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Steady transcritical flow over an obstacle: Parametric map of solutions
of the forced extended Korteweg—de Vries equation
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Transcritical flow of a stratified fluid over an obstacle is often modeled by the forced Korteweg—de
Vries equation, which describes a balance among weak nonlinearity, weak dispersion, and small
forcing effects. However, in some special circumstances, it is necessary to add an additional cubic
nonlinear term, so that the relevant model is the forced extended Korteweg—de Vries equation. Here
we seek steady solutions with constant, but different amplitudes upstream and downstream of the
forcing region. Our main interest is in the case when the forcing has negative polarity, which
represents a hole. The effects of the width of the hole and the amplitude of the hole on these steady
solutions are then investigated. © 2011 American Institute of Physics. [d0i:10.1063/1.3582523]

I. INTRODUCTION

The forced Korteweg—de Vries (fKdV) equation is often
used as a suitable model to describe transcritical flow of a
stratified fluid over an obstacle or through a contraction, see
Grimshaw and Smyth1 and Clarke and Grimshaw, respec-
tively. It is given by

A+ AA +1AA + 5A . = — Gofys (1)

where A(x,7) is the amplitude of the relevant linear long
wave mode, x,7 are the space and time coordinates, respec-
tively, and A is the linear long wave phase speed in the
reference frame of the obstacle. The nonlinear and dispersive
coefficients, r,s respectively, are determined by the back-
ground stratification, G, is a measure of the forcing magni-
tude, and f(x) is a projection of the obstacle (or contraction)
onto the relevant long wave mode. A recent review of this
model, including an outline of its derivation, has been given
by Grimshaw.’

At the next order in a perturbation expansion in the am-
plitude, a higher-order Korteweg—de Vries equation is
obtained,4 where cubic nonlinear, fifth-order linear disper-
sive, and nonlinear dispersive terms are added to Eq. (1). The
contribution of these higher-order terms depends on the con-
figuration of the model under investigation. A situation of
special interest arises when the coefficient of the quadratic
nonlinear term is close to zero. This situation arises, for in-
stance, in a two-layer fluid in the Boussinesq approximation
of nearly coincident densities, when the layer depths are
nearly equal, see Baines.” In this case a cubic nonlinear term
is the dominant higher-order term, and a rescaling is needed,
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after which forced Korteweg—de Vries equation (1) is re-
placed by the forced extended KdV (feKdV) equation, also
known as the forced Gardner equation,

A+ AA +rAA + gAA + 5A . = — Vf,. (2)

In comparison with fKdV equation (1), there is now an ad-
ditional cubic nonlinear term with coefficient g. Consequent
to the rescaling, we can assume that the coefficients of the
quadratic and cubic nonlinear terms have the same order of
magnitude.

Importantly, there are two distinct equations depending
on the relative polarity between the cubic nonlinear term and
the dispersive term.®™® There appear to be very few studies of
eKdV equation (2), although we note two relevant excep-
tions here. Choi ef al.’ derived Eq. (2) for capillary-gravity
waves in a two-layer fluid generated by moving a small lo-
calized obstruction. They described solutions for both cases
gs <0 and gs >0 but considered only solitary waves or pe-
riodic waves and did not discuss any hydraulic solutions.
Grimshaw er al." employed the long-wave approximation
for localized forcing to find hydraulic solutions for various
parametric configurations of the feKdV equation when gs
<0 and derived a criterion for which steady hydraulic solu-
tions could form.

Transcritical flow over a step has been investigated in
the framework of fKdV equation (1) (Ref. 11) and compared
with simulations of the full Euler equations.12 In essence,
asymptotic solutions consisting of steady, hydraulic solutions
in the vicinity of an isolated step were constructed and
matched with upstream and downstream undular bores as
appropriate. These works demonstrate that positive and nega-
tive steps generated upstream and downstream propagating
undular bores, respectively. The general definition of the po-
larity the forcing term is made below, but we note that for
water waves it corresponds to a hill or a hole, respectively. In
the case of a long hole"? (comprising a negative step fol-
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lowed by a positive step), downstream and upstream undular
bores were generated and found to interact over the hole.

In this paper we extend the study by Ee et al." which
examined the steady hydraulic solutions of fKdV equation
(1). They determined the parametric relationship A=A(vy) for
the existence of steady hydraulic solutions. Loops in this
parametric map indicated the number of trapped waves
found over a hole, while no such trapped waves were found
over a hill. Our main aim here is to determine the analogous
parametric relationship A=A(y) for the existence of steady
hydraulic solutions for forced eKdV equation \(2). We expect
that with two nonlinear terms, the parametric relationships
and the types of steady solutions that can be formed will be
more intricate.

The numerical procedure used in Ee and Clarke' will
again be employed in this paper. Briefly, a shooting algo-
rithm was implemented alongside a minimization algorithm
in order to obtain the steady dispersive hydraulic solution to
Eq. (1) over a localized forcing term, which may have a long
length scale. Then a branch-following algorithm is developed
to obtain the parametric relationship describing the family of
steady hydraulic solutions. In our numerical study, we
choose the forcing term to be

! ( é) ! ( é)
f()c)—ztanhgx—2 —2t21nh§)c+2 , (3)

where L is the separation between the front and rear steps
and 1/ measures the width of these steps. Forcing term (3)
is symmetric and centered at x=0, where x<<-L/2 and
x>L/2 denote the upstream and downstream regions, re-
spectively.

