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Abstract This paper studies the convergence performance
of the transform domain normalized least mean square
(TDNLMS) algorithm with general nonlinearity and the
transform domain normalized least mean M-estimate
(TDNLMM) algorithm in Gaussian inputs and additive
Gaussian and impulsive noise environment. The TDNLMM
algorithm, which is derived from robust M-estimation, has
the advantage of improved performance over the con-
ventional TDNLMS algorithm in combating impulsive
noises. Using Price’s theorem and its extension, the
above algorithms can be treated in a single framework
respectively for Gaussian and impulsive noise environ-
ments. Further, by introducing new special integral
functions, related expectations can be evaluated so as to
obtain decoupled difference equations which describe the
mean and mean square behaviors of the TDNLMS and
TDNLMM algorithms. These analytical results reveal the
advantages of the TDNLMM algorithm in impulsive
noise environment, and are in good agreement with
computer simulation results.

Keywords Adaptive filters . Transform domain normalized
least mean square (TDNLMS) . TD normalized least mean
M-estimate (TDNLMM) .M-estimation . Convergence
performance analysis . Impulsive noise

1 Introduction

Adaptive filters are widely used for filtering problems in
which the statistics of the underlying signals are either
unknown a priori, or in some cases, slowly-varying. Many
adaptive filtering algorithms have been proposed and they
are usually variants of the well known least mean square
(LMS) [1] and the recursive least squares (RLS) [2]
algorithms. An important variant of the LMS algorithm is
the normalized least mean square (NLMS) algorithm [3],
where the step size is normalized with respect to the energy
of the input vector. Due to the numerical stability and
computational simplicity of the LMS and the NLMS
algorithms, they have been widely used in various
applications [4, 5].

An important class of NLMS is the transform domain
NLMS (TDNLMS) algorithms [6–11] where unitary trans-
formations such as the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), and the wavelet
transform (WT) are employed to pre-whiten the input
signal. Prewhitening and element-wise normalization usu-
ally help to reduce the eigenvalue spread of the input
autocorrelation matrix and hence significantly improve the
convergence speed. Driven by the practical advantages of
the TDNLMS family, there is also considerable interest in
the performance analysis of these algorithms [8, 9]. Results
concerning the performance behaviors of the TDNLMS
algorithm were studied in [6–11].
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In this paper, we study a more general TDNLMS
algorithm, the TDNLMS algorithm with general error
nonlinearity. The convergence performance of this algorithm
in Gaussian inputs and additive Gaussian and impulsive noise
environments are studied. The main novelty lies in handling
the normalization, evaluating the expectations specific to this
algorithm and dealing with the error nonlinearity. We study
with particular emphasis on two special cases of this
algorithm: the conventional TDNLMS algorithm with no
nonlinearity, and the transform domain normalized least mean
M-estimate (TDNLMM) algorithm [12], which is based on
robust M-estimation [13, 14] and adaptive threshold selec-
tion (ATS) [12, 15]. These techniques have been successfully
employed in the LMM [12], the recursive least M-estimate
(RLM) [15] and the normalized LMM (NLMM) [16]
algorithms for robust filtering in impulsive noise environ-
ment. The motivation of studying this algorithm is that the
performance of the TDNLMS algorithm, which is based on
LS estimation as in the LMS algorithm, will deteriorate
considerably when the desired or the input signal is
corrupted by impulsive noise. The mean and mean square
convergence analysis for the TDNLMS algorithm with
general error nonlinearity is treated in a single framework
using the Price’s theorem [17] for Gaussian case and its
extension [18] for contaminated Gaussian (CG) case. The
finally obtained decoupled difference equations clearly
interpret the convergence performance of all the studied
algorithms. The validity of the analytical results is verified
through extensive simulations and they are in good
agreement with each other. The rest of this paper is organized
as follows: In section 2, the TDNLMS and TDNLMM
algorithms are reviewed and the TDNLMS algorithm with
general error nonlinearity is formulated. Their convergence
performance analysis is given in section 3. Computer
simulations are conducted in section 4. Finally, conclusions
are drawn in section 5.

2 TDNLMS Algorithm with General Error Nonlinearity
and TDNLMM Algorithm

2.1 The TDNLMS Algorithm

Consider the adaptive system identification problem in Fig. 1
where an input signal x(n) is applied simultaneously to an
adaptive transversal filter of order L with weight vector
W ðnÞ ¼ w1ðnÞ;w2ðnÞ; � � � ;wLðnÞ½ �T and an unknown system
to be identified with an impulse response W» ¼ w1;w2; � � � ;½
wL�T . XðnÞ ¼ xðnÞ; x n� 1ð Þ; � � � ;½ x n� Lþ 1ð Þ�T is the
input vector and the superscript T denotes the transpose of a
vector or a matrix. e(n) is the estimation error and d(n) is the
desired signal of the adaptive filter, which may be corrupted
by an additive noise ηo(n). Hence

dðnÞ ¼ XT ðnÞW»þ hoðnÞ ð1Þ
The update equations for the TDNLMS algorithm can be

written as:

eðnÞ ¼ dðnÞ �W T ðnÞXCðnÞ; ð2Þ
W nþ 1ð Þ ¼ W ðnÞ þ mΛ�1

C XCðnÞeðnÞ; ð3Þ
where μ is a constant step size parameter controlling the
convergence rate and steady state error of the algorithm.
XCðnÞ ¼ CXðnÞ ¼ XC;1ðnÞ;XC;2ðnÞ; � � � ;XC;LðnÞ

� �T
is the

transformed signal vector. C is an L×L transform matrix
such as (DFT) or (DCT). L�1

C ¼ diag "�1
1 ðnÞ; "�1

2 ðnÞ; � � � ;�
"�1
L ðnÞ� which is an element-wise normalization matrix with
εi(n) being the estimated power of the i-th signal component
after transformation. Common methods for choosing
εi(n) include "i þ X 2

C;iðnÞ and "iðnÞ ¼ 1� a"ð Þ"i n� 1ð Þþ
a"X 2

C;iðnÞ, where a" is a positive forgetting factor smaller than
one. εi is a small positive value used to avoid division by zero
or it can be chosen as certain prior power estimate of the
corresponding component. In the analysis to be presented in
section 3, a form "i þ a"X 2

C;iðnÞ similar to the above two
choices will be chosen. In the simulation section, we shall
introduce a method to approximately analyze the effect of this
choice.

2.2 The TDNLMM Algorithm and TDNLMS Algorithm
with General Error Nonlinearity

Many techniques have been proposed to combat the
adverse effect of impulsive noise on adaptive filters.
They include the median-filtering algorithms [19, 20], the
nonlinear clipping approaches [21, 22], and approaches
based on robust statistics [12, 15, 16]. The LMM [12] and
the RLM [15] algorithms are two effective algorithms
derived from robust M-estimation and their improved
robustness in impulsive noise and performance comparison
with other relevant algorithms were thoroughly discussed in
[12] and [15].

In the TDNLMM algorithm [12], an M-estimate distortion
measure Jr ¼ E r eðnÞð Þ½ � is minimized, where ρ(e), as
illustrated in Fig. 2 (a), is chosen as the modified Huber
(MH) function:
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Figure 1 Adaptive system identification.
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rðeÞ ¼ e2=2; 0 � ej j < x
x2=2; x � ej j:

�
ð4Þ

ξ is a threshold parameter used to suppress the effect of outlier
when the estimation error e is very large. Other M-estimate
function such as the Hampel’s three-part redescending
function [14] can also be used. Notice that when rðeÞ ¼
e2=2 it reduces to the conventional mean square error (MSE)
criterion. Like the LMS algorithm, Jr is minimized by
updating W(n) in the negative direction of the instantaneous
gradient vector brWr. Therefore, the gradient vector,
rW Jr

� �
, is approximated by brWr ¼ �@r eðnÞð Þ=@W ¼

�y eðnÞð ÞXðnÞ, where yðeÞ ¼ @rðeÞ=@e is the score func-
tion, which is depicted in Fig. 2 (b). The following LMM
algorithm can be obtained:

W nþ 1ð Þ ¼ W ðnÞ � mbrWr

¼ W ðnÞ þ my eðnÞð ÞXðnÞ: ð5Þ

It can be seen that when e(n) is smaller than ξ, = (e(n)) is
equal to e(n) and (5) becomes identical to the LMS
algorithm. When eðnÞj j> x, = (e(n)) will become zero. Thus
the LMM algorithm can effectively reduce the adverse effect
of large estimation error on updating the filter coefficients. In
the adaptive threshold selection (ATS) method used in [12,
15], e(n) is assumed to be Gaussian distributed except being
corrupted occasionally by additive impulsive noise and the
following robust variance estimate is proposed

bs2
eðnÞ ¼ lsbs2

e n� 1ð Þ þ c1 1� lsð Þmed AeðnÞð Þ; ð6Þ
where ls is a forgetting factor close to but smaller than one,
c1=2.13 is the finite sample correction factor and Nw is the
length of the data set. med(·) is the median operator and
AeðnÞ ¼ e2ðnÞ; e2ðn� 1Þ; � � � ; e2 n� Nw þ 1ð Þ½ �. Using (6),
the following adaptive threshold ξ can be obtained:

x ¼ kxbseðnÞ: ð7Þ

kx is a constant used to control the suppression of
impulsive interference. A reasonable value of kx is 2.576
and the window length Nw is usually chosen between 5 and 9
[12, 15].

