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Abstract
Purpose Positron emission tomography/computed tomog-
raphy (PET/CT) has established values for imaging of head
and neck cancers, including the nasopharyngeal carcinoma
(NPC), utilizing both morphologic and functional informa-
tion. In this paper, we introduce a computerized system for
automatic detection of NPC, targeting both the primary tumor
and regional nodal metastasis, on PET/CT.
Methods Candidate lesions were extracted based on the fea-
tures from both PET and CT images and a priori knowledge of
anatomical features and subsequently classified by a support
vector machine algorithm. The system was validated with
25 PET/CT examinations from 10 patients suffering from
NPC. Lesions manually contoured by experienced radiolo-
gists were used as the gold standard.
Results Results showed that the system successfully identi-
fied all 53 hypermetabolic lesions larger than 1 cm in size and
excluded normal physiological uptake in brown fat, muscles,
bone marrow, brain, and salivary glands.
Conclusion The system combined both imaging features and
a priori clinical knowledge for classification between patho-
logical and physiological uptake. Preliminary results showed
that the system was highly accurate and promising for adop-
tion in clinical use.
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Introduction

Positron emission tomography/computed tomography (PET/
CT) is a hybrid imaging modality comprising both PET (posi-
tion emission tomography) that images metabolic function in
a quantifiable manner and CT (computer tomography) that
images body anatomy [1,2]. It has become a standard imag-
ing modality for diagnosis and surveillance of various can-
cers, including head and neck malignancies [3–5]. Compared
with PET alone systems, PET/CT is superior in that accu-
rate anatomical localization is possible, which is especially
advantageous in the head and neck region where the anat-
omy is complex and tissues showing physiological uptake are
abundant. Still, the variability in metabolism and the large
amount of image data make the interpretation of PET/CT
a challenging and time-consuming process. Such painstak-
ing processes often need to be repeated when comparison is
to be made between examinations for treatment monitoring
and response assessment. It is anticipated that an automatic
system providing systematic evaluation of PET/CT can help
improve the consistency and efficiency.

Over the past two decades, computer-aided diagnosis
(CAD) systems have moved from research topics to food
and drug administration (FDA)-approved applications used
in the clinics [6]. Recently, some computerized systems that
aimed to assist the interpretation of PET or PET/CT exam-
inations were developed [7,8]. However, to the best of our
knowledge, no CAD system that can accurately identify the
lesions on PET/CT has been reported yet. Prior attempts
have focused on segmentation and classification based on
the intensity change on PET images, including the enhance-
ment of segmentation accuracy [9], quantitative evaluation
of therapeutic responses [10], and measurements to avoid
region leakage [8]. In this project, we have added algo-
rithms that took into account a priori knowledge of the typical
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spread pattern of NPC, which were incorporated into a new
classification method using support vector machine (SVM)
[11,12]. We believe that combination of clinical knowledge
about the characteristic distribution of disease with image
processing/analysis techniques can improve the accuracy of
computerized systems that can become useful for the inter-
pretation of PET/CT examinations. The percentage overlap
of malignant lesions identified by the algorithm and those
delineated manually by experts were used as indicators of
the result.

Materials

Twenty-five sets of PET/CT examinations from 10 adult
patients suffering from NPC were retrospectively collected
from the picture archiving and communication system
(PACS) of the PET/CT Unit in the University of Hong Kong
for the development of the CAD. The examinations were
all performed on the same machine (Discovery VCT, GE
Healthcare, Piscataway, NJ, USA) using the same standard
protocol. Patients fasted for 6 h prior to the examination. Con-
trast-enhanced CT scans were obtained (field of view, 40 cm;
pixel size, 0.78 mm; spiral CT pitch, 0.984:1; gantry rota-
tion speed, 0.5 s). Then 222–370 MBq of fluorodeoxyglu-
cose (18F-FDG) (adjusted according to patient weight) was
given intravenously; after an uptake time of 60 min, whole-
body PET scan was performed in around 20 min (6–7 bed
positions, 3 min per bed position). Attenuation correction for
PET data using CT images was performed, and images were
reconstructed using an ordered-subset expectation maximi-
zation iterative algorithm (14 subsets and two iterations).
Five patients underwent two PET/CT examinations (one scan
before and another after radiotherapy), and five underwent
three PET/CT scans (two scans before and one scan after
radiotherapy). The images were anonymized before transfer
to a separate workstation where the CAD was developed.
Institution Review Board (IRB) approval was obtained from
our university, and patient consent was waived for this Health
Insurance Portability and Accountability Act (HIPAA) com-
pliant study.