In Sec. II, we shall present the problem in canonical
form to identify the relevant parameters. In Sec. III we shall
consider the case of a piecewise constant forcing when an
analytical solution can be found using phase plane analysis.
Then in Sec. IV we use a slowly varying approximation to
supplement the results from the case of piecewise constant
forcing. In Sec. V, a brief outline of the numerical method is
followed by a discussion of our numerical results for smooth
forcing term (3). Finally, we conclude with a summary of our
key results in Sec. VL.

Il. FORMULATION

First we transform Eq. (2) to a canonical form in order to
reduce the parameter space to just four parameters. Let X
=&, F=s81, L=£L, and A(x,1)=Ao+B(x,1), where A, is a
characteristic upstream amplitude. Then B(x,t) satisfies the
feKdV equation,

B,+AB,+6BB, +3gB’B,+ B, .. =— Vf., (4)

where
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r+2A0_6 5_6(A+rAO+q;A3)
s& 7 B r+2A, ’
)
___6q by
3q= . Y=ETTo
r+2A0 r+2A0

and the tildes have been omitted from Eq. (4). With this
rescaling, forcing term (3) then becomes

flx) = %tanh(x - %) - %tanh(x + %) (6)

where L is the fourth parameter (again the tilde has been
omitted) which we shall vary independently in order to in-
vestigate its effect on the parametric map. Note that —1
= f(x) =0, and there is a minimum at x=0, where f(0)=-1
and f—0 as |x|— . We define negative or positive forcing
accordingly as y>0 or y<0, respectively. The case y>0 is
our main concern in this paper, and we shall call this case a
hole.

As stated in Sec. I, our concern here is with the steady
dispersive hydraulic solutions. Hence, we set the time de-
rivative term in Eq. (4) to zero. One integration then yields

AB +3B%>+¢B’ + B, = — yf(x), (7)

where the boundary condition that B—0,x— —% has been
imposed. In order to obtain some insight into the numerical
solutions we shall describe in Sec. V, we shall suppose in this
section that forcing term (6) is a compact forcing term where
f(x)=0, x=-L/2, x=L/2, and f(x) varies smoothly and
monotonically from 0 at x=—L/2 to a minimum of —1 at x
=0, and then returns monotonically to 0 at x=L/2. Positive
(negative) forcing corresponds to y<<(>)0. In Sec. III
which follows we shall explore this situation in more detail
when f(x)=-1,-L/2<x<L/2. To proceed, we must first
determine the critical points of the unforced equation, given
by

Bo=— . (8)

First suppose that A>0, in which case B,=0 is a center.
It follows that no solitary waves are allowed and, upstream,
we can set

B=0 for x<-L/2,

)
so that B(x=-L/2)=0, B,/ (x=-L/2)=0.

Downstream, there are two cases to consider, (1) ¢<0 and
(2) ¢>0. In case (1) B;<0<B, and both B, , are saddle
points. A typical phase plane is shown in Fig. 1. The main
interest here are the orbits through the critical point B; (solid
curves); note that the saddle point at B=B, is not shown.
This homoclinic orbit is the solitary wave,

a
+ b
1 + B cosh[ k(x — L/2) + 6]

B=B, x>L1/2,

K2=—A—631—3fo=a(l+qu), (10)
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FIG. 1. Phase plane of unforced Eq. (7) for A=1,g=—-4.

2 ) 97
K(1-B7)= 5
Here 6 is a phase constant to be determined by matching
with the solution in the forcing region. Note that with ¢ <0,
it follows that 0<B<1, a>0, and the constraint that A
>0 implies that a(1+¢B,)<-B,(6+3¢B;). The amplitude
a,=al(1+B)=2{-1-gB,+(1+¢gB,/2)"*}/q and is such that
0<B,+a,<B,. The unbounded orbits (outer dash curves)
are given by

a
+ b
1 + B sinh[k(x = L/2) + 6]

B=B, x>L1/2,

(11)
2

K=—A-6B,-3qB =a(l+¢B,), K(1+p)=- %.
Formally, this is obtained from Eq. (10) by replacing 6 with
O0+im/2 and B with —if. If needed, the analogous singular
orbits through B, are found from Eq. (11) by replacing B,
with B,.

In case (2) there are two subcases, (a) when 4Ag <9 and
(b) when 4Ag>9. In the first case (2a) B,<B;<0 are a
center and a saddle point, respectively. A typical phase plane
is shown in Fig. 2. Here again the main interest is the ho-
moclinic orbit (solid curve) through the critical point B=B,;
which is again given by Eq. (10). Now B°>>1, and the
branch around the center at B=0 has amplitude a,=a/(1
+pB)=2{-1-¢B,+(1+¢qB,/2)"?}/qg>0, while the branch
around the center at B, has amplitude a,=a/(1+B)=2{-1
—qB,—(1+¢B,/2)"*/¢<0. It can be shown that B +a,,
<B,<B;<0<Bj+ay. If 1+¢gB;>0,Aq<2,a>0, then
the branch around the center at B=0 has 1 < [8<o0, while the
branch around the center at B, has —oo<<S<<-1. But if 0
>14¢gB,>-1/2,2<Aq<9/4,a<0, then these branches
interchange. Note that the constraint A>0 implies that a(1
+¢gB ) <-B(6+3¢B,). In the second case (2b), there is only
one critical point, the center at B=0, and all orbits are peri-
odic.
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FIG. 2. Phase plane of unforced Eq. (7) for A=1,g=2

