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Abstract

Background: hTERTC27 is a 27 kDa C-terminal polypeptide of human telomerase reverse transcriptase that has previously
been shown to reduce tumorigenicity of HeLa cells and suppress growth of xenografted glioblastoma in nude mice.
Although ectopic expression of hTERTC27 upregulated genes that are involved in apoptosis, cell cycle, and immune
response, the mechanism for hTERTC27-induced tumor suppression has not been completely elucidated. Since hTERT was
identified as a universal tumor-associated antigen, we hypothesize that hTERTC27 inhibits tumor growth in vivo through
activation of anti-tumor immune response.

Methodology/Principal Finding: Immunocopetent C57BL/6 mice were used for mouse B16 melanoma model. Mice bearing
B16 melanoma were administered rAAV-/rAdv viral cocktail expressing hTERTC27, and tumor growth was monitored after
viral cocktail treatment. Blood and splenocytes were used to determine the level of cytokines and the activity of immune
cells, respectively. B16 tumor growth was significantly inhibited by subcutaneous administration of a single dose of
1.561011 vg rAAV-hTERTC27 and 2.56109 pfu rAdv-hTERTC27 viral cocktail (rAAV-/rAdv-hTERTC27). The population and
cytotoxicity of NK cells in the mice were significantly augmented by rAAV-/rAdv-hTERTC27 treatment, and selective
depletion of the NK cell population in mice by intraperitoneal injection of anti-GM1 antibody abrogated the growth
suppression of melanoma induced by rAAV-/rAdv-hTERTC27 administration.

Conclusion: Activation of NK cells by administration of rAAV-/rAdv-hTERTC27 is critical for growth suppression of melanoma
in mouse model.
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Introduction

The frequency of melanoma cases in Western countries has

risen rapidly over the last years, and melanoma has become one of

the most fatal cancers [1]. Local melanoma can be cured by wide

surgical excision at its early stage [2], but metastatic melanomas

are usually incurable [3]. Chemotherapy (e.g. dacarbazine) and

cytokine adjuvant therapy (e.g. high-dose IFN-a2b and IL-2) are

commonly used as a palliative systemic therapy in patients with

advanced melanoma [4,5,6]. However, the non-specificity and

significant side effects of these therapies greatly limit their effective

use in patients [2,7,8,9]. Biochemotherapy, a combination therapy

of cytokine adjuvant with chemotherapeutic agents, has been

shown to improve response rates but not overall survival.

Moreover, biochemotherapy has been found to be associated

with increased toxicity [10,11]. Recently, several Phase II/III

clinical trials are ongoing for the use of CTLA4 monoclonal

antibodies as a new promising strategy for the treatment of

metastatic melanoma [12]; however, significant autoimmune-

related side effects have been increasingly observed [13,14,15].

Cancer vaccines, on the other hand, exhibit higher specificity and

less toxicity, and their development has made rapid progress in

recent decades [10,16,17], but the therapeutic efficacy has been

very low with the reported overall objective response rate of only

3.3% [18].

Telomeres are specialized structures at the end of eukaryotic

chromosomes that function to prevent chromosome end-joining

and maintained by telomerase, a ribonucleoprotein complex that

functions in elongating telomeres using reverse transcriptase and a

specific RNA molecule in the complex. Telomere length loss

occurs with cell division in somatic cells in which telomerase

activity is absent and induces replicative senescence and cell
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proliferation inhibition when the length decreases to below a

certain threshold [19]. In contrast, immortal cells like stem cells

and cancer cells express high telomerase activity and show little

loss of telomere length with cell division, and thus escape

replicative senescence and proliferate indefinitely [20]. Telomerase

reverse transcriptase (TERT), the catalytic peptide subunit of

telomerase, is expressed in more than 85% of human tumor cells

but rarely in normal cells, making it an ideal target for antigen-

specific cancer immunotherapy [21,22]. Indeed, studies have

shown that TERT able to trigger antitumor cytotoxic T

lymphocyte (CTL) responses, and immunization of mice with

TERT stimulated TERT-specific CTL that can kill cancers of

various origins [23,24,25].