If the step sizes for updating the coefficients are
normalized according to the power of the corresponding
transform signal components as in the TDNLMS algorithm,
the following TDNLMM algorithm can be obtained from
(5) [12]:

eðnÞ ¼ dðnÞ �W T ðnÞXCðnÞ; ð8Þ

W nþ 1ð Þ ¼ W ðnÞ þ mΛ�1
C y eðnÞð ÞXCðnÞ: ð9Þ

The convergence performance of the LMS algorithm
with other nonlinearity than MH function can be found
in literature. The LMS algorithm with error function
nonlinearity was studied in [23]. A related algorithm is
the dual-sign LMS [24] algorithm. The former concluded
that the nonlinearity will slow down the convergence rate,
while the latter is mainly introduced to reduce the
implementation complexity. The robustness of this class
of algorithms to impulsive outliers was later studied by
Koike in [22, 25, 26], and in [21] using the clipping
nonlinearity. On the contrary, in [12, 15] the threshold
parameter ξ in the MH function is continuously updated as
in (7), which greatly improves the convergence speed and
steady state error.

3 Mean and Mean Square Convergence Analysis

In this section, the convergence performance analysis of
the TDNLMS algorithm with general nonlinearity and
particularly the TDNLMS and TDNLMM algorithms will
be studied. The main contributions of the analysis
include: i) the use of the Price’s theorem [17] to handle
the nonlinearity for Gaussian noise case and its extension
[18] for the CG noise case, and ii) introduction of new
special functions and the evaluation of related expect-
ations in order to obtain decoupled difference equations
describing the mean and mean square behaviors of the
algorithms. To simplify the analysis, we make the following
assumptions:

Assumption 1 The input signal x(n) is an ergodic process
which is Gaussian distributed with zero mean and autocor-
relation matrix RXX ¼ E XðnÞXT ðnÞ� �

.

Assumption 2 The additive noise ηo(n) is assumed to be a
Gaussian noise (hoðnÞ ¼ hgðnÞ) for the analysis in sec-
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Figure 2 a The MH function ρ(e); b ψ(e), the MH score function of
ρ(e).
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tion 3.1 below. For the analysis in section 3.2 below, ηo(n)
is modeled as a CG noise [27] which is a frequently used
model for analyzing impulsive noise. More precisely, it is
given by:

hoðnÞ ¼ hgðnÞ þ himðnÞ ¼ hgðnÞ þ bðnÞhwðnÞ; ð10Þ
where ηg(n) and ηw(n) are both independent and identi-
cally distributed (i.i.d.) zero mean Gaussian sequences
with respective variance s2

g and s2
w. b(n) is an i.i.d.

Bernoulli random sequence whose value at any time
instant is either zero or one, with occurrence probabilities
Pr bðnÞ ¼ 1ð Þ ¼ pr and Pr bðnÞ ¼ 0ð Þ ¼ 1� pr. The var-
iances of the random processes ηim(n) and ηo(n) are then
given by s2

im ¼ prs2
w and s2

ho
¼ s2

g þ s2
im ¼ s2

g þ prs2
w.

The ratio rim ¼ s2
im=s

2
g ¼ prs2

w=s
2
g is a measure of the

impulsive characteristic of the CG noise. Accordingly, the

probability distribution function (PDF) of this CG distri-
bution is given by

fho hð Þ ¼ 1� prffiffiffiffiffiffiffiffiffiffi
2ps2

g

q exp � h2

2s2
g

 !
þ prffiffiffiffiffiffiffiffiffiffiffi

2ps2
@

p exp � h2

2s2
@

� 	
:

ð11Þ
Assumption 3 W(n), x(n) and ηo(n) are statistically inde-
pendent (the independent assumption [1]). Although this
assumption is not completely valid in general applications,
it is a good approximation for large value of L and is
commonly used to simplify the convergence analysis of
adaptive filtering algorithms. Moreover, we denote
W» ¼ R�1

XCXC
PdXC , where PdXC ¼ E dðnÞXCðnÞ½ � is the

ensemble-averaged cross-correlation vector between XC(n)
and d(n). W* is related to the optimal Wiener solution
WOPT ¼ R�1

XXPdX by WOPT = CW*.

3.1 Mean and Mean Square Convergence Behaviors
in Gaussian noise

3.1.1 Mean Behavior

From (9), the weight-error vector vðnÞ ¼ W»�W ðnÞ for
the TDNLMS algorithm with general nonlinearity can be
written as

v nþ 1ð Þ ¼ vðnÞ � mL�1
C y eðnÞð ÞXCðnÞ; ð12Þ

where W* is the transformed optimal weight vector defined
above and = (e(n)) is a general nonlinearity. When it is
equal to e(n), (12) reduces to the conventional TDNLMS
algorithm. Taking expectation over {v, XC, ηg} on both
sides of (12), one gets

E v nþ 1ð Þ½ � ¼ E vðnÞ½ � � mH ; ð13Þ

where E[·] denotes the expectation over {v(n), XC(n), ηg(n)}
(also written as E v;XC ;hgf g �½ � for clarity), and H ¼ E v;XC ;hgf g
L�1
C y eðnÞð ÞXCðnÞ

� �
. By dropping the time index of XC(n),

e(n), and ηg(n), one gets

H ¼ E v;XC ;hgf g Λ�1
C yðeÞXC

� � ¼ E vf g H1½ � ð14Þ

where H1 ¼ E XC ;hgf g L�1
C yðeÞXC vj� �

and the second equa-

tion is obtained from the independence assumption of ηg(n),
W(n) and x(n) in Assumption 3.

The i-th component of H1 is evaluated in Appendix A to be

H1;i � y 0 se
2ðnÞ� �

aie
T
i RXCXCvðnÞ; ð15Þ

where s2
eðnÞ ¼ E vT ðnÞRXCXCvðnÞ½ � þ s2

g , y 0 s2
e

� � ¼R1
�1

y 0ðeÞffiffiffiffi
2p

p
se

exp � e2

2s2
e


 �
de, ai ¼

R1
0 exp �b"ið Þ gi eb
 �
 ��3=2

db,

gi eb
 � ¼ 1þ 2ebRXCXC i;i


 �
, RXCXC i;j is the (i, j)-th element

of RXCXC , ei is a column vector with the i-th element equal to
one and zero elsewhere. For a given y(e), y 0 s2

e

� �
can be

evaluated analytically or numerically. Substituting (14), (15)
into (13), the following mean weight-error vector update
equation is obtained:

E v nþ 1ð Þ½ � ¼ I � mAy s2
eðnÞ

� �
DaRXCXC

� �
E vðnÞ½ �; ð16Þ

where Da ¼ diag a1; . . . ;aLð Þ is a diagonal matrix. For
notation convenience, we write y 0 s2

eðnÞ
� �

as Ay s2
eðnÞ

� �
and use s2

eðnÞ and s2
e interchangeably. Also we replace the

approximate sign in (16) by the equality sign. Let
VðnÞ ¼ D�1=2

a vðnÞ, (16) can be simplified to

E V nþ 1ð Þ½ � ¼ I � mAy s2
eðnÞ

� �
RXDXD

� �
E VðnÞ½ �; ð17Þ

where RXDXD ¼ D1=2
a RXCXCD

1=2
a is the correlation matrix of a

scaled input vector XD ¼ D1=2
a XC. Since it is symmetric, it

can be written as the following eigenvalue decomposition
(EVD): RXDXD ¼ UXDLXDU

T
XD
, where UXD is certain orthog-

onal matrix and LXD¼ diag l
0
1; l

0
2; � � � ; l

0
L

� �
contains the

corresponding eigenvalues. Pre-multiplying both sides of
(17) with UT

XD
gives

E VD nþ 1ð Þ½ � ¼ I � Ay s2
eðnÞ

� �
LXD

� �
E VDðnÞ½ �; ð18Þ

where E VDðnÞ½ � ¼ UT
XD
E VðnÞ½ �. This is equivalent to the

following L scalar first order finite difference equations:

E VD nþ 1ð Þ½ �i ¼ 1� Ay s2
eðnÞ

� �
l

0
i


 �
E VDðnÞ½ �i; ð19Þ

where E VDðnÞ½ �i is the i-th element of the vector E VDðnÞ½ �
for i ¼ 1; 2; � � � ; L.

