the Euclidean space with k dimensions,
and some ball B of radius 2. It is known that there exists a 1-packing Z of size 20®)
contained within B. Hence, it follows that we can have |Z| identical copies of B, each
having a distinct point in Z as its center. Observe that for each z € Z, B C B(z,4).
Therefore, according to our definition, it is possible to have 2€®) identical regions
(clearly not disjoint in the usual sense) within the same group that are 4-fat weakly
disjoint!

Remark 2.4 Observe that the «-fat weak disjointness condition implies that if all the
regions in some W; have diameters at least 8, then the corresponding centers form a
%-paoking.

Restricting the Tour Inside By We assume that there is a region Py which contains
only one point py. For finite metrics, we can have this assumption because we can try
each pg in Py, and consider those TSPN tours that pass through pg; for the special
case of disjoint regions in Euclidean metrics, see Sect. 5. We let R be the minimum
radius of a ball centered at pg that intersects all regions. Suppose OPT is the length
of an optimal tour. Then, it follows that 2R < OPT < 2nR. Hence, an optimal tour
must be contained in the ball By := B(pg, nR). Therefore, without loss of generality,
we only need to consider the points in By.

@ Springer



710 Discrete Comput Geom (2011) 46:704-723

Remark 2.5 Suppose an optimal tour visits p; in each P;. If we replace each p; by
p;. € P; such that d(p;, p}) < %, then we change the length of the tour by at most

e¢OPT. Hence, we can assume that each region has radius of either O or at least %.

Given p > 0, recall that a p-net for a set U of points is a subset S such that every
point in U is within a distance of p from some point in S and any two points in § are
at a distance of more than p away from each other. The following fact states that for
a doubling metric, one cannot pack too many points in some fixed ball such that the
points are far away from one another.

Fact 2.6 (Packing in Doubling Metrics [19]) Suppose Z is a set of points in a metric
space with doubling dimension at most k. If Z is contained in some ball of radius 2°p
and for all y, z € Z such that y £ z, d(y, z) > p, then |Z| < 2(s+Dk,

On a high level, we use a divide and conquer paradigm. Hence, we would need
a desirable scheme for dividing up the metric space. The following decomposition
schemes are widely used in the metric embedding literature [5, 15].

Definition 2.7 (Padded Decomposition) Given a finite metric space (V, d), positive
parameters D > 0 and 8 > 1, a D-bounded S-padded decomposition is a distribution
IT over partitions of V such that the following conditions hold.

(a) For each partition P in the support of I1, the diameter of every cluster in P is at
most D.

(b) Suppose S C V is a set with diameter 6. If P is sampled from I7, then the set S
is partitioned by P with probability at most S - %.

We consider distances of geometrically decreasing scales. Recall the relevant dis-
. 2
tances are between % and 2n R. We consider powers of 2, and have L := [log, 4’6—11

distance scales. We let Dy, :=4nR and D;_| := %, forl<i<L.

Definition 2.8 (Padded Hierarchical Decomposition) Given a metric space (V,d),
a B-padded hierarchical decomposition is a family {IT;}; of distributions of partitions
of (V, d) such that:

(a) Each I7; is a D;-bounded B-padded decomposition of (V, d); and
(b) Suppose a partition sequence {P;}; is in the support of {I1;};. Then, for0 <i < L,
each cluster in P; is completely contained in some parent cluster in P; 4.

Fact 2.9 (Padded Hierarchical Decomposition for k-Dimensional Euclidean Met-
rics [3]) Suppose a metric space resides in k-dimensional Euclidean space. Then, the
randomly shifted quadtree construction in [3] gives a k-padded hierarchical decom-
position. Moreover, for any hierarchical partition sampled from it, any height-(i + 1)
cluster contains at most K := 2% height-i children clusters.

Fact 2.10 (Padded Hierarchical Decomposition for Doubling Metrics [31]) Suppose
a metric has doubling dimension at most k. Then, it admits an O (k)-padded hierar-
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chical decomposition. Moreover, for any hierarchical partition sampled from it, any
height-(i + 1) cluster contains at most K :=29® height-i children clusters.