hTERTC27 is an artificially derived 27 kD C-terminal

polypeptides of human TERT [26]. Overexpression of

hTERTC27 in HeLa cells caused excessive chromosome end

joining events without affecting telomerase activity in TRAP assay

[26]. Previously, we developed a novel cancer gene therapy using

recombinant adeno-associated virus (rAAV) as delivery vector for

hTERTC27 (i.e. rAAV-hTERTC27). In a glioblastoma xenograft

mouse model, we observed that ectopic expression of hTERTC27

in tumor cells induced tumor regression and significantly

prolonged survival of tumor-bearing mice. The action of

hTERTC27 on tumors is mechanistically complex. For instance,

transduction of tumor cells with rAAV-hTERTC27 induced cell

apoptosis and inhibited tumor angiogenesis. Moreover, we

observed an influx of ploymorphonuclear neutrophils into

hTERTC27-treated tumor xenograft, and upregulation of gene

expression involved in immune response [27], suggesting that the

immune response might play a role in tumor regression.

Previously, it has been reported that administration of adeno-

associated virus (rAAV) with adenovirus (rAdv) together can

increase AAV transduction efficiency by .100 fold [28]. For

example, the rAAV-BMP2-induced osteogenic activity was

successfully enhanced by combination of rAAV-BMP2 with a

low level of rAdv-BMP2 [29]. Similarly, a low level of rAdv-

hTERTC27 greatly enhanced the expression of hTERTC27

transgene carried by rAAV, and rAAV-/rAdv-hTERTC27 viral

cocktail potently inhibited xenografted glioblastoma growth [30].

In this study we tested the efficacy of the rAAV-/rAdv-

hTERTC27 viral cocktail in treating melanoma and explored the

possible involvement of immune response in cancer regressions

mediated by rAAV-/rAdv-hTERTC27 treatment using an

immunocompetent mouse model of melanoma. We found that a

single dose administration of viral cocktail of hTERTC27 was

sufficient to significantly inhibit the tumor growth of melanoma in

C57BL/6 mice. The innate arm of immunity mediated by NK

cells and adaptive immunity mediated by Th1 cytokines seemed to

play an important role in this anti-tumor effect. The potential

beneficial effects of supplementing rAAV-/rAdv-hTERTC27 gene

therapy with other therapies for prevention and treatment of

melanoma metastasis warrant further investigations.

Materials and Methods

Animals, cells, antibodies and reagents
Female C57BL/6N mice (6–8 weeks old) were purchased from

the Charles River Laboratories (Wilmington, MA) and housed

under aseptic conditions and cared for according to the guidelines

issued by the University of Hong Kong’s Laboratory Animal Unit.

Mice were fed for three days before the experiments. All

experimental protocols were approved by the Department of

Health of the Government of HKSAR [permit number: (411) in

DH/ORHI/8/2/3 Pt. 5] and the University of Hong Kong’s

Committee on the Use of Live Animals in Teaching and Research

(approval ID: CULATR 1334–06).

Mouse melanoma B16-F1 (ATCC, CRL-6323) cells were

cultured in DMEM supplemented with 10% heat inactivated

FBS, 100 U/ml penicillin and 100 mg/ml streptomycin (Invitro-

gen, Carlsbad, CA) at 37uC with 5% CO2. YAC-1 (ATCC, TIB-

160) cells were maintained in RPMI-1640 medium supplemented

with 10% heat inactivated FBS and antibiotics (100 U/ml

penicillin & 100 mg/ml streptomycin).

CytoTox 96 Non-Radioactive Cytotoxicity Assay and CellTiter

96 Non-Radioactive Cell Proliferation Assay Kit were purchased

from Promega (Promega, WI, USA). Mitomycin C, Lipopolysac-

charides (LPS) from Escherichia coli O111:B4, Concanavalin A

(ConA), and HistopaqueH-1083 were obtained from Sigma

(Sigma, MO, USA). Red blood cell lysis buffer, recombinant

mouse IL-2, R-Phycoerythrin (R-PE)-conjugated rat anti-mouse

CD4 monoclonal antibody (L3T4), Fluorescein Isothiocyanate

(FITC)-conjugated rat anti-mouse CD8a monoclonal antibody

(Ly-2), R-PE-conjugated rat anti-mouse CD49b/Pan NK mono-

clonal antibody (DX5), FITC-conjugated rat anti-mouse CD3

monoclonal antibody (17A2), FITC-conjugated rat anti-mouse

CD19 monoclonal antibody (1D3) were all obtained from BD

Biosciences (BD Bioscience Pharmingen).