We can now specify the downstream boundary condi-
tions, where we seek a solution which tends to an available
saddle point as x—. As we show below, this leads to a
third boundary condition in addition to the two upstream
boundary conditions (9), and hence solutions, in general, ex-
ist only when there is a parametric relation A=A(y). For
case (1) (g<0) and case (2a) (¢>0,4A¢g<9), we first as-
sume that the solution tends to the critical point B, through
solitary wave solution (10), so that

a
Bx=L?2)=Bj+ ——,
1+ Bcosh @

(12)
akf3 sinh 6

B(x=LR2)=- ————.
( ) (1 + B cosh 6)*

Elimination of 6 leads to a single nonlinear boundary condi-
tion to determine the solitary wave parameter S. If instead
the solution tends to the critical point B, through unbounded
orbit (11), then boundary condition (12) is replaced by

a
B(x=L2)=B,+ ————,
1+ Bsinh 6
(13)
akf3 cosh 6

Blx=L2) == 0

In case (2b) (¢>0,4Ag>9), there is no available ho-
moclinic orbit, and we infer that, in general, there is no so-
lution. Next we note that in case (1) (¢<<0) there is the
possibility that the solution tends to the critical point B,
through an unbounded orbit, in which case boundary condi-
tion (13) is modified by replacing B; with B,. There remains
the possibility that the downstream solution tends to a center,
either B=0 in all cases or B, in case (2a), leading to the
downstream boundary conditions,
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B(x=L/2)=0 or B,, B/(x=L/2)=0. (14)

But when combined with upstream boundary condition (9),
this leads to four boundary conditions, and hence we infer
that such solutions exist only in very exceptional circum-
stances.

Next suppose that A<<0, in which case B is a saddle
point. A solitary wave now exists upstream, given by [com-
pare Eq. (10) with B,;=0]

a
B=17 B cosh(k(x +L/2) + @)’

x<-L/2,

(15)
qa’

K(1-p)=-".

K=—A=a,
2

Note that a>0 and 8?>>1,<1 accordingly as ¢<<0,>0.
The upstream boundary condition is then

a
B(x=-L2)= ———,
1+ Bcosh ¢
(16)
_ _ akf sinh ¢
Blv=—-112)= (1+ B cosh ¢)?

Downstream, there are again two cases to consider, (1) ¢
<0 and (2) ¢g>0. In case (1) there are now two subcases, (a)
when 4A¢ <9 and (b) when 4A¢>9. In the first case (1a),
0<B;<B, are a center and a saddle point, respectively,
while in the second case there is only one critical point, the
saddle point B=0. In case (2) B,<0< B, and are both cen-
ters. If we now suppose that downstream the solution tends
to a center, say B, then we can change variables B=B
—B.,X=—x, and with a suitable rescaling, we recover the case
when A >0 discussed above.

Hence the new feature here is the possibility that down-
stream the solution tends to a saddle point, either B=0 in all
cases or B, in case (la). For the former case, the solitary
wave is given by Eq. (10), but with B, replaced by 0, so that
the downstream boundary condition is

Bx=L2)=—"T"—,
1+ Bcosh 6
(17)
akf3 sinh 0

B.(x=L/2)=- m.

For the latter case, the solitary wave is given by Eq. (10), but
with B, replaced by B,, and the downstream boundary con-
dition is then adapted from Eq. (12) accordingly. We see that
only two boundary conditions required and hence solutions
can be found without the necessity to seek a parametric re-
lation between A and +v. To illustrate this situation, let us
choose the forcing function as

(1+p)"

-, =1,2,3. 18
(1 + B cosh kx)" " (18)

flx)=

Note that this is not compact, but is localized as f(x) —0,x
— * oo, We seek a solution in the form of a solitary wave,
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FIG. 3. Plot of bifurcation curve (21) for n=2, where only the portions A
<0 are legitimate. The cases (y,q)=(1,-1),(1,1),(-1,-1),(=1,1) corre-
spond to the solid, dash, dot, and dash-dot curves, respectively.

PNAIEY)

=, (19)
1 + B cosh kx

Then we get that, for n=1,2,3, respectively,

1-B
1+
3Kkla

- —434°=0,7,0, 20
o a;=0,7. (20)

2K2as + qaf =0,0,7,

K*a, + Aa, = v,0,0.

In each case, there are three equations for the three param-
eters a, 3, k, and hence, in general, a solution can be found
as functions of A and 7. Note that for the cases n=2,3, when
the forcing term vanishes at infinity faster than the solution,
a desirable constraint, then we must have A <0. In each case,
elimination of «?, 3 yields a bifurcation curve A=A(a,) for
each fixed value of vy, given by

Aas+2af—§a2=% n=1,
3A 3
Tas+3af+?qa§=y, n=2, (21)

—2Aa,+4a> +qa’=y, n=3.

With suitable changes of variable, these are qualitatively
similar curves. Also in all cases, the transposition
a;——ag;,q— —q,A——A leaves each curve unchanged. The
case n=2 is plotted in Fig. 3. On these curves, the parameter
is k2, which implies that for n=2,3, only the portions where
A <O are legitimate, while for n=1, there is the constraint
that a,(4—ga,) > 0. All the curves can be interpreted as per-
turbations from the unforced solutions when y=0, which are
either the uniform stream when a;=0 or solitary wave (15).
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FIG. 4. Phase plane for unforced Eq. (7) with A=1,g=-4, showing a peri-
odic orbit for the forced equation when y=0.25 (dash-dot curve).