2.1 Review: Approximating TSP via the Hierarchical Decomposition and Portaling
Method on Bounded Growth Metrics

Our techniques are based on the approximation schemes by Arora [3] (for low-
dimensional Euclidean metrics) and Talwar [31] (for doubling metrics); we refer to
these techniques as the Hierarchical Decomposition Method. We give a brief review
of the construction and highlight the relevant properties that are crucial to our aug-
mented scheme. For the moment, consider the case where each region P; contains
only one point.

On a high level, the method divides the metric space hierarchically into smaller
clusters. The partial solutions for smaller clusters are solved and combined together
to form the global solution through dynamic programming. We next give the main
ingredients of the method.

2.1.1 Padded Hierarchical Decomposition and Portaling Scheme

Portal Assignment and (m, r)-Light Tours Suppose a hierarchical partition {P;} is
sampled as in Definition 2.8. For each 0 <i < L, each height-i cluster C has a set
U (C) of points called portals. We consider portal respecting tours, i.e., those that
enter or leave a cluster only through its portals. This would limit the size of the search
space for TSP tours. However, to ensure that a tour of good quality is still possible, the
set U(C) is chosen to be a fine enough 0 D;-net of C, where 0 = O(ﬂiL) is suitably
small. Given positive integers m and r, a TSP tour is (m, r)-light with respect to some
hierarchical partitioning and portaling scheme if every cluster in every height of the
partition contains at most m portals and the tour enters and leaves each cluster only
through its portals for at most r times.

Theorem 2.11 (Structure Theorem for TSP) Given an instance of TSP in some un-

derlying metric M, there exists a padded hierarchical decomposition scheme such

that with probability at least %, the hierarchical partition sampled from it admits an

(m, r)-light TSP tour of length at most (1 4+ ¢)OPT, where

(a) if M has doubling dimension at most k, then m = (%)O(l‘) andr = (%)k, [31];

(b) if M is in k-dimensional Euclidean space, then m = 2k - (0(@))"‘*1 and r =
2k - (0 (L)1, 3]0

2.1.2 Dynamic Programming for Finding (m, r)-Light Tours

We outline a dynamic program to find a shortest (m, r)-light tour with respect to
some hierarchical partition and portaling scheme. Similar constructions are used by
Arnborg and Proskurowski [2], Arora [3] and Talwar [31], and our construction for
TSPN is built upon this construction.

9The original definition of (m, r)-lightness in [3] counts crossings on only one facet of the bounding box,
and hence there is an extra factor of 2k here.
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Configuration of a Cluster For each cluster C with its portals U(C), there are en-
tries, each of which is indexed by a configuration that consists of a collection I of
pairwise disjoint subsets of U (C) of size 1 or 2.

An entry for cluster C indexed by I represents the scenario in which a tour visits
cluster C via portals described by subsets in /. A 2-subset {u, v} in I means there is a
portion of the tour that enters and exits via portals # and v. A 1-subset {x} in / means
the tour enters and leaves cluster C through portal x. We keep track of the length of
the portion of the tour that is within the cluster C. The entry indexed by I stores the
length of shortest possible internal segments, for tours consistent with the scenario
imposed by /. Note that if we have to construct the tour, under each entry we have to
store the internal segments of the tour as well. Note that for a tour to be (m, r)-light,
we must have |U(C)| < m and |I| < r. Hence, each cluster has at most m?” entries.

Time for Dynamic Program As mentioned in [31], if each parent cluster C has at
most K children clusters, then the time to fill up all the entries of C is at most the
product of the number of configurations for all the children clusters and (K7)!. This
product is at most (m K r)2K"  Since there are at most n clusters from each of the L
levels, the total time is nL(mKr)2X".

3 Augmenting the Hierarchical Decomposition Method for TSPN

The main difficulty in applying the hierarchical decomposition method (or another
similar divide and conquer method) is that when a sub-problem contains partial re-
gions, the corresponding dynamic program would possibly need to try all combina-
tions of whether the sub-problem is responsible for those intersecting partial regions.
This can potentially increase the number of dynamic program entries by a factor
of 2% We prove a structure theorem that can reduce the number of intersecting
regions that a cluster needs to explicitly consider. In particular, if a region P is first
divided up at a certain height in the hierarchical partition, then it is only necessary
for descendant clusters down to certain height to explicitly consider the region P.
These descendant clusters each has a potential site, which when activated, can be
the point responsible for the divided region. Descendant clusters further down need
not be concerned about the divided region P any more. We first look at what exactly
happens when a region is divided up in the hierarchical decomposition method.