Remarks

(R-A1): The TDNLMS algorithm
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For conventional TDNLMS algorithm, y(e) = e and
y 0 s2

e

� � ¼ Ay s2
e

� � ¼ 1. The algorithm will converge if

1� ml
0
i

�� �� < 1; for all i; ð20Þ
where l

0
i is the i-th eigenvalue of RXDXD . The corresponding

maximum step size for convergence should satisfy

mmax < 2=l
0
max; for all i; ð21Þ

where l
0
max is the maximum eigenvalue of RXDXD . Let us

examine the eigenvalues of RXDXD . We note that
RXDXD ¼ D1=2

a CRXXC
T

� �
D1=2

a . It can be shown that ai ¼
1

2a"RXCXC i;i
exp 1

2 "ia�1
" R�1

XCXC i;i


 �
� E3=2

1
2 "ia

�1
" R�1

XCXC i;i


 �
;

where EnðxÞ ¼
R1
1

exp �bxð Þ
bn

db. The i-th diagonal element of
RXDXD is

RXDXD i;i ¼ aiRXCXC i;i ¼ 1

2a"
exp

1

2
"ia

�1
" R�1

XCXC i;i

� 	
�E3=2

1
2"ia

�1
" R�1

XCXC i;i


 �
¼ l̂i:

ð22Þ

It can be seen that RXDXD i;i has the same order as
RXCXC i;i. Therefore, the order of the elements in RXCXC after
scaling, i.e. DaRXCXCDa, is preserved. If εi is simply chosen
as R�1

XCXC i;i with a" ¼ 0, i.e. perfect power estimation, then
ai ¼ R�1

XCXC i;i, and hence l̂i ¼ 1 for all i.
If C diagonalizes RXX, then RXDXD becomes the identity

matrix. The eigenvalue spread is equal to one and it will
significantly speed up the convergence of the algorithm,
especially for situations with large eigenvalue spread.

Usually C only approximately diagonalizes RXX and the
detailed analysis becomes rather difficult. Here we try to
study the eigenvalue and obtain bounds for their values
using the Gershgorin circle theorem (GCT). For orthogonal
transformation, the eigenvalues of RXX and RXCXC ¼
CRXXC

T are the same. From the GCT, we have

li � RXCXC i;i

�� �� �X
j6¼i

1� j�L

RXCXC i; j

�� ��
¼
X
j 6¼i

1� j�L

RXCXC i;iRXCXC j; j

� �1=2
rXCXC i; j

��� ���;
where rXCXC i;j is the normalized correlation coefficients.
Similarly, the eigenvalues of RXDXD satisfy

l
0
i � aiRXCXC i;i

�� �� � X
1�j6¼i�L

aiaj

� �1=2
RXCXC i;j

��� ���:
Since ai ¼ RXCXC i;i

� ��1
l̂i, we have l

0
i � l̂i

�� �� � P
1�j6¼i�L

l̂i l̂j
RXCXC i;iRXCXC j;j


 ��1=2
RXCXC i;j

���� ����. IfRXCXC is diagonal-dominant,

then the off-diagonal elements rXCXC i;j, i≠j will be small and

all the eigenvalues of RXDXD will be close to one with a tight
bound. l̂i can therefore be viewed as the estimated
eigenvalues of RXDXD . The corresponding estimated eigen-
value spread for diagonal-dominant RXCXC is

l̂i2max

l̂i2min
¼

exp 1
2 "ia

�1
" R�1

XCXC i;i2max


 �
E3=2

1
2 "ia

�1
" R�1

XCXC i;i2max


 �
exp 1

2 "ia
�1
" R�1

XCXC i;i2min


 �
E3=2

1
2 "ia

�1
" R�1

XCXC i;i2min


 � ;

ð23Þ

which is close to one for a relatively wide range of RXCXC i;i

and RXCXC j;j. This explains the speed-up in convergence rate
of the TDNLMS algorithm even if sub-optimal transforma-
tions are used. It was also shown that [9], pp.219] the
performance of the TDNLMS algorithm can never be worse
than its conventional LMS counterpart and the degree of
improvement achieved depends on the distribution of the
signal powers at transformed outputs.

(R-A2): TDNLMS algorithm with general nonlinearity
and the TDNLMM algorithm

For general nonlinearity other than y(e) = e, (18) or
(19) becomes a set of nonlinear difference equations. A
general solution is rather difficult to obtain because the
term Ay s2

e

� �
is dependent on MSE.

For C ¼ Da ¼ I, we obtain the LMS algorithm with
general nonlinearity. (19) agrees with the result for the LMS
algorithm with dual-sign nonlinearity [23]. (18) also agrees
with the result in [22] for the LMS algorithm with error
function nonlinearity. The case for LMS and NLMM
algorithms with general nonlinearity was studied in [30].
For most M-estimate functions, =(e) = q(e)e, where q(e) is
equal to 1 when |e| is less than a certain threshold ξ and will
gradually decrease to reduce its sensitivity to impulses
with large amplitude. Hence, 0 � y 0ðeÞ � 1 and y ′(e) ≈ 1
when |e| < ξ. For MH nonlinearity, it can be shown that
AMH s2

e

� � ¼ AMH s2
e

� � ¼ 2ffiffiffiffi
2p

p
R x=se

0 exp � u2

2


 �
du� 2xffiffiffiffi

2p
p

se
exp � x2

2s2
e


 �
with lim

s2
e!0

AMH s2
e

� �! 1 and lim
s2
e!1

AMH s2
e

� �! 0. For suffi-

ciently small step size μ, the algorithm will converge and
s2
e will decrease. If AMH s2

e

� �
is not made adaptive, an

inappropriately chosen ξ may suppress the signal compo-
nent, instead of the outliers. This will cause AMH s2

e

� �
to

increase gradually and lead to slow adaptation. For the
TDNLMS algorithm, ξ is chosen as a multiple of the
estimated σe as shown in (7). This helps to maintain a fairly
stationary AMH s2

e

� �
so as to avoid significant signal

suppression since AMH s2
e

� � � erf ð kxffiffi
2

p Þ ¼ AC (if bs2
e � s2

e)
is approximately constant and slightly less than one. The
degradation in convergence over its TDNLMS counterpart
is therefore minimal. Though the maximum possible step
size is in general difficult to obtain, a sufficient condition

J Sign Process Syst (2011) 64:429–445 433



for the algorithm to converge is 1� mAy s2
e

� �
l

0
i

�� �� < 1, for
all i. If y 0 s2

e

� �
is bounded above by a constant Ay max, then

a conservative maximum step size is

mmax < 2= Ay maxl
0
max


 �
; ð24Þ

which yields good estimates in practical algorithms.
Ay s2

e

� �
for some commonly used error nonlinearities are

summarized in Table 1.

3.1.2 Mean Square Behavior

Post-multiplying (12) by its transpose and taking expectation
over {v, XC, ηg} gives

X nþ 1ð Þ ¼ X ðnÞ �M1 �M2 þM3; ð25Þ

where X ðnÞ ¼ E vðnÞvT ðnÞ½ �,

M1 ¼ mE vf g E X ;hgf g L�1
C yðeÞXCjv

� �
vT

h i
¼ mE vf g HvT

� � � mAy s2
e

� �
DaRXCXCX ðnÞ; ð26Þ

M2 ¼ MT
1 ¼ mE vf g vHT

� � � mAy s2
e

� �
X ðnÞRXCXCDa; ð27Þ

and

M3 ¼ E v;XC ;hgf g myðeÞð Þ2L�1
C XCX

T
CL

�1
C

h i
¼ m2E vf g s3½ �; ð28Þ

where s3 ¼ E X ;hgf g y2ðeÞL�1
C XCXT

CL
�1
C vj� �

. Note, the final

expressions in (26) and (27) are obtained by using our
previous result in (15). The (i, j)-th element of s3 is
evaluated in Appendix B to be:

s3;i;j ¼ Cy s2
e

� �
sð0Þij rXCXC ið ÞTvvT rXCXC j þ sð1Þij rXCXC j

� �T
vvT � rXCXC j þ sð2Þij rXCXC ið ÞTvvT rXCXC i þ sð3Þij rXCXC ið ÞTvvT rXCXC j

h i
þ By s2

e

� �X1
m¼0

aðmÞ
i;j 4mð Þ � 3

2 þ m� 1
m

� 	
R 2mþ1ð Þ
XCXC i;j:

ð29Þ

where

sð0Þij ¼ 2
P1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC j;i

� �m
a m; 3þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j ;

sð1Þij ¼ 1
2

P1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ1
a m; 3þ2mð Þ=2ð Þ
i a mþ1; 5þ2mð Þ=2ð Þ

j ;

sð2Þij ¼ 1
2

P1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ1
a mþ1; 5þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j ;

sð3Þij ¼ 1
2

P1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ2
a mþ1; 5þ2mð Þ=2ð Þ
i a mþ1; 5þ2mð Þ=2ð Þ

j :

aðkÞ
i;j ¼ R10 R1

0
eb1eb2
 �k

gi eb1
 �
gj eb2
 �
 �� 2kþ3ð Þ=2

� expð� b1( i þ b2( j
� �

db2db1Þ ¼ aðkÞ
i aðkÞ

j ;

Table 1 List of Ay σ2"
� �

, By σ2
"

� �
and Cy σ2

"

� �
for three related algorithms.