At the turning points where dA/da,=0, we expect a change
of stability on each curve. Since a uniform stream is stable
within the framework of feKdV equation (2), we can infer
that the curves which represent a perturbation from a uni-
form stream are stable until a turning point is reached, be-
yond which they represent unstable solutions. This is essen-
tially the same result described by Grimshaw et al."® for the
stability of localized steady solutions of the fKdV equation.
Note that g=0 recovers the forced KdV case, when n=1,2
are well-known solutions, but the case n=3 is apparently a
previously unnoticed solution.

lll. PIECEWISE CONSTANT FORCING

We now let f=—1 in —L/2<<x<<L/2, so that the forcing
is a nonzero constant in the forcing region. The solution in
the forcing region can now be found explicitly using a phase
plane analysis, and then matched with the solutions outside
the forcing region using the continuity of B,B, at x=
—L/2,L/2. This phase plane approach was used by Dias and
VandenBlroeck,”_19 Binder et al.,20’2' and Grimshaw et al."®
for fKdV equation (1), and by Dias and Vanden-Broeck** for
forced extended KdV equation (2), for a variety of transcriti-
cal flows over steps and obstacles.

A. Negative forcing: y>0

First take A>0 and ¢ <0, case (1). In the forcing region,
there are either three critical points C;<Cy<C,, respec-
tively, saddle point, center, saddle point being the counterpart
of Eq. (8) when 0<y<y,, or just one critical point C; <0
when y> vy, where ¢*y.=2(1-¢A/3)%?+2—-gA. Relative to
critical points (8), C,<B,;<0<Cy<C,<B,. A typical sce-
nario is shown in Fig. 4 which is the same case as Fig. 1,
now extended to include the relevant orbit from the phase
plane for —L/2<<x<<L/2. The direction of increasing x is
clockwise. The task is to connect the origin of the phase
plane with the homoclinic orbit (solid curve) through the
saddle points B=B; or the unbounded orbit (not shown)

Phys. Fluids 23, 046602 (2011)

,
1.5 S
] /.’//
] 2/
B 1 ~. 770
~o 1 N /!
1 ™~ e
0.5—_ /,/ :\\ \\ '/' / /
:/' \\ > \\/ d / /
T -\ ! \/r\/ , 1
-0.5 \t.\/ 05/ _\/1\ l 1.5
:\-\ / /'B//‘\‘ \ \
ws] =T // A
— ] /// // N \\\\
T T T \
J _,/// \\\
i i A\
AR
1 WA\
*IAS—- ‘\‘

FIG. 5. Phase plane for unforced Eq. (7) with A=1,g=-4, showing an
unbounded orbit for the forced equation when y=0.55 (dash-dot curve).

through B,, using the relevant orbit (dash-dot curve) from the
forcing region —L/2 <x<<L/2. Figure 4 shows a case when
the orbit from the forcing region phase plane is a periodic
orbit intersecting the homoclinic orbit at x=X, say. However,
in general, X+ L/2, and so the values of A,y must be then
adjusted until X=L/2. It may be necessary to go around the
periodic orbit several times, corresponding to several wave
crests. Also there are two possible cases; one where the in-
tersection with the homoclinic orbit is for B,<0,6>0, and
so the solitary wave in x>L/2 is suppressed; the other has
B,>0,0<0 and so there is a partial solitary wave in x
>L/2. Note that since Cy<C,<<B,, there can be no inter-
sections of the periodic orbit with the unbounded orbit
through B,. Decreasing 7y, such that 0 <y< Yepr leads to no
intersection, where vy, is determined by the criterion that the
periodic orbit through the origin should lie inside the ho-
moclinic orbit defined by Eq. (10), that is, 2y,,=AB. +2B.,
+fon/2, where B,, is the amplitude of the homoclinic orbit,
that is, B,,=B;+a,. But increasing 7y so that y>v,,, where
G*Y2=32/27{1-9Aq/16+(1-3Aq/8)*?}, leads to the orbit
in the forcing region through the origin of the phase plane
being an unbounded orbit associated with the saddle point at
C, for y,<y<w,, and then with an unbounded orbit asso-
ciated with the saddle point at C; for y> v,. This intersects
both the homoclinic orbit through B; and the unbounded or-
bit through B,. An example is shown in Fig. 5, which is the
same case as Fig. 1, but now showing the unbounded orbits
(dash curves) through the saddle point B,. In this case there
are no waves generated in the forcing region but connections
can be made with B, through the homoclinic orbit (solid
curve) and with B, through the unbounded orbit (dash
curve). Note that y,; <y, <v,.

Next take A>0 and ¢ >0 with 4Ag <9, case (2a). In the
forcing region, there are either three critical points C,<C,
< C,, respectively, center, saddle point, center being the
counterpart of Eq. (8) when 0<y<y,.<0, or just one criti-
cal point C,>0 when y> y,. Relative to critical points (8)

Downloaded 28 Feb 2012 to 147.8.21.150. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



046602-6 Ee et al.

0.5

FIG. 6. Phase plane of unforced Eq. (7) for A=1,4=2, showing a periodic
orbit for the forced equation when y=0.25.

B, <(C,<C,;<B;<0<C(,. A typical phase plane is shown
in Fig. 6, which is the same case as Fig. 1, now extended to
include the relevant orbit from the phase plane for —L/2
<x<L/2. Figure 6 shows a case when there is an intersec-
tion, which here is always a periodic orbit (dash-dot curve)
in the forcing region intersecting the homoclinic orbit
through B;. Decreasing 7, so that 0<y<y. <Y, leads to
no intersections at all.