Extra Cost due to Divided Regions Suppose a region P with diameter § is first
divided in the hierarchical partition at diameter scale D;. By the property of 8-padded
decomposition, this happens with probability at most 8 - g (Recall that for metrics
with doubling dimension at most k, 8 = O(k).) We do not know exactly the point
p € P that the optimal tour visits. However, suppose we can somehow ensure that the
tour visits a point u (not necessarily in P) instead of p that satisfies d(p, u) < y D;
(for some small ¥ < 1); and then the tour makes a further detour at u and visits a
point g in P such that d(u, g) < y D;. Observing that there are at most L values of i,
the expected extra cost incurred is at most ), 8 - Dii -4y D; =4LByS. (It would be
soon apparent why we perform such a convoluted detour.) This intuition suggests that
it is useful to obtain a lower bound on OPT in terms of the diameters of the regions.
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3.1 A Lower Bound on the Length of an Optimal Tour

The following lemma is an extension of the packing lemmas in [13, 27] to doubling
metrics.

Lemma 3.1 (Existence of a Packing among Fat Weakly Disjoint Regions) Suppose
W, is a set of a-fat weakly disjoint regions with core radius p. Let Q be a set of points
that intersect every region in Wy. Suppose that the underlying metric has doubling

dimension at most k and |W;| > (8a)*. Then, there exists a set T := ((Lgvg’)L] of points

in Q that form an ap-packing.

Proof Let Q be the set of points that intersects every region in Wy, i.e., for each P €
W, the intersection Q N P is non-empty. Let T := (%] > 2. If suffices to show, by
induction on ¢, that for 1 <7 < T, there exists a set of points Q; :={p; |1 < j <t}
in Q such that any two points in Q; are at distance more than op from each other.

For t =1, pick any p; € Q and set Q1 := {p1}. Then, the result is trivially true.
Suppose for some 1 <t < T, there exists Q; := { Pk}tle in Q such that the smallest
inter-point distance in Q; is at least ap.

Let Z := {z| z is the center of some P € W;} be the set of centers of regions in W;,
which all have core radii p. From Definition 2.2, the set Z is a p-packing.

Foreach 1 <X <t,let Z, :={z € Z|d(z, p)) <2ap}. Observing that since the
doubling dimension of the underlying metric is at most k, by Fact 2.6 we have |Z, | <
(8a)*. Tt follows that || J}_, Z:| <t - (8a)* < |Z| = |W,|. Hence, there exists some
center z € Z that is not in any of the existing Z,’s. Suppose p;+1 is a point in the
region centered at z that the tour visits, and hence p;4+1 € B(z, ap). Now, for each
1 < A <t, by the triangle inequality, d (py, pr+1) = d(py., z) —d(z, pi+1) > ap, since
d(p,2) > 2ap and d(z, pr+1) < ap. Setting Q41 := O U {ps+1} completes the
inductive step. 0

By taking Q to be the set of points in the set W; of regions that a TSP tour visits,
we have the following corollary.

Corollary 3.2 (Lower Bound on OPT via Diameters of Regions) The length of any
TSP tour visiting all regions of the same type in W as in Lemma 3.1 is at least

(QZ’)L - ap; moreover, we have ZPEW, Diam(P) < 2(8x)*OPT.

Distinguishing Between Common and Rare Groups Recall that the set W of regions
is grouped into sets {W;};c[a]. We say a group W, is common if |W;| > (8a)¥, and
otherwise is rare. Let W, := UZZ‘W]|>(80[)k W; be the regions in common groups, and
let W, := W \ W, be those in rare groups. By Corollary 3.2, Zpewc Diam(P) <

2A - (8a)FOPT, and observe that Wel<A- (8a)k.
3.2 A Structural Property for a TSP Tour
Lemma 3.3 (Approximate Point Location for Divided Regions) Suppose a hierar-

chical partition is sampled as in Fact 2.10, and a region P has diameter §. Consider
the following operation of modifying a given TSP tour.
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1. Pick any point p in P such that the given TSP tour visits. Consider the height-i
partition (with diameter scale D;) for which the region P is first divided.