All the 25 sets of image slices were randomized and
divided into training-validation and testing part with the ratio
of 4:1. The lesions in each examination were identified by
consensus of experienced radiologists as gold standard for
subsequent analysis. The lesions were segmented out and
labeled as malign or benign manually and the contours fur-
ther adjusted by the radiologists. Their image features were
used to supervise the training progress of the various compo-
nents from the training dataset identified automatically in the
CAD scheme and achieve the final accuracy and overlap rate
by comparison with the final estimation result with testing
dataset.

Methods

The CAD program was developed in the MATLAB (The
MathWorks, Inc., Natick, MA, USA) programming environ-
ment. A schematic diagram of the CAD system is shown in
Fig. 1. Our algorithm incorporated the following functions
to diagnose NPC automatically.

Locate neck and head positions

The most relevant head and neck region was automatically
defined from the series of whole-body CT. In a series of CT
slices that included the scan range from head to legs, the
pixel numbers of different body compositions were counted
in each slice based on the characteristic attenuation of dif-
ferent tissues, namely bone, fat, and soft tissues. This gener-
ated a position–intensity curve along the length of the body.
Although the exact intensity levels differed between stud-
ies, the trend across the body was similar. The index of head
and neck could then be identified from this curve by find-
ing the typical pattern along the curve. For example, at the
neck, cross-sectional areas of various tissues were all small;
therefore, the coincident troughs of all the different tissues
located at the level of the neck, which could be consistently
demonstrated in all of the 25 cases: the pixel number of all
tissues at the neck was around 22,000, while that of the sec-
ond lowest trough was around 28,000. On the other hand,
as facial bones and skull were the main components at the
level of the nasopharynx, whereas little soft tissue is present,
it was located where the valley point of soft tissues and peak
point of bones coexisted. According to the dataset, the pixel
number of the soft tissue was about 13,800, while the second

Fig. 1 Schematic diagram shows the workflow of the computer auto-
matic diagnosis system for the classification of malignancy
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Fig. 2 The position–intensity curve indicates the index of neck and
head in a series of whole-body CT images. The counts of fat, bone, and
soft tissues are calculated in each slice according to the CT intensity
number, and the curve can be plotted along the indices from leg to head.
The two valley points in this figure indicate the position indices of neck
and head

lowest valley was around 14,500 and the peak was around
52,100. The above processes are illustrated in Fig. 2.

Region growing

Secondly, the region of interest (ROI) from PET images was
segmented using local thresholding and region growing. With
the slices selected from neck to head, PET images were used
to segment the suspected malignancies. The intensity or pixel
value on PET images represents measured radioactivity that
can vary according to the use of different imaging techniques.
To facilitate the use of the algorithm for images acquired
using different techniques, the intensity was converted into
standardized uptake value (SUV), using parameters avail-
able in the digital imaging and communications in medicine
(DICOM) header by the following Eq. (1) [13]:

SUV = ROI_counts

injected_dose/body_weight
(1)

As the SUV values are statistically different between benign
and malignant tissues [14], a threshold of calculated SUV
could be used to locate seed points within probable malignant
lesions. Based on the reported range of SUV in the normal
tissues of the head and neck [15–17], cases with recurrent
or persistent NPC have significantly higher SUVs (1.6–5.8)
than cases with benign lesions (0.8–1.5). Hence, an abso-
lute value of 1.6 was set as the threshold. Such relatively
low threshold was used to maintain a high sensitivity of the
system. From each PET image, pixels that represented both

the regional maximum and carried an SUV value of larger
than 1.6 were used as the seed points for subsequent region
growing [18].

Forty percent of the value of the seed points was set as the
margin for the region growing process based on the training
results. Duplicate and connected seed locations were elim-
inated to reduce the number of loop executions in the pro-
gram. Strategies adopted for minimizing erroneous inclusion
of surrounding tissues in situations included morphological
operations and restriction of the greatest difference in area
between slices. In addition, regions that had too large an area
would be eliminated, which frequently occurred because the
intensity of the seed point was not significantly larger than
that of other surrounding tissues, suggesting normal rather
than pathological tissues.

PET/CT registration

After the preliminary segmentation on PET images, the next
step in the CAD algorithm was to register the suspicious
regions on the PET images to its accompanying CT using an
algorithm of rigid global registration [19]. The registered CT
attenuation data were then utilized to differentiate physiolog-
ical uptake in some tissues, e.g., brown fat and bone marrow,
from the potential tumors, Fig. 3c.

Feature extraction

After the process of registration, the suspicious regions
were identified by regional properties. Image features of
these regions were calculated by computer automatically.
The shape quantification parameters used in the algorithm
included area, relative position, eccentricity, average inten-
sity, symmetry, compactness (the ratio of square of perimeter
to area), intensity difference between the regional peak and
its circumstance, and second-order textual moments.