Nonlinearity y(ε) Ay σ2"
� �

By σ2
"

� �
Cy σ2

"

� �

Modified
Huber

yMH "ð Þ ¼ "; "j j � x

0; otherwise

(
2ffiffiffiffi
2p

p
σ"

R x
0 exp � e2

2σ2"


 �
de� x exp � x2

2σ2"


 �h i
2σ"ffiffiffiffi
2p

p
R x
0 exp � e2

2σ2"


 �
de� x exp � x2

2σ2
"


 �h i
2ffiffiffiffi
2p

p
σ"

R x
0 exp � e2

2σ2"


 �
de� x exp � x2

2σ2"


 �h i
� x3ffiffiffiffi

2p
p

σ3"


 �
exp � x2

2σ2"


 �
Error
function

yEF "ð Þ ¼ R "0 e�u2=2σ2y du σy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y þ σ2

"

q
σ2ysin

�1 1
1þ σ2y=σ

2
"ð Þ

� 	
1þ 2σ2

"=σ
2
y


 �
1þ σ2

"=σ
2
y


 �h i�1

Dual sign yDS "ð Þ ¼ sgn "ð Þ; "j j � t
L sgn "ð Þ; "j j > t

� ffiffi
2
p

q
1
σ"

1þ L� 1ð Þe� t2= 2σ2"ð Þ½ �n o
L2 � L2 � 1ð Þ

ffiffi
2
p

q R t=σ2"
0 exp �u2=2ð Þdu 1

2 e
� t2=2σ3"ð Þ L2 � 1ð Þ t=σ3

"

� �
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w h e r e aðkÞ
i ¼ R10 R10 ðebÞkðgiðebÞÞ� 2kþ3ð Þ=2

exp �b"ið Þdb,
a m;nð Þ
i ¼ R10 ebm exp �b"ið Þ=ð1þ 2ebRXCXC i;iÞndb, By s2

e

� � ¼R1
�1

y2ðeÞffiffiffiffi
2p

p
se
expð�e2

2s2
e
Þde,Cy s2

e

� �¼ d
ds2

e
E y2ðeÞ½ �, and rXCXC ið ÞT

is the i-th row of RXCXC . For a given nonlinearity =(e), the

above two integrals can be computed analytically or
numerically.

Substituting (26–29) into (25) gives

X nþ 1ð Þ ¼ X ðnÞ � mAy s2
e

� �
DaRXCXCX ðnÞ � mAy s2

e

� �
X ðnÞRXCXCDa þ m2Cy s2

e

� �
� Sð0Þ � RXCXCX ðnÞRXCXCð Þ þ Sð1ÞDs þ DsS

ð2Þ þ Sð3Þ � RXCXCX ðnÞRXCXCð Þ
h i

þ m2By s2
e

� �
Γ a; ð30Þ

where Ds is a diagonal matrix with its i-th element
Ds½ �i;i ¼ rXCXC ið ÞTX ðnÞrXCXC i, SðkÞ� �

i;j
¼ sðkÞij and Γ a½ �ij ¼P1

m¼0
aðmÞ
i;j 4mð Þð�

3
2 þ m� 1

m
ÞR 2mþ1ð Þ

XCXC i;j:

Let 6 ðnÞ ¼ D�1=2
a X ðnÞD�1=2

a , (30) can be further
simplified to

6 nþ 1ð Þ ¼ 6 ðnÞ � mAy s2
e

� �
D1=2

a RXCXCD
1=2
a 6 ðnÞ � mAy s2

e

� �
6 ðnÞD1=2

a RXCXCD
1=2
a þ m2Cy s2

e

� �
� Sð0Þ þ Sð3Þ


 �
� D�1=2

a RXCXCD
1=2
a 6 ðnÞD1=2

a RXCXCD
�1=2
a


 �h i
þ D�1=2

a Sð1ÞD�1=2
a Ds þ DsD

�1=2
a Sð2ÞD�1=2

a

n o
þ m2By s2

e

� �
D�1=2

R Γ aD
�1=2
R ;

ð31Þ

where Ds½ �i;i ¼ D1=2
a rXCXC i

� �T
6 ðnÞ D1=2

a rXCXC i

� �
. SinceD1=2

a RXCXCD
1=2
a is symmetric, it can be diagonalized

as UXDLXDU
T
XD
. Again, let< ðnÞ ¼ UT

XD
6 ðnÞUXD , (31) yields

< nþ 1ð Þ ¼ < ðnÞ � mAy s2
e

� �
LXD< ðnÞ � mAy s2

e

� �
< ðnÞLXD þ m2Cy s2

e

� �
UT

XD
Sð0Þ þ Sð3Þ

 �

� D�1
a UXDLXD< ðnÞLXDU

T
XD
D�1

a


 �h i
UXD þ UT

XD
D�1=2

a Sð1ÞD�1=2
a DsUXD þ UT

XD
DsD

�1=2
a Sð2ÞD�1=2

a UXD

n o
þm2By s2

e

� �
UT

XD
D�1=2

a Γ aD
�1=2
a UXD :

ð32Þ

Since Ds½ �i;i ¼ ðD1=2
a rXCXC iÞTUXD< ðnÞUT

XD
ðD1=2

a rXCXC iÞ is
a scalar, after taking the vec(·) operation we have the
following:

Ds½ �i;i ¼ D1=2
a rXCXC i


 �T
	 D1=2

a rXCXC i


 �T
UXD 	 UXDð Þvec < ðnÞð Þ

¼ Δið Þ � vec < ðnÞð Þ:

Hence,

vec Dsð Þ ¼ Dsð Þ1;1; 0; . . . ; 0; 0; Dsð Þ2;2; 0; . . . ; 0; � � � ; 0; . . . ; 0; Dsð ÞL;L
h iT

¼ $ � vec < ðnÞð Þ; ð33Þ

where the i� 1ð ÞLþ i½ � � th row of Δ is equal to Δi and
zero elsewhere. Let DðnÞ ¼ vec < ðnÞð Þ. (32) can be
rewritten as

D nþ 1ð Þ ¼ *1ðnÞDðnÞ þ *2ðnÞ; ð34Þ

where *1ðnÞ ¼ I � mAyðs2
eÞðI 	 LXDÞ � mAyðs2

eÞ ðLXD 	 IÞ þ
m2Cyðs2

eÞfðUT
XD

	 UT
XD
ÞðSð0Þþð3ÞÞ½ðD�1

a UXDÞ 	 ðD�1
a UXDÞ��

ðLXD 	 LXDÞ þ ðUT
XD

	 UT
XD
Þ½I 	 ðD�1=2

a Sð1Þ
D D�1=2

a Þþ
ðD�1=2

a Sð2ÞT
D D�1=2

a Þ 	 I �Δg,
Γ2ðnÞ ¼ m2Byðs2

eÞvecðUT
XD
D�1=2

a *aD�1=2
a UXDÞ, and Sð0Þþð3Þ ¼

diag Sð0Þ þ Sð3Þ� �
.
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The algorithm will converge if I � Γ1ðnÞk k2 < 1. Using
triangular inequality, we have

I � *1ðnÞk k2 ¼ kmAy s2
e

� �
I 	 LXDð Þ þ mAy s2

e

� �
LXD 	 Ið Þ � m2Cy s2

e

� �f UT
XD

	 UT
XD


 �
Sð0Þþð3Þ D�1

a UXD

� �	 D�1
a UXD

� �� �
� LXD 	 LXDð Þ þ UT

XD
	 UT

XD


 �
I 	 D�1

a Sð1Þ
D D�1

a


 �
þ D�1

a Sð2ÞT
D D�1

a


 �
	 I

h i
$gk2

� 2mAy s2
e

� �
l

0
max þ m2Cy s2

e

� �
l

0
max


 �2
a0 < 1;

where a0 ¼ sð0Þþð3Þ
max þ l

0
max

� ��2
sð2Þmax þ sð1Þmax


 �
$max.

Therefore the algorithm converges if

1� 2mAy s2
e

� �
l

0
max þ m2Cy s2

e

� �
l

0
max


 �2
a0

���� ���� < 1

, 1� m r
0
0


 ��1
� 	

1� m r
0
1


 ��1
� 	���� ���� < 1

w h e r e r
0
0;1 ¼ l

0
max Ay s2

e

� �
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y s2

e

� �� Cy s2
e

� �
a0

q
 �
.

Hence, the maximum possible step size for mean square
convergence is

mmax r
0
1


 ��1
¼ l

0
max Ay s2

e

� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y s2

e

� �� Cy s2
e

� �
a0

q
 �h i�1

:

If the algorithm converges, we have from (34)

D 1ð Þ ¼ I � *1 1ð Þð Þ�1*2 1ð Þ:

The excess mean square error (EMSE) at time instant n
is EMSEðnÞ ¼ Tr X ðnÞRXCXCð Þ ¼ Tr < ðnÞLXDð Þ. Hence

EMSE 1ð Þ ¼ Tr vec�1 D 1ð Þð ÞLXD

� �
; ð35Þ

where vec−1(·) is the inverse vec(·) operator. (35) is rather
difficult to further simplify in general. We shall analyze the
cases with small step size and uncorrelated transform output
below.