2. Let 0 < y < 1 and suppose that u is an arbitrary point (not necessarily in the
region P) such that d(u, p) <y D;.

3. In the given tour, replace p with u.

4. Suppose q € P is a point such that d(q,u) <y D;. (The points p and q could be
the same.) Then, make a detour at point u to visit point q and then return back to
point u.

Then, the expected increase in the length of the tour is at most 4LBy 4.

Proof First, observe that the probability that a region P with diameter § is first di-
vided at the height-i partition is at most § - Di,-’ by the property of S-padded decom-
position. Note that the increase in length after the modification procedure is at most
4y D;. Finally, observing that there can be L possible values of i for which this can
happen, the expected increase in the tour length is as required. g

Combining Corollary 3.2 and Lemma 3.3, we have the following structure theorem
for TSPN.

Theorem 3.4 (Structure Lemma for TSPN) Consider a TSPN instance on an under-
lying metric with doubling dimension at most k, and suppose that a hierarchical par-
tition is sampled as in Fact 2.10. Moreover, for each region P in W, the approximate
point location procedure is performed as in Lemma 3.3 on any given tour. Then, the
expected increase in length is at most 8(8a)K LBy AOPT, which is at most £-OPT, if
we sety = O(W). In particular, if the given tour is an (m, r)-light TSPN tour,
whose length has an expected difference from the optimal length of at most 5 - OPT,
then the resulting TSPN tour has an expected increase from the optimal length of at

most ¢ - OPT.
We next give the details of the approximate point location procedure in Lemma 3.3.

Assigning Anchor Points for a Divided Region in W, We describe how the point u
is picked for a region P (that is first divided at height-i), as in Step 2 of Lemma 3.3.
Observe that P is totally contained in some height-(i — 1) cluster C;_;. For the spe-
cial case when the diameter of P is at most y D;, then we pick an arbitrary point
p € P and replace the region P with the singleton {p}; we emphasize that in this
case p is NOT an anchor point for the region P. Otherwise, consider the descendant
clusters of C;_; that intersect with P, in decreasing height. As soon as the diameter
of an intersecting cluster C drops below y D;, or if we have reached the lowest height
where C is a height-0 cluster (which has diameter at most %, see Remark 2.5), we
pick u to be any arbitrary point inside C, and we say u is an anchor point at height-i
for the region P; in this case, it is not necessary to consider further the descendant
clusters of C for assigning anchor points. Note that we do not know which point in
the region the optimal tour would visit, but we can ensure that the correct point would
have an anchor point within a distance of y D;.
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Potential Site in a Cluster Observe that in the above description, an anchor point u
for some region is an arbitrary point in some cluster C. Hence, we pick an arbitrary
point #(C) in each cluster as a potential site, which when activated, can be an anchor
point for regions partially intersecting C. We require that if « is a potential site for a
cluster C, then it must also be one for one of its children clusters.

3.3 Bounding the Number of Ambiguous Regions Intersecting a Cluster

Ambiguous Regions for a Cluster Recall that, ultimately, we want to limit the num-
ber of regions that intersect a cluster for which the dynamic program has to explicitly
consider. Given a cluster C at height-i, its ambiguous regions are those regions P
partially intersecting C that satisfy one of the following properties.

1. The region P isin W,, i.e., it is in a rare group.
2. The cluster C or any of its descendant clusters contain potential sites that can be
anchor points (at the corresponding heights) for the region P.

Technical Issues Involving the Padded Hierarchical Decomposition Before we can
bound the number of ambiguous regions for a cluster, there are some issues concern-
ing the padded hierarchical decomposition that need to be clarified.

1. We know that the optimal solution is contained in the ball B(pg, nR). However,
if we simply take this ball as the height-L cluster, then some regions would be
divided at height-L with probability 1, thereby violating the padded-property. It
suffices to pick n € [%, 1] uniformly at random, and take the height-L cluster to
be B(po, %nDL) (assuming B is sufficiently large, say g > 2).