B. Positive forcing: y<0

The phase plane analysis can again be applied, but there
are now major differences. First, take A>0 and ¢<0, case
(1). In the forcing region, there are either three critical points
C, < Cy< C,, respectively, saddle point, center, saddle point
when y.<7y<0, or just one critical point C,>0 when y
<y, where now ¢>y,=-2(1-¢A/3)¥?+2-gA. Relative to
critical points (8), B; <C,<Cy<0<B,<C,. In this case if
the orbit through the origin of the phase plane in the forcing
region is a periodic orbit around C, then this lies inside the
homoclinic orbit through C; and inside the homoclinic orbit
through Bj; hence there can be no intercepts. This situation
arises whenever 7y, <17y,;<y<0, where ¢’y.;=32/27{1
-9Aq/16-(1-3Aq/8)*?}. A typical phase plane is shown in
Fig. 7 when y,<vy<y,, which is the same case as Fig. 1,
now extended to include the relevant orbit from the phase
plane for —L/2<x<<L/2. We see that there is only a single
intercept between an unbounded orbit from the origin of the
phase plane in the forcing region, with the homoclinic orbit
through B, and this combined orbit has B<<0,B,<<0. The
case when y<<1v, is qualitatively the same.

Next take A>0 and ¢>0 with 4Ag <9, case (2a). In the
forcing region, there are either three critical points C, <C,
<C,, respectively, center, saddle point, center being the
counterpart of Eq. (8) when y,<y<O0, or just one critical
point C, <0 when y< y,.. Relative to critical points (8) C,
<B,<B;<(C;<(Cy<0. As above in the case ¢<<0, if the
orbit through the origin of the phase plane in the forcing
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FIG. 7. Phase plane of unforced Eq. (7) for A=1,g=-4, showing an un-
bounded orbit (dash-dot curve) for the forced equation when y=-0.06.

region is a periodic orbit around C, then this lies inside the
homoclinic orbit through C; and inside the homoclinic orbit
through Bj; hence there can be no intercepts. This situation
again arises whenever vy, < vy.;<vy<0, where v,, y.3 are de-
fined as in the previous paragraph. However, for y.<vy
<. when the homoclinic orbit through C; contains the
origin, there is a periodic orbit lying outside this homoclinic
orbits through C; which intercepts the homoclinic orbit
through B, and hence trapped waves will then occur. A typi-
cal phase plane is shown in Fig. 8, which is the same case as
Fig. 2, now extended to include the relevant orbit (dash-dot
curve) from the phase plane for —L/2 <x<L/2. We see that
there is a large-amplitude periodic orbit from the origin of
the phase plane in the forcing region, which intercepts the
homoclinic orbit through B;. For y<1, there is only an un-
bounded orbit from the origin of the phase plane in the forc-

RN 0.4

/ . 0.3

\ g -0.3 A

- -0.4 -

FIG. 8. Phase plane of unforced Eq. (7) for A=1,g=2, showing a periodic
orbit (dash-dot curve) for the forced equation when y=-0.08.
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FIG. 9. Phase plane for unforced Eq. (7) for A=-1,g=-1.25, showing a
periodic orbit (dash-dot curve) for the forced equation when y=0.5.

ing region, and this intercepts the homoclinic orbit through
B, giving a combined monotonic orbit with B<0,B,<0.

C. A<O

As discussed above, the upstream critical point B=0 is
now a saddle point, and there are two new cases to consider.
A typical phase plane for unforced equation (7) is shown in
Fig. 9, which is a case (1a) where ¢<0,4Aqg <9 when there
are two saddle points, B=0 and B=B,. To obtain a solution
when the downstream condition is B=0, all that is required is
that an orbit (dashdot curve) from the phase plane in the
forcing region —L/2<x<L/2 intercepts the orbit through
the origin of the phase plane (solid curve) twice, with the
length of the intercept being equal to L. Since there is an
infinite number of such intercepts, clearly we can expect that
there will be ranges of L where at least one solution can be
found, which may be periodic as shown for the case in Fig.
9. Similarly, when the downstream condition is that the so-
lution tends to B,, that is, case (1a) with ¢ <0,4A¢ <9, what
is required is that an orbit (dot curve) from the phase plane in
the forcing region —-L/2<x<L/2 intercepts the orbit
through the origin of the phase plane (solid curve) once and
then intercepts the orbit through the critical point B, (dash
curve) also once, with the length of the intercept being equal
to L. However, only those orbits on which x increases are
allowed, and this corresponds to clockwise in Fig. 9. We see
that, in fact, there is no allowed connection.

IV. SLOWLY VARYING APPROXIMATION

If it is supposed that f(x) is slowly varying, then we
assume that B(x) is also slowly varying and seek approxi-
mate solutions by omitting B,, in Eq. (7), that is,

AB +3B% + gB® = — yf(x). (22)

This is a cubic equation for B(x) given f(x). The situation
can be analyzed by arguments similar to the piecewise con-

Phys. Fluids 23, 046602 (2011)

stant case in Sec. III, essentially by examining the existence
or otherwise of solutions to the cubic equation for B in Eq.
(22). This is the approach used by Grimshaw and Smyth' to
find local steady hydraulic solutions for fKdV equation (1)
and by Grimshaw et al.'’ for forced eKDV equation (2)
when ¢>0. Note that this slowly varying approximation
eliminates the possibility to find waves in the forcing region,
as these require the retention of the dispersive term B, in
Eq. (7). But apart from this deficiency, we expect that it will
provide useful information supplementing that of Sec. III.