Production of recombinant adenovirus (rAdv) and
adeno-associated virus (rAAV)

Recombinant adenovirus-hTERTC27 (rAdv-hTERTC27) and

recombinant adeno-assoicated virus-hTERTC27 (rAAV-

hTERTC27) were prepared as previously described [30], and

the recombinant viruses were kept at 280uC prior to use.

Subcutaneous tumor inoculation
Melanoma B16 cells were harvested in exponential growth

phase by trypsinization and washed twice with ice-cold PBS, and

then resuspended into ice-cold PBS at a concentration of

26106 cells/ml. C57BL/6 mice were subcutaneously injected

with B16 cells (26105 cells/mouse) on the right back flank. 7 days

later, each mouse with tumor about 0.2,0.4 cm3 received a viral

cocktail injection (1.561011 vg of rAAV-hTERTC27 plus

2.56109 pfu of rAdv-hTERTC27 for treatment groups; or

1.561011 vg of rAAV-EGFP plus 2.56109 pfu of rAdv-EGFP

for viral cocktail control group) or equal volume of PBS injection

(for control group) by routes as indicated. Tumor size was

measured with calipers every other day. Tumor volume (V) was

calculated by the formula, V = 1/26S6S6L, where S and L are

the shortest and longest diameter of the tumor, respectively. Mice

were sacrificed on day 21 post-tumor cell injection.

Profile study of lymphocytes in blood by flow cytometry
Peripheral blood was collected from each mouse at sacrifice and

mixed with anticoagulant immediately. Plasma was collected by

centrifugation at 300 6g for 5 min, and the cell pellet was washed

twice with PBS and resuspended in 0.4 ml of PBS-FBS (PBS,

pH 7.4, containing 1% FBS and 0.1% sodium azide). The cell

suspension was divided into two parts with equal volume. One part

was labeled with PE-conjugated rat anti-mouse CD4 monoclonal

antibody and FITC-conjugated rat anti-mouse CD8 monoclonal

antibody, while the other part was labeled with PE-conjugated rat

anti-mouse CD49b/pan-NK monoclonal antibody and FITC-

conjugated rat anti-mouse CD19 monoclonal antibody, for

40 min on ice. For detection of NKT cells, plasma was labeled

with PE-conjugated rat anti-mouse CD49b monoclonal antibody

and FITC-conjugated rat anti-mouse CD3 monoclonal antibody.

hTERTC27 Inhibits Melanoma
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After red blood cell lyses and washing, the cells were analyzed by

Epics Altra (Bechman Coulter, Miami, FL) and free software

WinMDI version 2.8 (http://facs.scripps.edu/software.html).

Depletion of NK cell population in mice
To deplete NK cell population, mice were administered 20 ml of

anti-asialo GM1 (Wako Pure Chemical Industries) by intraperito-

neal injection 3 days before viral cocktail treatment, followed by

repeated injection every five days for duration of two weeks. NK

cell population in blood was then analyzed by flow cytometry.

Measurement of cytokine levels
Cytokine levels in plasma collected from mouse peripheral

blood were analyzed using TH1/TH2 10plex kit and FlowCytomix

Pro 1.0 Software (Bender MedSystems, USA) according to the

manufacturer’s instructions.

Lymphocyte proliferation activity
Lymphocytes were isolated from splenocytes by HistoPaque-

1083 centrifugation and then seeded into 96-well plate with 100 ml

per well at the concentration of 56106 cells/ml. After 72 hrs

stimulation with 10 mg/ml ConA or 10 mg/ml LPS, the

lymphocyte proliferation activity was analyzed using CellTiter

96 Non-Radioactive Cell Proliferation Assay Kit and the activity

of LDH was measured by a spectrophotometer at 490 nm. The

stimulation index (SI) was calculated as the formula SI =

(Mitogen treatment-Background)/(Control-Background).

Cytotoxic activities of NK and CTL
The cytolytic activities of NK and CTL were determined by

CytoTox 96 Non-Radioactive Cytotoxicity Assay Kit. Briefly, for

NK cytotoxic activity, lymphocytes isolated from spleen of each

mouse were incubated with YAC-1 or B16 cells at different

effector/target (E:T) ratios at 37uC for 4 hrs, and targeted cell lysis

was calculated according to the manufacturer’s instructions. For

CTL activity, lymphocytes isolated from spleen of each mouse

were stimulated with mitomycin C-treated B16 cells (a 2:1 ratio of

lymphocytes and B16) and recombinant mouse IL-2 (mIL-2,

50 ng/ml) in complete culture medium for six days. Culture

medium (half of volume) was replenished with fresh medium

containing mIL-2 every 3 days. Viable lymphocytes were

separated by Histopaque-1083 density gradient centrifugation

and then incubated with B16 cells at the indicated E:T ratio at

37uC for 4 hrs. Cytotoxicity was measured using CytoTox 96

Non-Radioactive Cytotoxicity Assay Kit.