2. In the argument that follows, for i € [L], we would need the existence of a
B-padded decomposition at height-(i 4 I"), where I" := [log, %1. In particular,
we need the property that at height-(i + I"), the cluster containing po has diam-
eter at most D;, and the probability that a region with diameter § is divided at
this height is at most S - %ﬁ. For 1 <s < I', we can simply set the “imaginary

cluster” at height-(L + s) to be B(po, %nDL_H), where 7 € [%, 1] is the same as
in 1. The imaginary clusters are only for the sake of the proof and do not play any
role in the actual algorithm.

Lemma 3.5 (Bounding the Number of Ambiguous Regions) The number of ambigu-
ous regions for a cluster is at most H := A - Ba)k + O(%)Zk, where k is the doubling
dimension.

Proof Suppose cluster C is at height-i, where i < L. The number of its ambiguous
regions in W, is at most |W,.| < A- (Sa)k . We next count the number of its ambiguous
regions in W,.

We first bound the number of ambiguous regions in W, having diameter at
least D;. If a region P has diameter larger than D then it cannot have its anchor
point in cluster C. The reason is that such a region P would be first divided at a
height of at leasti + I", recall I" := [log, %1 . Hence, it follows that region P’s anchor

points must be at a height larger than i. So we may assume that D; < Diam(P) < %.
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Observe that such a region can be of at most I” types of diameters, where each type
of diameter is in the form (2", 2" +1]. By the assumption in Remark 2.3, there are at
most O (x)* groups having each type of diameter.

The centers of the a-fat weakly disjoint regions from each such group form some
packing, and by Remark 2.4 and Fact 2.6, there are at most O («)¥ regions from each
such group. Hence, there can be totally at most I" - O () = 0(%)2" such ambiguous
regions.

It remains to bound the number of ambiguous regions in W, having diameter less
than D;. Note that if a region P has diameter less than y D;, then there would be no
anchor points for the region P (at any height), and so P cannot be ambiguous. The
reason is that the region must be first divided at a height i’ > i, and hence the diameter
of region P is at most y D;/. In this case, an arbitrary point p in P (which is NOT
an anchor point) is picked and the region P is reduced to {p}. Again, note that if the
diameter of a region P is at least §, then its core radius is at least %. By Remark 2.4

and Fact 2.6, there can be at most O (Da"/—zs)k regions in a groups with diameter around

8 that intersect cluster C (recall there can be O()* such groups). Hence, the total
number of ambiguous regions having diameter less than D; is dominated by the term
corresponding to § = y D;, which is O(%)zk .

Summing up the number of ambiguous regions in all the cases gives the required
bound. g

4 Dynamic Program for TSPN

We describe details of the augmented dynamic program for finding the shortest TSPN
tour after the approximate point location procedure in Theorem 3.4 is performed. Ob-
serve that like the original dynamic program, the (m, r)-lightness property is ensured.
In Lemma 3.5, we bound the number H of ambiguous regions for each cluster. Hence,
in the dynamic program, the number of configurations for a cluster increases by a fac-
tor of at most 27, Observing that there are at most K = O (1)¥ children clusters for
any parent cluster, we show that the running time of the dynamic program increases
by a factor of at most 20 HK),

Theorem 4.1 Suppose that we are given an instance of TSPN, where the underly-
ing metric space has doubling dimension at most k, and there are A groups of a-fat
weakly disjoint regions. Then, with constant probability, the augmented hierarchi-
cal decomposition method gives a TSPN tour of length at most (1 4+ ¢)OPT in time
TIME(TSP) - 20HK) = exp{O (2)* 0 (@)X logk n}, where TIME(TSP) is the time for
approximating TSP with the hierarchical decomposition method used by Arora [3] or
Talwar [31].

Proof In view of Theorem 3.4, we prove the theorem by giving the construction of
the augmented dynamic program for approximating TSPN.
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Outline of the TSPN Algorithm A hierarchical partition is first sampled. Then, the
portals for each cluster are assigned as in [3] or [31]. As described in Sect. 3, the
potential sites are chosen, the anchor points for the regions are assigned, and the am-
biguous regions for each cluster are determined. Then, the following dynamic pro-
gram finds a desirable TSPN tour.