A. Negative forcing: y>0

Suppose first that A>0,4<<0. Then since we require
that B=0 is a solution upstream, x <0, it follows that there
are no solutions which connect to B; downstream. The
slowly varying approximation eliminates all waves. Instead
there is a connection downstream back to B=0 whenever y
<y, where ¢*y,=2(1-gA/3)*?+2-gA. However, this con-
nection is to a center and is an artifact of the slowly varying
approximation. A better possibility would be a connection to
B,, which requires that y= .. This should be an approxima-
tion to the parametric map for this case. Next suppose that
A>0,g>0, when it is readily shown that the only possibil-
ity is the connection downstream back to B=0, and again
this is an artifact of the slowly varying approximation.

If instead A <0,¢ <0, then it is readily shown again that
the only possibility is the connection downstream back to
B=0. This is an allowed saddle point/saddle point connec-
tion, and there is no constraint on A or . But if A<O0,q
>(), then there is a connection downstream to B=0 when
0<vy<Y,, an allowed saddle point/saddle point connection,
or a connection downstream to the center at B, when y=1v,,
a parametrically constrained connection. For y< 1y, there are
no solutions. Here ¢%y,=2(1-gA/3)%?+2—¢gA.

B. Positive forcing: y<0

Suppose first that A>0,¢<<0. There is a connection
downstream back to B=0 whenever y.<y<0, where now
¢*y.==2(1-gA/3)*?>+2—gA. However, this connection is
to a center and is an artifact of the slowly varying approxi-
mation. When y=1, there is an allowed connection to Bj,
and this should be an approximation to the parametric map
for this case. The same scenario holds for A>0,¢g>0,4Aq
<9.If A>0,¢g>0,9<4Ag<12, then only the connection
downstream to B=0 when y.<y<0 is allowed. If A<O0,q
<0,gA >3, the connection downstream to B=0 is allowed
for all . But in both these last two cases, the connection is to
a center and is as an artifact of the slowly varying approxi-
mation.

If instead A <0, ¢<0, 4Ag<9, then there is either a
connection downstream to B=0 when y,.<<y<0, which is an
allowed saddle point/saddle point connection, or a connec-
tion downstream to B; when y=1v,, a parametrically con-
strained saddle point/center connection. If A<0,¢<<0,9
<4Ag <12, then only the connection downstream to B=0
when y,<y<0 is allowed. If A<0,¢g<<0,gA>3, the con-
nection downstream to B=0 is allowed for all vy. But if A
<0,¢g>0, then there is a connection downstream to B=0
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when y,<y<0, an allowed saddle point/saddle point con-
nection, or a connection downstream to the center at B; when
y=7%,, a parametrically constrained connection. For y<1v,
there are no solutions.

V. NUMERICAL SOLUTIONS

Based on the discussion in Sec. II on the upstream and
downstream critical points, and on the special cases dis-
cussed in Secs. III and IV, we can identify several cases
which can be investigated numerically. We will fix ¢ either at
a negative value g=—4 or at a positive value g=2, but will
vary A and 7. In all cases we specify that upstream as x—
-, B,B,—0.

The main case of interest is when A>0 and there is a
connection between a center By=0 upstream and a saddle
point downstream. This will lead to a parametric map A
=A(7y). Within this case there are several subcases, depend-
ing on the relative signs of ¢,y. From Secs. III and IV we
expect that downstream the relevant saddle point will usually
be B;, Eq. (8). For negative forcing y>0, we expect to find
solutions with trapped waves in the forcing region, and also
some solutions without any trapped waves. But for positive
forcing y<<0, we expect to only find solutions with trapped
waves when ¢>0. We shall call this class la,b depending
on whether y>0, <0, respectively.

Again choosing A >0, there is a possibility of a connec-
tion between a center By=0 upstream and a saddle point B,
downstream. This case can occur only when ¢ <0 and we
expect it to occur only for negative forcing y>0. We shall
call this class 2.

A new feature for forced extended KdV equation (2) is
the possibility of a connection of a saddle point upstream and
a saddle point downstream. This requires A<<0, so that By
=0 is a saddle point. Downstream the allowed saddle point is
either By=0 again or B, which occurs only when ¢
<0,4A¢<9. The former case is a localized solution in the
forcing region, and we expect solutions similar to the
examples.w’20 However, unlike these examples, there is a
possibility that these solutions may contain waves in the
forcing region. We shall call this class 3(a). The connection
to B, is a new feature not present for fKdV equation (1),
although for the case of piecewise constant forcing discussed
in Sec. III, there are no such solutions, and also there are no
such solutions in the slowly varying approximation, see Sec.
IV. We shall call this case 3(b).

As discussed above in Sec. II, we seek solutions such
that upstream B,B,—0,x——-% and downstream B
— B,,B,— 0, where B, is the relevant saddle point, either B;
or B, as discussed above. For given ¢,L we vary yand A, we
can obtain the parametric curve A=A(y). The numerical pro-
cedure outlined by Ee and Clarke'® was modified and imple-
mented to solve Eq. (7) with the forcing term given by Eq.
(6). A summary of the numerical procedure follows, while
more details can be found in the referred paper.