Statistical analysis
Student’s t test was used to compare tumor volumes and

cytotoxicity between experimental groups. Prism 3.0 (GraphPad

Software, San Diego California, USA) was used for all

calculations, with a P,0.05 deemed statistically significant.

Figure 1. rAAV-/rAdv-hTERTC27 treatment suppresses the
growth of B16 melanoma in C57BL/6 mice. (A) Anti-tumor efficacy
of rAAV-hTERTC27, rAdv-hTERTC27 and rAAV-/rAdv-hTERTC27. Tumor-
bearing mice (5mice/group) were subcutaneously injected with viruses
as indicated. Tumor growth was monitored by measuring tumor
size with calipers every other day till the day when mice sacrificed.
*: P,0.05, compared with PBS treated group. (B) Antitumor efficacies of

different administration routes of rAAV-/rAdv-hTERTC27 viral cocktail.
Tumor-bearing mice were treated by injection of rAAV-/rAdv-hTERTC27,
rAAV-/rAdv-EGFP, or PBS as indicated routes, i.e. intratumor (i.t.), intra-
muscular (i.m.), intraperitoneal (i.p.), intravenous (i.v.) and subcutaneous
(s.c.) injection (3mice/group). *: P,0.05, compared with PBS treated
group. (C) Antitumor efficacy of subcutaneous administration of
hTERTC27. Melanoma-bearing mice were subcutaneously received
rAAV-/rAdv-hTERTC27 viral cocktail (5 mice), rAAV-/rAdv-EGFP viral
cocktail (4 mice) or PBS (3 mice) around tumor on 7th day after tumor
cell injection, and were sacrificed on day 20 post-tumor cell injection.
*: P,0.05, compared with PBS group.
doi:10.1371/journal.pone.0012705.g001
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Results

rAAV-/rAdv-hTERTC27 viral cocktail is more effective than
either virus alone in suppressing the growth of B16
melanoma in C57BL/6 mice

We first tested the efficacy of the rAAV-/rAdv-hTERTC27 viral

cocktail in a melanoma cancer model. C57BL/6 mice received

subcutaneous injection of PBS, rAAV-/rAdv-hTERTC27 viral

cocktail or either virus alone near the tumors on the 7th day after

tumor cell inoculation. As expected, tumors in control mice treated

with PBS grew much more rapidly than those in mice treated with

either rAAV-hTERTC27 or rAdv-hTERTC27 or both over the

observation period (Fig. 1A). Moreover, administration of rAAV-/

rAdv-hTERTC27 viral cocktail significantly suppressed tumor

growth compared with either virus alone (Fig. 1A).

We then investigated the efficacy of administration routes of

rAAV-/rAdv-hTERTC27 in melanoma growth. Mice bearing B16

melanoma were given a single dose of rAAV-/rAdv-hTERTC27 by

different routes (intratumoral, intramuscular, intravenous, intraper-

itoneal, and subcutaneous) or rAAV-/rAdv-EGFP (intratumoral

injection), or PBS (intratumoral injection). Tumor growth in mice

received intraperitoneal or intramuscular injection of rAAV-/rAdv-

hTERTC27 viral cocktail was not significantly different from the

control group mice, which received an intratumoral injection with

either PBS or rAAV-/rAdv-EGFP viral cocktail (Fig. 1B). However,

we observed much slower tumor growth in mice that received

intratumoral, intravenous or subcutaneous injection of rAAV-/

rAdv-hTERTC27 viral cocktail compared with mice from control

groups (Fig. 1B). Unexpectedly, subcutaneous injection of rAAV-/

rAdv-hTERTC27 viral cocktail around tumor resulted in the most

significant tumor-growth inhibition (Fig. 1B). Consistent results

were obtained from another experiment in which mice were

injected subcutaneously with rAAV-/rAdv-hTERTC27, rAAV-/

rAdv-EGFP or PBS. Again, mice that received rAAV-/rAdv-

hTERTC27 exhibited greater tumor growth inhibition than those

given rAAV-/rAdv-EGFP or PBS (Fig. 1C).