Configuration of a Cluster 'The configuration of a cluster C includes the following.

1. A collection I of portal entry/exit points as before. (Recall that (m, r)-lightness
implies that [I| <r.)

2. Abit vector of length equal to the number of ambiguous regions that cluster C has.
Each such bit indicates whether the cluster is responsible for the corresponding
ambiguous region.

3. A bit indicating whether the potential site u(C) is activated.

Since a cluster has at most H ambiguous regions, the number of configurations for
the cluster increases by a multiplicative factor of at most 27! Each entry also stores
the minimum length of the segments consistent with the configuration, and also the
segments themselves if a tour needs to be constructed eventually. We focus mainly
on the new features of the dynamic program.

Base Case: Filling Entries of Height-0 Clusters  Suppose C is a height-0 cluster. We
describe the possible configurations for such a cluster and the corresponding partial
lengths stored under its entries.

1. If the cluster C contains singleton regions P, then u(C) must be activated in the
configuration to be responsible for all those P. Otherwise, the cluster C has both
configurations in which u(C) is activated and also those in which u(C) is not.
For those configurations in which u(C) is activated, the collection / of entry/exit
points contains only a singleton {x}, where x is the closest portal to u(C) in C;'°
moreover, the distance 2d (x, u(C)) needs to be included to the length of the partial
tour within C. If u(C) is not activated in a configuration, then the set / is empty;
and such a configuration needs not take part any further in the dynamic program.

2. If u(C) is activated in a configuration, there is a choice for each ambiguous region
P of C of whether C is responsible for P.

3. For each region P for which the cluster C is responsible (either by necessity as in
1 or by choice as in 2), add twice the distance between u(C) and its closest point in
P to the length of partial tour for the entry under the corresponding configuration.

Inductive Step: Determining the Configuration and Combining the Solutions from
the Children Clusters The entries of a height-i cluster are computed from those of
its children clusters. We consider each combination of configurations of the children
clusters. A configuration for C is formed by interleaving different portal entry/exit
pairs as indicated by the children clusters’ configurations. (Recall that an interleaving

10Note that we can always choose a potential site u(C) that is also a portal, in which case x would also be
u(C).
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is valid only if it results in a collection I of entry/exit points that has size at most r,
since we look for (m, r)-light tours.) We now concentrate on how the new parameters
involved in the configuration operate. Here are the steps to be performed to determine
the configuration of the cluster C, and compute the corresponding entries.

1. For each region P that is totally contained in C, but is divided by the children
clusters, the configurations of the children clusters should reflect that at least one
of them is responsible for the region P. Otherwise, such a combination of the chil-
dren clusters’ configurations is invalid, and we move on to the next combination.

2. The potential site u = u(C) is activated in the configuration of C, if and only if
the site u is also activated in the corresponding child cluster that contains u.

3. Suppose the region P is ambiguous for cluster C. If possible, determine whether
C is responsible for P from the configurations of the children clusters.

4. If the configurations of the children clusters give no information of whether C is
responsible for an ambiguous region P, then it must be the case that the cluster C
has a potential site #(C) that can be an anchor point at height-i for the region P.
If the potential site #(C) is not activated, then the cluster C is not responsible for
the ambiguous region P in the configuration of C. If the potential site u(C) is
activated, then there is a choice of whether C is responsible for region P. In the
case where C is responsible for the region P, twice the distance of u(C) to the
closest point in P N C is added to the length stored in the corresponding entry
of C. Note that considering choices for each ambiguous region can increase the
running time by a factor of at most 2.

5. For each configuration of C formed in the manner described above, we update the
corresponding entry for C if the new partial length is less than that of the existing
one.

Increase in the Running Time We analyze the running time of the augmented dy-
namic program. Note that the number of configurations for a cluster increases by a
factor of at most 2211, and the number of children cluster is at most K. Hence the
total number of combinations of the children clusters’ configurations increases by
a factor of at most 25X+ For each such combination, the time to combine them
increases by a factor of at most 2H | as described in Step 4 above. Hence, it follows
the total time of the augmented dynamic program increases by a factor of at most
20(HK) Observing that H = A - (8a)k + 0(%)2’2 K=0k y= O(W),
L =0(log?%) and B = O (k) gives the required running time.