Small step sizes If μ is small enough, then we can drop the
terms involving <(n) and μ2, and (32) becomes

< nþ 1ð Þ � < ðnÞ � mAy s2
e

� �
LXD< ðnÞ

� mAy s2
e

� �
< ðnÞLXD

þ m2By s2
e

� �bΓUD a; ð36Þ

where bΓUD a ¼ UT
XD
D�1=2

a Γ aD�1=2
a UXD . Let Ddiag(K) be an

operator which retains only the diagonal values of a square

matrix K and setting the others to zero. When the algorithm
converges, we have

Ddiag < ðnÞð Þ ¼ m
By s2

e

� �
2Ay s2

e

� � Ddiag L�1
XD
bΓUD a


 �
; ð37Þ

Hence, (35) reduces to

EMSE 1ð Þ ¼ mBy s2
e 1ð Þ� �

2Ay s2
e 1ð Þ� � Tr bΓUD a


 �
¼ mBy s2

e 1ð Þ� �
2Ay s2

e 1ð Þ� � Tr Γ aD
�1
a

� �
ð38Þ

Uncorrelated Case If RXCXC is diagonal, then it can be
shown that I1;i;i ¼ 2 vilið Þ2ea �5=2ð Þ

i , I2;i;i ¼ liea �3=2ð Þ
i , and zero

otherwise, where eaðkÞ
i ¼ R10 R1

0 exp � b1 þ b2ð Þ"ið Þgiðeb1þeb2Þ�kdb2db1 and li ¼ RXCXC i;i. Hence, (30) reduces to

X nþ 1ð Þ ¼ X ðnÞ � mAy s2
e

� �
DaRXCXCX ðnÞ

� mAy s2
e

� �
X ðnÞRXCXCDa

þ 2m2Cy s2
e

� �
RXCXCDea �5=2diag X ðnÞð ÞRXCXC

þ m2By s2
e

� �
RXCXCDea �3=2

which is equivalent to the following set of scalar equations:

X i;i nþ 1ð Þ ¼ X i;iðnÞ � 2mAy s2
e

� �
ailiX i;iðnÞ

þ 2m2Cy s2
e

� �
l2i ea �5=2ð Þ

i X i;iðnÞ

þ m2By s2
e

� �
liea �3=2ð Þ

i : ð39Þ
Assuming the difference equation converges, the cor-

responding steady state value of Ξi;i 1ð Þ can be obtained
from (39) as

X i;i 1ð Þ ¼ mBy s2
e 1ð Þ� �ea �3=2ð Þ

i

2 aiAy s2
e 1ð Þ� �� mCy s2

e 1ð Þ� �
liea �5=2ð Þ

i


 � :
ð40Þ
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The EMSE is then given by

EMSE 1ð Þ ¼ Tr RXCXCX 1ð Þð Þ ¼
XL
i¼1

liX i;i 1ð Þ: ð41Þ

Remarks

(R-A3): TDNLMS algorithm

In this case, Ay s2
e

� � ¼ Cy s2
e

� � ¼ 1, By s2
e

� � ¼ s2
e .

Since s2
eðnÞ ¼ EMSETDNLMSðnÞ þ s2

g , the EMSE from the
small step size result in (38) is

EMSETDNLMS 1ð Þ ¼
1
2 ms

2
gfTDNLMS

1� 1
2 mfTDNLMS

; ð42Þ

where fTDNLMS ¼ Tr Γ aD�1
a

� �
. Particularly, for the LMS

algorithm, C = I, Da ¼ I , and Γ a ¼ RXX . (42) will reduce
to

EMSELMS 1ð Þ ¼
1
2 ms

2
gfLMS

1� 1
2 mfLMS

; fLMS ¼ Tr RXXð Þ; ð43Þ

which agrees with the conventional result for the LMS
algorithm.

For the uncorrelated case,

EMSETDNLMS U 1ð Þ ¼
1
2 ms

2
gfTDNLMS U

1� 1
2 mfTDNLMS U

; ð44Þ

where fTDNLMS U ¼PL
i¼1

ea �3=2ð Þ
i li

ai�mliea �5=2ð Þ
i

. For perfect power

estimation, "i¼ s2
XC i and a" ¼ 0, αi=εi

−1,ea �3=2ð Þ
i ¼ea �5=2ð Þ

i ¼
"�2
i and mfTDNLMS U ¼PL

i¼1

m="ið Þli
1� m="ið Þli ¼

mL
1�m, which reduces to

the classical result of the LMS algorithm with an exact power
normalized step size (μ/εi). For stability, EMSE(∞) should be
a finite quality and it gives the following two conditions on μ
for stability:

0 < m < ai= liea �5=2ð Þ
i

� 	
and

XL
i¼1

meað�4=2Þ
i li

ai � mliea �6=2ð Þ
i

� 2:

Following the approach in [30], one gets the approxi-
mate stepsize bound as

mB ¼ 2PL
i¼1

li 2di þ cið Þ
; ð45Þ

where ci ¼ 1
ai
liea �3=2ð Þ

i and di ¼ 1
ai
mliea �5=2ð Þ

i .

(R-A4): The TDNLMS algorithm with general nonlinear-
ity and the TDNLMM algorithm

For the TDNLMS algorithms with general nonlinearity,
(38) or (42) is a nonlinear equation in EMSE(∞) since
s2
e 1ð Þ ¼ EMSE 1ð Þ þ s2

g, general solution is difficult to
obtain. In contrast, for the TDNLMM algorithm using MH

nonlinearity and ATS, AMH s2
e

� � � erf kxffiffi
2

p

 �

� 2kxffiffiffiffi
2p

p exp � k2x
2


 �
¼

Ac, BMH s2
e

� � � erf kxffiffi
2

p

 �

� 2kxffiffiffiffi
2p

p exp � k2x
2


 �
 �
s2
e ¼ Acs2

e
,

CMH s2
e

� � � Ac � k3xffiffiffiffi
2p

p

 �

exp � k2x
2


 �
� EMSETDNLMM 1ð Þ �

1
2m s2

eTr ΓaD�1
a Þ�

. Solving for EMSETDNLMM(∞) gives

EMSETDNLMM 1ð Þ �
1
2 ms

2
gfTDNLMM

1� 1
2 mfTDNLMM

; ð46Þ

where fTDNLMM = fTDNLMS.

For the LMM algorithmwithMH nonlinearity,C = I, DR =
I, and Γa ¼ RXX . (41) will reduce to

EMSELMM 1ð Þ �
1
2 ms

2
gfLMM

1� 1
2 mfLMM

; fLMM ¼ fLMS; ð47Þ

which agrees with the result in [16] and is close to their LMS
counterpart. By s2

e

� �
and Cy s2

e

� �
for some related algorithms

are summarized in Table 1.

3.2 Convergence Behaviors in CG Noise

We now study the mean and mean square behaviors of the
TDNLMS algorithm with general nonlinearity and partic-
ularly the TDNLMS and TDNLMM algorithms in CG
noise environment. For most M-estimate functions which
suppress outliers with large amplitude, the convergence rate
will only be slightly impaired after employing ATS. We
shall employ an extension of the Price’s theorem to
Gaussian mixtures [18]. This extension was employed in
the analysis of the LMS and NLMS algorithms with MH
nonlinearity and CG noise in [16]. Similar techniques were
also employed in analyzing the RLM and other related
algorithms [15] for the MH nonlinearity. We shall show in
the following that with the use of M-estimate function and
ATS, the impulsive noise can be effectively suppressed and
the EMSE is similar to the case where only Gaussian noise
is present. On the other hand, the EMSE of the LMS-based
algorithms will be substantially affected by the impulsive
CG noise.