NK cells population and cytotoxicity are enhanced by
administration of rAAV-/rAdv-hTERTC27 viral cocktail

Our previous study indicated that in addition to apoptosis genes,

rAAV-hTERTC27 also regulates the expression of genes that are

important to immune functions [27]. To test the hypothesis that an

immune response is one of the major mechanisms responsible for

tumor suppression executed by rAAV-/rAdv-hTERTC27, we

analyzed the population profiles of peripheral blood leukocytes by

flow cytometry. The population of NK cells was significantly

increased in mice treated by rAAV-/rAdv-hTERTC27 viral cocktail

(43.4%) compared with mice treated by rAAV-/rAdv-EGFP (12.2%)

or PBS (17.7%) (Fig. 2A and 2C). However, there was no significant

difference in the populations of B cells, CD4+ T cells and CD8+ T

cells between the different treatment groups (Fig. 2B and 2C). The

antibody used for pan NK cell (NK1.1+) profile study is an anti-

CD49b antibody (DX5) which also recognizes NKT (NK1.1+/CD3+)

cells. To clarify whether the population of NKT cells is increased by

the rAAV-/rAdv-hTERTC27 treatment, another flow cytometry

analysis was performed using PE-conjugated rat anti-mouse CD49b

and FITC-conjugated rat anti-mouse CD3 antibodies. As shown in

Figure 2F, the population of NK (NK1.1+/CD32) cells was

consistently increased by hTERTC27 treatment. In addition,

hTERTC27 increased the population of NKT (NK1.1+/CD3+) cells

but did not significantly change the population of NK1.12/CD3+ T

cells (Fig 2F). Although the populations of both NK (NK1.1+/CD32)

cells and NKT (NK1.1+/CD3+) cells were significantly increased by

hTERTC27, the increase in NK cell population (192%) is higher

than NKT cell population (159%). Moreover, the percentage of NK

cells (30%) in PMBC is much higher than that of NKT cells (6%)

(Fig 2F). These results suggest that NK (NK1.1+/CD32) cells may

play much more important roles than NKT cells (NK1.1+/CD3+) in

suppressing xenografted tumor growth.

To further investigate whether administration of rAAV-/rAdv-

hTERTC27 viral cocktail can increase the cytolytic activity of NK

cells, NK cell cytotoxicity assay was performed. Lymphocytes from

mice that received rAAV-/rAdv-hTERTC27 injection exhibited a

significant increase in YAC-1 (a target cell of NK) killing activity as

compared to those from mice treated with rAAV-/rAdv-EGFP or PBS

at the E/T ratios of 50:1 and 12.5:1, respectively (Fig. 2D). In addition,

lymphocytes from mice treated with rAAV-/rAdv-hTERTC27 also

exhibited higher cytotoxicity to B16 cells than those from mice treated

with rAAV-/rAdv-EGFP or PBS at the E/T ratio of 50:1 (Fig. 2E).

Suppression of NK cell impairs the antitumor effects of
rAAV-/rAdv-hTERTC27 administration

The remarkable increase in the population and cytotoxicity of

NK cells in hTERTC27 treated mice strongly hinted that NK cell

is crucial for hTERTC27-induced tumor suppression. To test

this hypothesis, NK cell population was depleted in mice by

intraperitoneal injection of anti-GM1 antibody, and its effect on

tumor growth during the rAAV-/rAdv-hTERTC27 treatment was

investigated. As shown in Figure 3A, injection of anti-GM1

antibody specifically reduced NK cell population in PBMC,

whereas helper T cells (CD4+), cytotoxic T cells (CD8+), B cells

(CD19+) (Fig. 3B), and regulatory T cells were unaffected (Fig. 3D).

Consistently, the cytotoxicity of splenocytes to YAC-1 was

decreased in anti-GM1 antibody-treated mice (Fig. 3C). Strikingly,

anti-GM1 antibody injection completely abolished the tumor

growth suppression induced by hTERTC27 treatment (Fig. 3E,

3F). Taken together, the results suggest that NK cell activation is

crucial for the anti-tumor effect of hTERTC27.