5 Special Case: Euclidean Metrics

We consider the special case when the underlying metric is the k-dimensional Eu-
clidean metric, with disjoint regions. If we use a stronger notion of fatness, then we
can remove the running time’s dependence on the number A of types of region diam-
eters. In order to distinguish from our definition of fatness, we refer to the following
notion as strong fatness.
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Definition 5.1 (Strong «-Fatness [9, 32]) A region P C R is said to be strongly
a-fat if for any k-dimensional ball B which does not fully contain P and whose
center lies in P, the volume of the intersection of P and B is at least 1/a* times the
volume of B.

The following lemma relates strong fatness to our notion of fat weak disjointness.
Observe that unlike previous work [9], the regions do not have to be convex or even
connected.

Lemma 5.2 (Strong Fatness Implies Fat Weak Disjointness) Suppose W is a col-
lection of disjoint strongly a-fat regions in R¥, each having diameter in the range
(D, 2D]. Then, W can be partitioned into (20) groups of regions, where each group
is 4-fat weakly disjoint.

Proof For each P; € W, we arbitrarily pick any z; € P; to be the center for P;.
We let C be the constant (depending on k) such that a ball of radius r in R¥ has
volume Cr*.

Let p:= %, which will be the core radius in each group. Observe that for each P,
P; is contained in B(z;, 4p). If we can show that for each z; there are at most A — 1
other centers within a distance of p from it, then it follows that we can partition W
into A groups such that the centers of the regions from each group form a p-packing,
and hence each group is 4-fat weakly disjoint. We next show that A < (2a/).

For each P; € W, let B; := B(z;, p) N P;. Since P; has diameter greater than D,
the ball B(z;, p) does not contain P;. By the definition of strong a-fatness, the vol-
ume of B; is at least a% - Cp*.

Fix any region and consider its center z. Recall that we want to give an upper
bound on the number A of z;’s within a distance of p from z (note that this includes
z itself too). Observe that for each z; such that d(z, z;) < p, the set B; is contained
in B(z,2p), which has volume C - (2p)*.

Since the P;’s are disjoint, then so are the B;’s. Hence, by a simple volume argu-
ment, we have X - oth - Cpk < C - (2p)*, which reduces to A < 2, as required. [
Restricting the Tour in By Recall that for finite metrics, we can try each point pg
in the region Py to form some bounding ball B(pg, nR). We need to use a different
approach if every region is continuous and contains an infinite number of points. Us-
ing the method outlined in [9], one can approximate a minimum box intersecting all
regions with center ¢ and radius R. Note that we can assume that there is some region
Py with diameter at most nR. Otherwise, if all regions have diameters at least nR,
then by the definition of a-fatness and disjointness, there can be at most O (ax)¥ re-
gions; and hence there are only a constant number of regions and the problem be-
comes trivial. Note that for any point pg in Py, the ball B(pg, (n + 1) R) intersects all
regions. Hence, instead of trying each pg in Py, we can just conclude that the opti-
mal tour must be inside the ball B(c, 2n2R). We have only L = O (log %) remaining
length scales to consider.
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Bounding the Number A of Region Groups Note that we have shown that the op-
timal tour must be inside the ball B(c, 2n2R), and as before we can assume that a
region is either a singleton or has diameter at least %. For regions having diameter
between % and 2n2R, we can group them between powers of 2, so that there are at
most O (log %) length scales; by Lemma 5.2 each length scale corresponds to at most
(2a)¥ groups. Note that by a-fatness and disjointness, there can be at most O ()~
regions having diameter larger than 272 R. Hence, it follows that the number A of
region groups is at most O(a)k- O (log %) + 0(@)* = 0(a)* -log %
Hence, Theorem 1.2 follows immediately from Theorem 1.1.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: APX-Hardness for Unbounded Types of Region Diameters

We next motivate why we need to make the assumption that the number of types of
diameters for the regions is bounded. It was shown in [14] that the TSPN problem
is APX-hard for the case where all objects are line-segments in the plane of almost
equal length. We can modify this reduction to get the following result.