3.2.1 Mean Behavior

Since ηo is now a CG noise as defined in (11), it is a
Gaussian mixture consisting of two components ηo_1 and
ηo_2, each with zero mean and variance s2

1 ¼ s2
g and

s2
2 ¼ s2

@, respectively. The occurrence probability of the
impulsive noise is pr. Accordingly,

E v;X ;hof g f XðnÞ; eðnÞð Þ½ �
¼ 1� prð ÞE v;X ;ho 1f g f XðnÞ; eðnÞð Þ½ �

þ prE v;X ;ho 2f g f XðnÞ; eðnÞð Þ½ �; ð48Þ
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where f XðnÞ; eðnÞð Þ is an arbitrary quantity whose statis-
tical average is to be evaluated. Since X(n), ηo_1, and ηo_2
are Gaussian distributed, each of the expectation on the
right hand side can be evaluated using the Price’s theorem.
Consequently, the results in section A can be carried
forward to the CG noise case by firstly changing the noise
power respectively to s2

g and s2
@, and then combining the

two results using (48).
Recall the relation of the mean weight-error vector in (13):

E v nþ 1ð Þ½ � ¼ E vðnÞ½ � � mH 0; ð49Þ
where H 0 ¼ E v;XC ;hof g L�1

C y eðnÞð ÞXCðnÞ
� � ¼ 1� prð ÞH 0

1þ
prH

0
2, H

0
1 and H

0
2 are respectively the expectation

of the term inside the brackets above with respect to
{v, XC, ηo_1}, and {v, XC, ηo_2}. From (16) and (17), we
h a v e H

0
i � y 0 s2

ei


 �
DaRXCXCv nð Þ, i = 1 , 2 , w h e r e

s2
e1
ðnÞ¼s2

eg
ðnÞ¼E vT ðnÞRXCXCvðnÞ½ � þ s2

g, s
2
e2
ðnÞ¼s2

e@
ðnÞ¼

E vT ðnÞRXCXCvðnÞ½ � þ s2
@. Hence

H 0 � eAyðnÞDaRXCXCvðnÞ; ð50Þ
where eAyðnÞ ¼ 1� prð Þy 0 s2

eg
ðnÞ


 �
þ pry 0 s2

e@
ðnÞ


 �
. Sub-

stituting (50) into (49) and using the transformation
VDðnÞ ¼ UT

XD
D�1=2

a vðnÞ, one gets

E VD nþ 1ð Þ½ � ¼ I � meAyðnÞLXD


 �
E VDðnÞ½ �: ð51Þ

For simplicity, we have replaced the approximate symbol
by the equality symbol. This yields the same form as (18),
except for eAyðnÞ. Similar argument regarding the mean
convergence in section 3.1 also applies to (51). A sufficient
condition for the algorithm to converge is 1�meAyðnÞl0

i

��� ���<1,
for all i. If y 0 s2

e

� �
is upper bounded and so is eAyðnÞ, say by

eAy max, then following the argument in part 3.1, the
following conservative maximum step size is obtained:

mmax < 2= eAy maxl
0
max


 �
:

Remarks:

(R-B1): TDNLMS algorithm

In this case, eAyðnÞ ¼ 1. Compared with the Gaussian
case, the convergence rate remains unchanged. All the
conclusions in (R-A1) apply.

(R-B2): TDNLMS algorithm with general nonlinearity
and TDNLMM algorithm:

For general nonlinearity without ATS, both s2
eg

and s2
e@

can be very large due to the large value of s2
e@

and the slow
decay of the EMSE E vT ðnÞRXCXCvðnÞ½ �, as the gain eAyðnÞ ¼
1� prð Þy 0 s2

eg
ðnÞ


 �
þ pry 0 s2

e@
ðnÞ


 �
can be very small

initially. This leads to nonlinear adaptation and slow
convergence. Near convergence, E vT ðnÞRXX vðnÞ½ � andeAyðnÞ will become stable. The convergence is exponential
and the convergence rate of the i-th mode is approximately
1� meAy 1ð Þl0

i, where eAy 1ð Þ is the steady state value ofeAyðnÞ. Normally, the second term pry 0 s2
e@
ðnÞ


 �
will be

much smaller than the first one due to the clipping property
of the nonlinearity and the large variance of the impulsive
noise s2

@. For the TDNLMM algorithm with ATS, the
degradation in convergence rate is not so serious since if
s2
eg
<< s2

eΣ
, eAMH � 1� prð ÞAc is a constant close to one if

pr is not too large.

3.2.2 Mean Square Behavior

Using a similar approach, it can be shown that

< nþ 1ð Þ ¼ < ðnÞ � meAy ðnÞLXD< ðnÞ � meAyðnÞ< ðnÞLXD

þm2eCyðnÞ UT
XD

Sð0Þ þ Sð2Þ

 �

� D�1
a UXDLXD< ðnÞLXDU

T
XD
D�1

a


 �h i
UXD þ UT

XD
DsD

�1=2
a Sð1ÞD�1=2

a UXD

þ UT
XD
D�1=2

a Sð3ÞD�1=2
a DsU

T
XD

8<:
9=;

þm2eByðnÞUT
XD
D�1=2

a Γ aD
�1=2
a UXD ;

ð52Þ

where eCyðnÞ ¼ ð1� prÞCyðs2
eg
ðnÞÞ þ prCyðs2

eg
ðnÞÞ andeByðnÞ ¼ ð1� prÞByðs2

eg
ðnÞÞ þ prByðs2

eg
ðnÞÞ.

Due to page limitation, we only summarize the result for
the small step size case as:

EMSE 1ð Þ � m
eBy 1ð Þ
2eAy 1ð Þ Tr ΓaD

�1
a

� �
: ð53Þ

(R-B3): TDNLMS algorithm

In these cases, eAyðnÞ ¼ eCyðnÞ ¼ 1, and eByðnÞ ¼
1� prð Þðs2

excessðnÞ þ s2
gÞ þ pr s2

excessðnÞ þ s2
@

� � ¼ s2
excessðnÞ þ s2

ho
;

where s2
ho
¼ 1 � prð Þs2

g þ prs2
Σ , s2

excessðnÞ ¼ E vT ðnÞ½
RXCXCvðnÞ� is the EMSE. Hence

EMSETDNLMS 1ð Þ ¼ s2
excess 1ð Þ�

� 1
2m s2

excess 1ð Þ þ s2
ho
Tr Γ aD

�1
a

� �
 �
;
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which gives

EMSETDNLMS 1ð Þ �
1
2 ms

2
ho
fTDNLMS

1� 1
2 mfTDNLMS

; ð54Þ

It can be seen that the EMSEwill be considerably increased
over the Gaussian case by prms2

wfTDNLMS= 1� mfTDNLMSð Þ,
which increases with the probability of occurrence of the
impulses and the difference in power between the impulsive
and Gaussian components.

For the TDNLMM algorithm with MH nonlinearity and
AT S , eAMH 1ð Þ � 1� prð ÞAc, eBMH 1ð Þ � 1� prð Þs2

eg

erf kxffiffi
2

p

 �

¼ 1� prð Þs2
eg
Ac, eCMH 1ð Þ � eAMH 1ð Þ� 1� prð Þ

k3xffiffiffiffi
2p

p

 �

exp � k2x
2


 �
:

EMSETDNLMM 1ð Þ �
1
2 ms

2
gfTDNLMS

1� 1
2 mfTDNLMS

; ð55Þ

which is identical to the case with Gaussian noise only.
This illustrates the robustness of the TDNLMM algorithm
to impulsive noise.

For the LMM algorithm with the MH nonlinearity, DR =
I, and Γ a ¼ RXX . (55) will reduce to

EMSELMM 1ð Þ � ms2
gTr RXXð Þ

2� mTr RXXð Þ ; ð56Þ

which is also similar to its conventional LMS counterpart
when the additive noise is Gaussian. This illustrates the
robustness of the M-estimation based algorithms to impul-
sive noise.

4 Simulation Results

In this section, computer simulations on the system
identification problem shown in Fig. 1 are conducted to
evaluate the analytical results for the TDNLMS and
TDNLMM algorithms obtained in section 3. The unknown
system W* is a FIR filter with L=8. Its coefficients are
randomly generated and normalized to unit energy. The
input signal x(n) is generated as a first-order AR process

xðnÞ ¼ ax n� 1ð Þ þ vðnÞ; ð57Þ
where v(n) is a white Gaussian noise sequence with zero
mean and variance s2

v . 0<a<1 is the correlation coefficient
and in our experiment it is set to be 0, 0.5 and 0.9. DCT is
employed due to its wide usage and efficiency in practice.
The simulation results are averaged over K=200 independent
runs. Only impulses in the desired signal are considered. The
locations of impulses are not fixed for each independent run
and their amplitudes are varying. For the CG impulsive
noise, we test pr=0.005, 0.01 and 0.02; rim=50, 100 and

(a) (b) (c) 

(d) (e) (f) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

0.2

0.4

0.6

0.8

1

Time index n

||V
A
(n

)||
2

Simulation results
Theoretical results

a = 0

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(1)
(2)

(3)

TDNLMS algorithm with Gaussian noise

0 1000 2000 3000 4000 5000 6000 7000 8000
-70

-60

-50

-40

-30

-20

-10

0

10

Time index n

E
M

S
E

 (d
B

)

Simulation results
Theoretical results

a = 0

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(1)

(2)

(3)

TDNLMS algorithm with Gaussian noise

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

0.2

0.4

0.6

0.8

1

Time index n

||V
A
(n

)||
2

Simulation results
Theoretical results

TDNLMS algorithm with Gaussian noise

a = 0.5

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(1)
(2)

(3)

0 1000 2000 3000 4000 5000 6000 7000 8000
-60

-50

-40

-30

-20

-10

0

10

Time index n

E
M

S
E

 (d
B

)

Simulation results
Theoretical results

TDNLMS algorith with Gaussian noise

a = 0.5

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(1)

(2)

(3)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

0.2

0.4

0.6

0.8

1

Time index n

||V
A
(n

)||
2

Simulation results
Theoretical results

TDNLMS algorithm with Gaussian noise

a = 0.9

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(2)
(1)

(3)

0 1000 2000 3000 4000 5000 6000 7000 8000
-80

-70

-60

-50

-40

-30

-20

-10

0

Time index n

E
M

S
E

 (d
B

)

Simulation results
Theoretical results

TDNLMS algorithm with Gaussian noise

a = 0.9

Step size: (1) 0.01,
                  (2) 0.004,
                  (3) 0.002.