* Shoot from the center (0) to a saddle point (B,) using
the Runge—Kutta method of RK(4,5).

e Apply a minimization algorithm to obtain a minimum
A so that B, lies within the homoclinic orbit.

Phys. Fluids 23, 046602 (2011)
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FIG. 10. Plots of steady solutions to Eq. (7) subject to forcing Eq. (6) with
g=-4, L=20, and the following data values: (a) y=0.54 and A=0.998 06;
(b) y=1.47 and A=2.4139; (c) y=1.64 and A=2.4715; (d) y=1.86 and A
=2.743; (e) y=2.1 and A=3.0143; (f) y=2.3 and A=3.252; (g) y=4.5 and
A=5.5939.

* Insist on the constraints of exponential decay to re-
move downstream solitary waves appended to the
steady dispersive hydraulic solution.

* Employ a branch-following algorithm to obtain the
parametric curve A(7y).

The branch-following algorithm was initiated from the
trivial (y=0) and solitary wave solutions (y# 0).

A. Class 1(a): A>0, y>0

Here we first set g=—4. In Fig. 10, some plots of the
numerical solutions to Eq. (7) subject to forcing (6) are
shown. Each plot corresponds to different parts of the para-
metric map shown in Fig. 11 as indicated. We note three
distinct phases. First is the domain 0<y<1.64 represented
by plots (a) and (b) in Fig. 10. This is essentially similar to
the KdV case of Ee et al.,l4 where there are several loops,
and as vy increases through each loop a new wave crest
emerges. Consequently, we did not perform many runs in
this region, and hence the loop structure is rather coarsely
represented. Compared to the analysis of the piecewise forc-
ing case in Sec. III, this phase corresponds to the regime 7y
<, plotted in Fig. 4.

The second phase is the domain 1.64 <y<2.3 which is
marked initially by several rapid oscillations as 7y increases
along the parametric curve, followed by a smoother portion.
The first portion is represented by plots (b) and (c) in Fig. 10.
At the trough of each oscillation, a trapped wave is lost while
at the crest of each oscillation a trapped wave is gained. This
portion of the parametric curve we interpret as an adjustment
to a transition phase represented by plots (¢)—(f) in Fig. 10.
In this phase the number of trapped waves decreases and
eventually a plateau is formed in the forcing region followed
by a single wave. Compared to the analysis of the piecewise
forcing case in Sec. III, this phase corresponds to the regime
v <y plotted in Fig. 5. The third phase is the domain 7y
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FIG. 11. Parametric map A(y) of family of steady asymmetric solutions to
Eq. (7) subject to forcing Eq. (6) using g=—4 and L=20 and the following
data points: (a) y=0.54 and A=0.998 06; (b) y=1.47 and A=2.4139; (c)
y=1.64 and A=2.4715; (d) y=1.86 and A=2.743; (¢) y=2.1 and A
=3.0143; (f) y=2.3 and A=3.252; (g) y=4.5 and A=5.5939.

>2.3 and is represented by plots (f) and (g) in Fig. 10. Here
only the plateau followed by a single wave is found.

Now, we set g=2 and refer to Figs. 12 and 13, which
show the typical loop-behavior seen by Ee et al. ' in that the
loops denote the generation of a trapped wave within the
forcing region of the steady solution. The solutions shown in
Fig. 12 correspond to the second loop, where 0.05<y
<0.18. As in the study of Ee et al.,"* the branch number n
corresponds to the number of trapped waves n generated. For
larger values of vy, we see that there are gaps between the
branches and we shall call this pseudoloop behavior. Note
that as vy increases the gaps and the loops widen, reflecting
that the forcing region is becoming saturated with trapped

(a)

(b)

FIG. 12. Plots of steady solutions to Eq. (7) subject to forcing Eq. (6) with
g=2 and the following data values: (a) y=0.06 and A=0.19443; (b) y
=0.07 and A=0.5427; (c) y=0.15 and A=0.4812; (d) y=0.18 and A
=0.213 85.
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FIG. 13. Parametric map A(vy) of family of steady asymmetric solutions to
Eq. (7) subject to forcing Eq. (6) using g=2. The dotted line above the
parametric plot is A=9/4q.

waves. The effect intensifies as L increases. Also note that as
predicted from the discriminant of Eq. (8), there are no so-
lutions for A>9/4q4.

B. Class 1(b): A>0, y<0

For g=-4, the results are qualitatively similar to those
found by Ee et al." for the fKdV, and, in particular, no
trapped waves are found in the forcing region. Some typical
solutions and the parametric map are shown in Fig. 14.

For g=2 we show some typical solutions in Fig. 15 and
the corresponding parametric map in Fig. 16. Note that again
the parametric map is truncated above A=9/4¢ as predicted.
Here we see pseudoloops in that for small values of ||
branches 1 and 2 overlap, but are not connected, while for
larger values of |9, there are gaps between the branches. The

(a)

\

] (b): . |

(©

FIG. 14. Top panel: Plots of steady solutions to Eq. (7) subject to forcing
Eq. (6) using g=—4, L=20, and the following data values: (a) y=-0.1 and
A=1.3421; (b) y=-1.1 and A=4.7857; (c) y=—1.6 and A=5.8769. Bottom
panel: Parametric map A(7y) of family of steady solutions to Eq. (7) subject
to forcing Eq. (6) with g=—4.
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FIG. 15. Plots of solutions to Eq. (7) subject to forcing Eq. (6) using g=2,
L=20, and the following data values: (a) y=—-0.02 and A=0.532 33; (b) y
=-0.07 and A=0.82075; (c) y=-0.19 and A=0.9083; (d) y=-0.39 and
A=0.909 84; (e) y=—0.69 and A=0.9376. The dotted line above the para-
metric plot defines the upper limit of the parametric map A=9/4q.