Theorem A.1 The TSPN problem for doubling metrics with regions being disjoint
balls of arbitrary types of radii is APX-hard.

Proof We reduce the TSPN problem from VERTEX-COVER for 3-partite graphs,
which cannot be approximated within a factor 34/33, unless P = NP [6].

For completeness, we first describe the construction in [14] again. Given a
3-partite graph G on n vertices, we define an instance of TSPN as shown in Fig. 1.
The vertices of the graph correspond to points on the plane, and the edges correspond
to neighborhoods (of size 2) of the TSPN instance in the obvious way: two points
form a neighborhood if and only if the corresponding vertices in the graph are adja-
cent. Furthermore, we define a large number of singleton neighborhoods which to-
gether form a polygon with perimeter L. The small equilateral triangle in the closeup
has side-length d. If d is small enough, then an optimal tour follows the polygon and

Fig. 1 The reduction for a
3-partite graph on 12 vertices
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jumps up and down to some of the vertices. The extra cost of the detour for each such
vertex is 2d — d = d. Consider an optimal tour and let S be the set of vertices of G
that are visited, then OPT = L + |S|d. Now we let d = 1/n and choose the distance
between any two vertices substantially larger, say 4/n. We let the perimeter of the
polygon be 10. If there is a vertex cover of size n /2, then there exists a tour of length
L + nd/2 =10.5. On the other hand, if there exists a tour of length at most 10 + 8,
then there must be a vertex cover of size at most Sn. Taking 8 = 34/66 shows that
TSPN cannot be approximated within a factor (10 4+ 34/66)/10.5 ~ 1.0014.
We modify the above construction in the following way.

1. Disjoint Neighborhoods. Observe that in the above construction, the neighbor-
hoods are not disjoint. In particular, if a vertex v has degree d in the given graph,
then the corresponding point ¥ would be contained in d neighborhoods. For such
a vertex, we have d copies {u, uz, ..., ug} of the point u. Each neighborhood can
now take their unique copy of the point u. These locations of these d points are
just tiny perturbations from the original location of the point u. This perturbation
is so tiny that the following is true. Given any tour, the tour can be modified such
that if one copy u; is visited, then every copy would be visited, with the increase
in tour length being an arbitrarily small fraction of the optimal length. Note that
we now have disjoint neighborhoods in the Euclidean plane and we still preserve
the APX-hardness of the reduction. We denote the points in the metric space we
have constructed so far by X.

2. Neighborhoods as Disjoint Balls. Suppose W is the set of size-2 neighborhoods
in the construction. We are going to augment the metric and the neighborhoods
so that each neighborhood in W is contained in some ball in the new metric.
Observe that X are points in the Euclidean plane, and can be represented by a
weighted complete graph Gy, where the length of each edge is the Euclidean
distance between the corresponding points. Since the Euclidean plane has constant
doubling dimension, it follows that the metric induced by G x also has bounded
doubling dimension.

We augment the metric and the neighborhoods in the following way. Suppose
there are w = |W| neighborhoods of size 2. Let A > 4 be a large enough param-
eter, for instance, A is at least 100 times the optimal length. For each 1 <i < w,
for the neighborhood P; = {x;, y;} in W, we create a new point z; in the graph
Gx and add edges {z;, x;} and {z;, y;} to the graph with length Al and we also
define a new neighborhood P/ := {x;, y;, z;}. We let the augmented graph be G
with the augmented set of points Z in the metric induced by G z. Observe that the
new set of neighborhoods are in the form Bz(z;, A). More importantly, they are
now disjoint balls.

Notice that we do not need to consider any tour that visits any z;, because such
a tour would have length at least A > 100 times that of the optimal tour. Hence, the
APX-hardness reduction is preserved. It remains to see if the augmented metric
still has constant doubling dimension. Now, observe that the augmented points z;
are at geometrically increasing distances from the original graph G x (which itself
induces a metric with bounded doubling dimension), and hence the metric induced
by the augmented graph Gz also has constant doubling dimension.
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It follows that we have constructed an instance of the TSPN in a metric with con-
stant doubling dimension, whose regions are either singletons or disjoint balls of the
form Bz (z;, A') = {x;, yi, zi}, as required. O
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