(1)
(2)

(3)

Figure 3 The mean and mean square convergence performance of the TDNLMS algorithm with Gaussian noise: a, b: α=0, σ2
g ¼ 10�4, c, d:

α=0.5, σ2
g ¼ 10�3, e, f: α=0.9, σ2

g ¼ 10�5; Three step sizes are used: (1) μ=0.01, (2) μ=0.004, (3) μ=0.002.
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200. ls ¼ 0:95, Nw=9, kx ¼ 2:576. For mean convergence,
the norm of the mean square weight-error vector

vAðnÞk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i¼1

1

K

XK

j¼1
vðjÞi ðnÞ


 �2s
; i ¼ 1; � � � ;L; j

¼ 1; � � � ;K;

is used as the performance measure. EMSEðnÞ ¼ Tr
ΞðnÞRXXð Þ ¼ Tr ΦðnÞΛð Þ is adopted as the mean square
performance measure. The integrals αi defined in (A-9b),
aðkÞ
i in (B-9) and a m;nð Þ

i in (B-10) are evaluated numerically
[28]. Figures 3 and 4 respectively depict the mean and mean
square performance of the TDNLMS algorithm in Gaussian
noise and the TDNLMM algorithm with CG noise. The
theoretical results are computed respectively from (19), (30)
and (51), (52). Different values of a, μ, s2

g, rim and pr are
used as specified in respective figure caption. All these
figures show a satisfactory agreement between the theoretical
and simulation results. Since the results for the TDNLMM
algorithm in Gaussian noise is similar to those in CG noise,
they are omitted to save space. For the TDNLMS algorithm
in CG noise, the mean weight vector can be considerably
affected by the impulsive noise and the independent
assumption in assumption 3 becomes less accurate. Since
this case is of little interest, the simulation result is also
omitted.

To study the effect of the recursive power estimation of
the signal components in the normalization part of the
TDNLMS algorithm, "iðnÞ ¼ 1� a"ð Þs2

XC i
þ a"X 2

C;iðnÞ is
used, which allows us to approximately model the effect of
prior knowledge of the signal power on the algorithms. This
is valid when the recursive estimation of the signal power
converges. The value of s2

XC i
can be obtained from
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Figure 4 The mean and mean square convergence performance of the
TDNLMM algorithm with CG noise: a, b: a=0, σ2

g ¼ 10�4, rim=200,
pr=0.02. c, d: a=0.5, σ2

g ¼ 10�3, rim=100, pr=0.01. (e), (f): a=0.9,

σ2
g ¼ 10�5, rim=100, pr=0.005; Three step sizes are used: (1) μ=0.01,

(2) μ=0.004, (3) μ=0.002.
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calculation or offline estimation. In our experiment, it is
derived from (57) plus DCT operation and known param-
eters. Figure 5 illustrates that with the increase of a", the
estimation accuracy slightly deteriorates. This verifies the
efficiency of power normalization in TDNLMS algorithm.

5 Conclusions

The convergence performance of the TDNLMS algorithm and
its TDNLMM generalizations with Gaussian inputs and
additive Gaussian and contaminated Gaussian noises is
presented. Difference equations describing the mean and mean
square convergence behaviors for these algorithms are derived.
The analytical results reveal the advantages of the TDNLMM
algorithms in impulsive noise environment, and they are shown
to be in good agreement with computer simulation results.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Appendix A

In this Appendix, H1 ¼ E XC ;hgf g L�1
C y eðnÞXCðnÞð Þ vj� �

is
evaluated. For notational convenience, we shall drop the
subscript C in XC. An approach similar to [15, 29] is
employed to evaluate this expectation. As ηg(n) and x(n) are
assumed to be statistically independent, and X are jointly
Gaussian with covariance matrix RXCXC , the i-th element of
the vector H1 is

H1;i ¼ CR

ZZ
Lþ 1 fold

yðeÞXi

"i þ a"X 2
i

exp � 1

2
XTR�1

XCXC
X

� 	
fhg hg
� �

dhgdX ;

ðA� 1Þ
where CR ¼ 2pð Þ�L=2 RXCXCj j�1=2 and fhg hg

� �
is the PDF of

the Gaussian noise ηg. |·| denotes the determinant of a
matrix. Similar to [17], let us consider the integral

Fi bð Þ ¼ CR

ZZ
Lþ 1 fold

yðeÞXi exp �b "i þ a"X 2
i

� �� �
"i þ a"X 2

i

� exp � 1

2
XTR�1

XCXC
X

� 	
fhg hg
� �

dhgdX ðA� 2Þ

It can be seen that H1,i = Fi(0). Differentiating (A-2)
with respect to β, one gets

dFi bð Þ
db

¼ � exp �b"ið ÞCR

ZZ
Lþ 1 fold

yðeÞXi exp � 1

2
XTB�1

i X

� 	
fhg hg
� �

dhgdX ; ðA� 3Þ

where Bi ¼ 2ebeieTi þ R�1
XCXC


 ��1
, eb ¼ a"b and ei is a

column vector with its i-th element equal to one and zero
elsewhere. Using the matrix inversion lemma, we get

Bi ¼ 2ebeieTi þ R�1
XCXC


 ��1
¼ RXCXCGi; ðA� 4Þ

where Gi ¼ I � 2eb gi eb
 �
 ��1
Ei

� 	
, gi eb
 � ¼ 1þ 2ebRXCXC i;i,

RXCXC i;j is the (i, j)-th element of RXCXC and Ei ¼ eirTXCXC i.
rTXCXC i is the i-th row of RXCXC . The determinant of Bi

is Bij j ¼ RXCXCj j Gij j ¼ RXCXCj j gi eb
 �
 ��1
. (A-3) can be

rewritten as follows

dFi bð Þ
db

¼ �g i bð ÞCBi

ZZ
Lþ 1 fold

yðeÞXi � exp � 1

2
XTB�1

i X

� 	
fhg hg
� �

dhgdX

¼ �g i bð ÞE X ;hgf g yðeÞXi vj½ � E XXT½ �¼Bi
¼ �g i bð ÞL2;i

�� ;

ðA� 5Þ

where CBi ¼ 2pð Þ�L=2 Bij j�1=2,gi bð Þ¼exp �b"ið Þ gi eb
 �
 ��1=2
,

and L2;i ¼ E X ;hgf g yðeÞXi vj½ � E XXT½ �¼Bi

��� is the expectation of

=(e)Xi conditioned on v when Xi, Xj ∈ X are jointly
Gaussianwith covariancematrixBi. Since X and e are assumed
to be jointly Gaussian in Assumption 3, the Price’s theorem
[18] for X and e can be invoked to obtain the following,

L2;i ¼ y 0 s2
e

� �
bTi vðnÞ : ðA� 6Þ

bi is the i-th column of Bi. Inserting (A-6) into (A-5) and
integrating with respect to β yields

Fi bð Þ ¼ �
Z b

gi bð Þy 0 s2
e

� �
bTi db

� 	
� vðnÞ;

� y 0 s2
e

� �
ITi bð ÞvðnÞ;

ðA� 7Þ

whe r e y 0 s2
e

� � ¼ R1
�1

y 0ðeÞffiffiffiffi
2p

p
se

exp � e2

2s2
e


 �
de, ITi bð Þ ¼

� R b gi bð ÞbTi db, and the constant of integration is equal to
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zero because of the boundary condition Fi(∞)=0. Here, we
have assumed that s2

eðvÞ depends weakly on β and can be
taken outside of the integral. This is a good approximation if
the variation of y 0 s2

e

� �
is limited, such as in the TDNLMM

algorithm with adaptive threshold selection or at the steady
state of the algorithm. To evaluate ITi bð Þ, we note from
(A-4) that