solutions shown in Fig. 15 correspond to the branches 1-5
for —0.8 < y<<0. Again, the branch number n corresponds to
the number of trapped waves n generated. However, note
that there are initial transitions between branches 1 and 2.
Also, the smallest A value associated with each branch is
very small for the first two branches of the parametric map,
see the top panel of Fig. 16, whereas it is quite large for the
remaining branches. As with Fig. 13, the gap between the
branches also widens as |y increases.

C. Class 2: A>0, y>0, g<0

Although the classification described above suggests that
there may be a connection to a saddle point B, downstream,
we were unable to find numerically any such solutions for
this case.

e T T,
1T i
branch 2
<
0.5 branch 1
0 I I I I I
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
v
1.5
branch 2
e ﬁ% ——————— — — = = = e — — %
1" branch 7 branch 6 branch 5
branch4  pranch 3 £
a
0.5 q
0 Il Il Il Il Il Il Il Il Il Il Il
-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

FIG. 16. Parametric map A(7y) of family of solutions to Eq. (7) subject to
forcing Eq. (6) using g=2 and L=20. The dotted line above the parametric
plot defines the upper limit of the parametric map A=9/4q. The lines fea-
tured in the top panel denote the two branches of steady solutions for y
e[-0.12,0].
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FIG. 17. Plots of solutions to Eq. (7) subject to forcing Eq. (6) using g=—4,
L=20, A=-0.001, and the following data values: (a) y=0.162 88 (larger
amplitude solution resembling a table-top soliton); (b) y=0.160 55 (larger
amplitude solution with two trapped waves); (c) y=0.022 734 (smaller am-
plitude solution with two trapped waves); (d) y=0.001 230 5 (smaller am-
plitude solution with one trapped wave).

D. Class 3(a): A<0, y>0, g<0

In Fig. 17 we observe several types of steady symmetric
solutions that can occur: standard solitary wave, pseudo-
breather, and table-top solitary wave solutions. We observe
that as 7y increases, the magnitude of the standard solitary
wave increases and undergoes a transformation to a table-top
solitary wave solution. The pseudobreathers are a result of
the nature of the forcing which allows trapped waves to be
formed in the forcing region. We also observe that as two
branches approach each other but never meet, the table-top
solitary wave solution encloses the pseudobreathers.

E. Class 3(b): A<0, v>0, g<0

Although the classification described above suggests that
there may be a connection between the saddle points By=0
upstream to a saddle point B, downstream, we were unable
to find numerically any such solutions for this case.

VI. CONCLUSION

In this paper, we have investigated the transcritical flow
of a stratified fluid over an obstacle, in the framework of the
forced extended Korteweg—de Vries equation. Our concern is
solely with the steady hydraulic solutions which may form
over the obstacle, which can be characterized as either a hole
or a hill depending on its polarity relative to the quadratic
nonlinear term in governing Eq. (7). Our main finding is that
as long as the obstacle is wide enough, trapped waves are
formed in the forcing region, and this can occur for both
holes and hills.

This work extends the analogous study by Ee et al. " for
the fKdV equation, and so a central issue is the role played
by cubic nonlinearity in the formation of trapped waves.
From the underlying theory presented in Sec. II and for the
special case of piecewise constant forcing discussed in
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Sec. III, the main effect of the cubic nonlinearity is to in-
crease the number of available critical points from two for
the KdV case to three for the eKdV case. When the extra
critical point is “passive,” i.e., it plays no essential role in the
phase plane analysis, then the present results are generally
qualitatively similar to those reported by Ee et al."* for the
KdV case. An example of this for class 1(a) when A>0,y
>0 with ¢g<<0 is shown in Fig. 4 where the phase plane is
similar to the corresponding phase plane for the KdV case.
But then in Fig. 5, the phase plane has a structure not al-
lowed for the KdV case. This essential difference is repli-
cated in the numerical results of Figs. 10 and 11, where plots
(a) and (b) are qualitatively similar to the analogous KdV
case, but plots (c)—(g) can only arise in the eKdV case. Again
for class 1(a) but with ¢>0, the phase plane is that of Fig. 6
which is similar to the KdV case, and the numerical results
of Fig. 12 are also similar to the corresponding KdV case;
but here the parametric map shown in Fig. 13 displays some
significant differences as vy increases with the generation of
pseudoloop behavior.

When A>0,y<<O0, class 1(b), typical phase planes are
shown in Figs. 7 and 8 for ¢<0,¢>0, respectively, and the
corresponding numerical results are shown in Figs. 14 and
15. Here for the KdV case, there are no trapped waves
formed, and this is also seen here when ¢<<0. But for ¢
>0, solutions with trapped waves can be found, a feature
which is absent for the KdV case and hence can arise only in
the eKdV case. Class 3(a) when A <0 corresponds to local-
ized steady solitary waves trapped by the forcing region.
This case was not explicitly discussed by Ee et al.," but it is
well known that such solutions exist. That is also confirmed
here for the eKdV case, which when ¢ <0 exhibits a wide
range of solution types, see Fig. 17.
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