TH1 cytokine secretion is increased after administration
of rAAV-/rAdv-hTERTC27

To investigate blood cytokine levels, plasma from mice treated

with rAAV-/rAdv-hTERTC27 and rAAV-/rAdv-EGFP viral

cocktails was collected and analyzed using Mouse Th1/Th2

FlowCytomix kit. TH1 and TH2 cytokines refer to the patterns of

cytokines secreted by two different subpopulations of CD4+ T cells

Figure 2. rAAV-/rAdv-hTERTC27 treatment increases the population and cytotoxicity of NK cells. (A) & (B) Flow cytometric analysis of
PMBC from tumor-bearing mice treated with subcutaneous administration of rAAV-/rAdv-hTERTC27, rAAV-/rAdv-EGFP, or PBS. Data shown here
represent one of several mice analyzed with similar results. (C) Lymphocyte profiles from A & B (data pooled from 3 mice/group treated with
indicated viruses or PBS). *P,0.05, compared with EGFP group. (D) and (E): Cytotoxic activity of spleen NK cells isolated from mice treated with rAAV-/
rAdv-hTERTC27, rAAV-/rAdv-EGFP or PBS was analyzed against YAC-1 (D) or B16 (E) cells. Lymphocytes isolated from each mouse were cultured with
YAC-1 or B16 cells at various effector to target ratios (E/T). *: P,0.05, compared with EGFP group. (F): Profiles of NKT (NK1.1+/CD3+), NK (NK1.1+/CD32)
and T (NK1.12/CD3+) cells in PMBC from tumor-bearing mice treated with rAAV-/rAdv-hTERTC27 or rAAV-/rAdv-EGFP. The numerical value presented
with the bar graph indicates the percentage of the cell population in PMBC. The cell population without any marker (i.e. NK1.12/CD32) is not shown.
Data pooled from 3 mice/group treated with indicated virus through flow cytometry analysis. *: P,0.05, compared with EGFP group.
doi:10.1371/journal.pone.0012705.g002
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Figure 3. NK cell activity is crucial for the anti-tumor effect of hTERTC27. PMBC from mice intraperitoneally injected with anti-GM1 antibody
were analyzed for populations of NK cells (A), helper T cell/cytotoxic T cell/B cell (B) and regulatory T cell (D) by flow cytometry. (C) Cytotoxicity of NK
cells against YAC-1. Lymphocytes isolated from spleen of each mouse were cultured with YAC-1 cells at various E/T ratios, and the specific lysis was
determined using CytoTox 96 Non-Radioactive Cytotoxicity Assay Kit. (E) NK cell depletion abrogated the anti-tumor effects of rAAV-/rAdv-hTERTC27
in C57BL/6 mice. *: P,0.05, compared with EGFP group. (F) A representative photo of tumor morphology from different treatment groups. hTERTC27:
hTERTC27 viral cocktail; EGFP: EGFP viral cocktail. *: P,0.05, compared with hTERTC27 group.
doi:10.1371/journal.pone.0012705.g003
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that determine the outcome of an antigenic response toward

humoral and cell-mediated immunity, respectively. Th1 cytokines

include IL-2, IFN-c, IL-12 and TNF-b, and Th2 cytokines include

IL-4, IL-5, IL-6, IL-10 and IL-13. The levels of mIL-2, mIFN-c,

and mGM-CSF in blood of mice treated with hTERTC27 were

3.3-, 185- and 3.9-fold, respectively, higher than those in the blood

of mice treated with EGFP. We did not observe a significant

change in the level of other cytokines (e.g. IL-4, IL-5, IL-6, IL-10

and IL-17) between hTERTC27-treated mice and EGFP-treated

mice (the level difference is ,2-fold) (Fig.4).

T cell activity is enhanced by administration of rAAV-/
rAdv-hTERTC27

Lymphocytes from spleen were treated with ConA (10 mg/ml)

or LPS (10 mg/ml) to investigate whether administration of

hTERTC27 viral cocktail can increase the proliferation activity of

T cells or B cells. As shown in Figure 5A, there is no significant

difference in B cell proliferation activity among groups treated with

rAAV-/rAdv-hTERTC27, rAAV-/rAdv-EGFP or PBS. However,

a slight but significant increase in T cell proliferation was observed

in mice treated with rAAV-/rAdv-hTERTC27 as opposed to those

treated with rAAV-/rAdv-EGFP or PBS. Consistent with the T cell

proliferation assay, the cytotoxicity of spleen T lymphocytes was a

little higher in mice treated with rAAV-/rAdv-hTERTC27 than in

those treated with rAAV-/rAdv-EGFP or PBS (Fig. 5B).