Bi½ �i;j ¼ RXCXC i;j � 2eb gi eb
 �
 ��1
RXCXCEi½ �i;j

¼ gi eb
 �
 ��1
RXCXC i;j: ðA� 8Þ

Hence,

ITi ð0Þ
� �

j
¼
Z 1

0
gi bð Þ Bi½ �i;jdb ¼ aiRXCXC i;j; ðA� 9aÞ

and

ITi ð0Þ ¼ air
T
XCXC i; ðA� 9bÞ

where ai ¼
R1
0 exp �b"ið Þ gi

e
b

� 	� 	�3=2

db. Combining,
we have the desired result

H1;i ¼ Fið0Þ � y 0 s2
e

� �
aie

T
i RXCXCvðnÞ: ðA� 10Þ

Appendix B

In this appendix, s3 ¼ E XC ;hgf g y2ðeÞL�1
C XCXT

CL
�1
C vj� �

is

evaluated. Similar to deriving Hi in Appendix A, the (i, j)-th
element of s3 is given by

s3;i;j ¼ CR

ZZ
Lþ 1 fold

y2ðeÞXiXj

"i þ a"X 2
ið Þ "j þ a"X 2

j


 �
� exp � 1

2
XTR�1

XCXC
X

� 	
fhg hg
� �

dhgdX ; ðB� 1Þ

Let us define

Fi;j b1; b2ð Þ ¼ CR

ZZ
Lþ 1 fold

y2ðeÞXiXj exp �b1 "i þ a"X 2
i

� �� b2 "j þ a"X 2
i

� �� �
"i þ a"X 2

ið Þ "j þ a"X 2
j


 � � exp � 1

2
XTR�1

XCXC
X

� 	
fhg hg
� �

dhgdX : ðB� 2Þ

It can be seen that s3;i;j ¼ Fi;j 0; 0ð Þ: To evaluate
Fi;j b1; b2ð Þ, let’s differentiate (B-2) twice with respect to
β1 and β2:

@2Fi;j b1; b2ð Þ
@b1@b2

¼ CR exp � b1"i þ b2"j
� �� �

�
ZZ
Lþ 1 fold

y2ðeÞXiXj exp � 1

2
XTB�1

i;j X

� 	
fhg hg
� �

dhgdX

¼ gi;j b1; b2ð ÞL3;i;j;

ðB� 3Þ
where L3;i;j ¼ E X ;hgf g y2ðeÞXiXj vj

� ���
E XXT½ � ¼ Bi;j

, Bi;j ¼
2eb1eieTi þ


2eb2ejeTj þ R�1
XCXC

Þ�1, gi;j b1; b2ð Þ ¼ exp � b1"iþðð
b2"jÞÞ Bi;j

�� ��1=2 RXCXCj j�1=2, and CBi;j ¼ 2pð Þ�L=2 Bi;j

�� ���1=2
.

Using the matrix inversion formula, it can be shown that
[30] the determinant of Bi,j and its (i, k)-th and (k, j)-th
elements are respectively given by

Bi;j

�� �� ¼ ui;j eb1;eb2
 �
 ��1
RXCXCj j; ðB� 4aÞ

Bi;j

� �
i;k

¼ ui;j eb1;eb2
 �
 ��1
fi;j;i;k eb2
 �

; ðB� 4bÞ

Bi;j

� �
k;j ¼ ui;j eb1;eb2
 �
 ��1

fi;j;k;j eb1
 �
; ðB� 4cÞ

w h e r e ui;j eb1;eb2
 �
¼ gi eb1
 �

gj eb2
 �
� 4eb1eb2R2

XCXC j;i,

fi;j;i;k eb2
 �
¼ RXCXC i;k þ2eb2 RXCXC j; jRXCXC i;k �RXCXC i; jRXCXC j;k

� �h i
,

fi;j;k;j eb1
 �
¼ RXCXC k;j þ 2eb1 RXCXC k;jRXCXC i;i � RXCXC i;j

�h
RXCXC k;iÞ�, and
Bi;i

� �
i;k ¼ RXCXC i;k ½1þ 2ðeb1 þ eb2ÞRXCXC i;i��1 ðB� 4dÞ

Using (B-4), γi,j(β1, β2) is determined as follows

gi;j b1; b2ð Þ ¼ ui;j eb1;eb2
 �
 ��1=2
exp � b1"i þ b2"j

� �� �
:

ðB� 5Þ
Using the Price’s theorem, L3,i,j is evaluated to be [30]

L3;i;j � 2Cy s2
e

� �
bTi vv

Tbj þ By s2
e

� �
bi;j: ðB� 6Þ

where bi, j is the (i, j)-th element of Bi and By s2
e

� � ¼
E½y2ðeÞ� ¼ 1ffiffiffiffi

2p
p

se

R1
�1 y2ðeÞ exp ð� e2

2s2
e
Þde, Cy s2

e

� � ¼ d
ds2

e

E y2ðeÞ½ �. From (B-3) and (B-6), we have

@2Fi;j b1; b2ð Þ
@b1@b2

¼ 2Cy s2
e

� �
gi;j b1; b2ð ÞbTi vvTbj

þ By s2
e

� �
gi;j b1; b2ð Þbi;j: ðB� 7Þ

Integrating (B-7) with respect to β1 and β2 yields

s3;i:j � Cy s2
e

� �
I1;i;j þ By s2

e

� �
I2;i;j; ðB� 8Þ
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w h e r e I1;i;j ¼
R1
0

R1
0 2gi;j b1; b2ð ÞbTi vvTbjdb2db1 a n d

I2;i;j ¼
R1
0

R1
0 gi;j b1; b2ð Þbi;jdb2db1.

To simplify the analysis, we shall assume that s2
e

depends weakly on β and is taken outside the integral
(mean value theorem). Like Ay s2

e

� �
, this is a good

approximation if the variations of By s2
e

� �
and Cy s2

e

� �
are

limited. The integrals are evaluated below.
Evaluation of I2,i,j.
From (B-5) and (B-8), we have

I2;i;j ¼ RXCXC i;j

Z 1

0

Z 1

0
ui;j eb1;eb2
 �
 ��3

4
exp � b1"1 þ b2"2ð Þð Þdb2db1 ¼

X1
m¼0

aðmÞ
i;j 4mð Þ � 3

2 þ m� 1
m

� 	
R 2mþ1ð Þ
XCXC i;j: ðB� 9Þ

w h e r e aðkÞ
i;j ¼ R10 R1

0 ðeb1eb2Þkðgiðeb1Þgjðeb2ÞÞ� 2kþ3ð Þ=2�
exp � b1"i þ b2"j

� �� �
db2db1 ¼ aðkÞ

i aðkÞ
j , and aðkÞ

i ¼ R10 R1
0

ðebÞkðgiðebÞÞ� 2kþ3ð Þ=2
exp �b"ið Þdb.

Evaluation of I1,i,j.
Similarly from (B-5) and (B-8), we get

I1;i;j ¼ 2
PL
k¼1

PL
l¼1

vlvk
R1
0

R1
0 ui;j eb1;eb2
 �
 ��5=2

exp � b1"i þ b2"j
� �� � � fi;j;l;j eb1
 �

fi;j;i;k eb2
 �
db1db2

¼ 2
PL
k¼1

PL
l¼1

vlvk
R1
0

R1
0 gi eb1
 �

gj eb2
 �
 ��5=2
exp � b1"i þ b2"j

� �� �
� P1

m¼0

� 5
2 þ m� 1
m

� 	
�4eb1eb2R2

XCXC j;i


 �m
gi eb1
 �

gj eb2
 �
 ��m

 �
� fi;j;l;j eb1
 �

fi;j;i;k eb2
 �
db1db2

¼ 2
XL
k¼1

XL
l¼1

vlvk
X1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC j;i

� �m � RXCXC l;jRXCXC i;ka
m; 3þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j



� 2RXCXC i;jRXCXC j;kRXCXC l;j � a m; 3þ2mð Þ=2ð Þ

i a mþ1; 5þ2mð Þ=2ð Þ
j

�2RXCXC i;jRXCXC l;iRXCXC i;ka
mþ1; 5þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j þ 4R2
XCXC i;jRXCXC l;iRXCXC j;ka

mþ1; 5þ2mð Þ=2ð Þ
i a mþ1; 5þ2mð Þ=2ð Þ

j

�
;

ðB� 10Þ

where we have assumed that the matrix RXCXC is diagonal-
dominant so that we can employ the binomial expansion
and

a m;nð Þ
i ¼

Z 1

0

ebm exp �b"ið Þ
1þ 2ebRXCXC i;i


 �ndb:

In matrix form, we have

I1;i;j ¼ sð0Þij rXCXC ið ÞTvvT rXCXC j þ sð1Þij rXCXC j

� �T
vvT rXCXC j

þsð2Þij rXCXC ið ÞTvvT rXCXC i þ sð3Þij rXCXC ið ÞTvvT rXCXC j;

where

sð0Þij ¼ 2
X1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC j;i

� �m
a m; 3þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j ;

sð1Þij ¼ 1

2

X1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ1
a m; 3þ2mð Þ=2ð Þ
i a mþ1; 5þ2mð Þ=2ð Þ

j ;

sð2Þij ¼ 1

2

X1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ1
a mþ1; 5þ2mð Þ=2ð Þ
i a m; 3þ2mð Þ=2ð Þ

j ;

sð3Þij ¼ 1

2

X1
m¼0

� 5
2 þ m� 1

m

� 	
�4RXCXC i;j

� �mþ2
a mþ1; 5þ2mð Þ=2ð Þ
i a mþ1; 5þ2mð Þ=2ð Þ

j :
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