Discussion

In this study, we demonstrated for the first time that rAAV-/

rAdv-hTERTC27, a viral cancer therapy effective in treating

glioblastoma [30], also provides therapeutic benefit against murine

melanoma. Our data suggest that rAAV-/rAdv-hTERTC27 acts

through enhancing anti-tumor innate immunity.

The rationale of combining rAAV with rAdv vectors is that a

non-therapeutic dose of rAdv-null can greatly increase the

transduction level of rAAV, and a combination of therapeutic

dose of rAdv-Luc (2.56109 pfu) and rAAV-Luc (1.561011 v.g.)

dramatically increased the luciferase expression level in vivo

[29,30]. Therefore, a better beneficial antitumor effect was

achieved by combining rAAV-hTERTC27 with rAdv-

hTERTC27 compared with either one alone, suggesting that the

enhanced expression level of hTERTC27 likely played a role.

As a universal tumor-associated antigen, TERT is an ideal

target for cancer therapy. Conceptually, three approaches have

exploited TERT for cancer therapy: gene therapy (using viral gene

transfer to interfere telomerase activity or express suicide gene

under TERT promoter), immunotherapy (stimulating TERT-

specific immune response to kill TERT-expressing cells), and

small-molecule inhibitors (using peptide/chemical drugs to inhi-

bit telomerase activity) [31]. Previously, rAAV-hTERTC27

was developed as a TERT-targeting gene therapy [27]. Here,

investigation of the mechanism by which rAAV-/rAdv-

hTERTC27 inhibits melanoma led us to believe that one of the

effects of rAAV-/rAdv-hTERTC27 might be the enhanced cancer

immunosurveillance mediated mainly by NK cells since 1) a single

dose administration of rAAV-/rAdv-hTERTC27 not only in-

creased the population of blood NK cells by about two fold (Fig. 2)

Figure 4. rAAV-/rAdv-hTERTC27 treatment increases plasma
levels of Th1 cytokines. Plasma from sacrificed mice on day 20 post
tumor cell inoculation were analyzed to determine cytokine levels using
mouse Th1/Th2 FlowCytomix assay kit. The numerical values presented
with the bar graph indicate the fold differences of cytokine levels
between mice treated with hTERTC27 and EGFP.
doi:10.1371/journal.pone.0012705.g004

Figure 5. rAAV-/rAdv-hTERTC27 treatment has different effects on the activities of T cells and B cells. (A) Proliferation activity of T cells
and B cells isolated from mice treated with hTERTC27, EGFP or PBS. Data are expressed as means 6 SD (n = 3). *: P,0.05, compared with EGFP group.
(B) Cytotoxicity of T cells isolated from mice treated with hTERTC27, EGFP, or PBS. *: P,0.05, compared with EGFP group.
doi:10.1371/journal.pone.0012705.g005
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but also enhanced the specific cytotoxicity of splenic NK cells to

YAC-1 and B16 cells (Fig. 5); 2) selective depletion of NK cells

which are known to play important roles in tumor immunosur-

veillance in vivo [32] but not NKT cells by the anti-GM1 antibody

[33–36] completely abrogated the antitumor effects of

hTERTC27 (Fig. 3E). Although the population of NKT cells in

PMBC was also increased by rAAV-/rAdv-hTERTC27 (Fig. 2F),

the percentage of the NKT cells (6%) was too low as compared to

that of NK cells (30%) to be the major effector cells which can

induce such significant tumor growth suppression.

Our study indicates that activation of NK cells by hTERTC27

is sufficient to inhibit melanoma growth in mouse model,

pinpointing the importance of NK cell activation in cancer

immunotherapy. These observations are consistent with our

previous study that rAAV-hTERTC27 administration effectively

inhibited glioblastoma growth in nude mice, where T cells are

absent but NK cells are functional. Consistently, a previous study

also indicated that activation of NK cells can provide effective

innate immunotherapy of melanoma in mouse model [37].

The NK activity-stimulating effect of rAAV-/rAdv-hTERTC27

represents a novel way to exploit the functions of TERT in cancer

treatment. hTERTC27 contains two peptides, p973 and p988,

both of which have been shown to induce TERT specific CTLs in

vitro or in vivo to lyse TERT+ tumor cells, including melanoma B16

cells [38,39]. It has also been reported that dendritic cells (DCs)

pulsed with peptide p540 can elicit CTLs ex vivo to lyse hTERT+

tumor cells, including human melanoma cells K029 [25]. DCs

transfected with mTERT gene can also induce CTLs to lyse B16

cells and inhibit B16 melanoma metastasis [40]. Apparently, the

mechanism of hTERTC27-induced tumor suppression in our

study is different from that of peptides (p973, p988, p540) or

TERT gene transfected DCs reported in other studies.

hTERTC27 may contain other unknown epitopes that have a

tendency to induce a strong innate immune response other than an

adaptive immune response. Not surprisingly, a single-peptide

epitope (e.g. p988 or p973) tends to induce adaptive immunity

because such single peptide is screened by CTL assay [38,39]. In

fact, some other epitopes which induce activation of CD4+ T cells

but not CD8+ T cells from hTERT have been identified [41,42],

suggesting that some epitopes that specifically induce other

immune cells may also exist. Thus, further study to identify the

epitopes of hTERTC27 will likely be crucial to dissect the

mechanism of hTERTC27-induced NK cell activation in vivo.

rAAV-/rAdv-hTERTC27 significantly inhibited B16 tumor

growth when administered by intravenous, intratumor and

subcutaneous injection. However, subcutaneous injection of

rAAV-/rAdv-hTERTC27 viral cocktail near tumor site produced

the most significant antitumor effect. Although it is unclear what

might have contributed to the differences of antitumor effect

among these administration routes, it has been reported that the

induction of immunity (humoral, cell-mediated, or both) against

the transgene product carried by rAAV depends on the routes of

administration [43]. Therefore, intratumoral, intravenous or

subcutaneous administration of rAAV-/rAdv-hTERTC27 may

preferentially enable the stimulation of innate anti-tumor immu-

nity. It will be interesting to investigate the effect of different

administration routes on NK cell population and activation. Our

observation implies that careful selection of administration route

may be important for cancer gene therapy.

The population of T cells (CD4+ and CD8+) and B cells in blood

did not vary significantly between the mice treated with rAAV-/

rAdv-hTERTC27 and those treated with rAAV-/rAdv-EGFP or

PBS (Fig. 2). Although small differences in T cell proliferation

activity and CTL cytotoxicity were observed between hTERTC27

treated mice and control group mice (Fig. 5), they were mild and

unlikely to be the major determinants responsible for the

significant tumor suppression induced by rAAV-/rAdv-

hTERTC27 observed in our study. A minor increase of CTL

cytotoxicity in spleen lymphocytes might be a result of increased

levels of Th1 cytokine in blood. A considerable increase in the

levels of IL-2, IFN-c and GM-CSF was observed in the plasma of

mice treated with rAAV-/rAdv-hTERTC27 compared with the

control mice (Fig. 4). All these cytokines function as an immune

adjuvant and are known to contribute to the development and

activity of tumor specific CTL [40,42,44]. However, further

investigation is required to determine whether cytokines such as

IL-2 and IFN-c could increase the population of cytokine-induced-

killer cells (CIK) [45] in vivo and contribute to the antitumor effects

of hTERTC27. Unlike our previous study in which ectopic

expression of rAAV-hTERTC27 in nude mice significantly up-

regulated the IL-17 mRNA level [27] in xenografted tumor tissue,

administration of rAAV-/rAdv-hTERTC27 viral cocktail in

C57BL/6 mice showed a little increase of IL-17 cytokine level in

blood in this study. The discrepancy may come from the different

mouse models and delivery systems used between these two

studies. Nonetheless, the slight change in IL-17 level is consistent

with the mild increase in activated T cells because it is known that

IL-17 expression is restricted to activated T-cells [46].

It is worth noting that NK cells are known to play a major role

in cytokine-mediated inhibition of B16 melanoma development

[47–51] and that IL-2 can induce the proliferation and activity of

NK cells [48,52–54]. Moreover, activated NK cells can secrete

several cytokines, including IFN-c and GM-CSF [55] and increase

IL-2 mRNA expression [56]. In addition, IFN-c itself also

activates NK cells [57]. Because of the complex relationship

between NK cells and these cytokines, the initial effect following

hTERTC27 administration remains elusive and requires further

investigation.
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