Some characteristic combinations of features that suggest
physiological uptake in specific tissue types were also consid-
ered. The CT unit of bone is usually larger than 180, and that
of fat is less than −30, hence the average intensity of CT value
in a segmented region was utilized to classify the tumors from
physiological marrow uptake in bones and brown fat uptake
in fatty tissues. The FDG intensity difference between the
regional peak and its surrounding was used as a complemen-
tary attribute in other situations, for instance, to differentiate
true bone metastasis that tends to be focal from normal bone
marrow uptake that tends to be homogeneously distributed.

In addition, anatomical information was used for the clas-
sification based on the a priori knowledge of the character-
istic distribution and spread pattern of NPC. By definition,
the primary tumor of NPC arises from the nasopharynx, and
the cancers customarily spread via lymphatic route, with a
typical pattern of spread across an expected range of lymph
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Fig. 3 Images show the main procedures of the scheme. a Original PET image. b Original CT image. c Registration of the segmented regions to
CT image. d Differentiate the malignancy from the bone marrow uptake by support vector machine

nodes in the neck. The likelihood of a segmented candidate
to be a part of the primary tumor or its nodal metastasis hence
differed according to its anatomical location.

The relative positions (s, x, y, z) could be identified by an
anatomical model. The parameter s referred to the different
sections in head and neck region, while (x, y, z) are coordi-
nates of the ROI in each specific section s. The bones were

segmented from the CT images using global thresholding
and morphological operations and characteristic features at
different anatomical levels were used to define three broad
anatomical compartments in head and neck region, namely
the neck, oral cavity, and nasal cavity. This rendered infor-
mation of relative position along the craniocaudal direction
to the candidates. Specifically, the jaw bone were the most
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Fig. 4 The figure shows the
calculation of the relative
position in a specific section.
The coordinates x, y, z were all
standardized to 0–1 scale

important landmarks, which were recognized as the shape of
“�” at the top part of the CT images; hence, the neck sec-
tion began with the first slice of the neck and ended with the
appearance of the jaw bone, the oral cavity section includes
the slices with the existence of the jaw bone, and the nasal
section began from the disappearance of the jaw bone. The
boundary and the centroid of the head and neck were obtained
from the CT images as well. Hence, the parameter s was
identified and the candidates were identified into the three
above mentioned anatomical compartments using automati-
cally identified fixed bony landmarks in the head and neck.
To define a more sophisticated location in each section ‘s’,
the coordinate z was obtained as the distance from the bot-
tom of the specific section and standardized to 0–1 scale, and
the anatomical locations (x, y) were defined as geometrical
coordinates to the centroid in a Cartesian space in the specific
anatomical section as illustrated in Fig. 4. Then candidates
located at regions where lesions are likely to be found, includ-
ing the nasal pharynx and different nodal stations, could be
identified.

Anatomical information also helped to identify the organs
that might show relatively increased FDG uptake, e.g., ton-
sils, salivary glands, and thyroid. For these, the symmetry
of the segmented candidate was taken into consideration as
well, e.g., the thyroid gland and salivary glands are normally
symmetric about the median plane, and hence symmetrical
candidate at such appropriate locations was likely physio-
logical rather than pathological. The bounding box of the
candidate was calculated and mapped along the left–right
direction about the symmetric axis of the head and neck, and
if it overlapped with another ROI, then both candidates were
labeled symmetric and vice versa.

All the above mentioned features were tested for develop-
ing the classification system after standardization, and only

the appropriate ones were selected based on the training
results.

Classification

An SVM [11] incorporating the above mentioned extracted
feature vectors has been trained as the classification tool. The
SVM classification separated data into training and testing
sets, and each instance in the training set contained target
value and several attributes. In our scheme, the target value
was the different classes of malignancies and physiological
uptake or artifacts, and the attributes were the image features
extracted [20]. The goal of SVM was to produce a model that
predicted the target values of the test data given only the test
attributes. The library LIBSVM [21,22] (ref. http://www.
csie.ntu.edu.tw/~cjlin/libsvm) has been used for the imple-
mentation of the training and prediction procedures of the
SVM.

For each instance in the training datasets of our scheme,
manually identified lesions by experts were used as gold stan-
dard to guide the training process. The attribute vector of
SVM included the image features extracted from the ROI
as mentioned above. By different combinations of features,
physiological uptake could be differentiated from that of the
malignancies; for example, uptake of brown fat would coin-
cide in location with fat density tissues on CT, uptake due
to muscular contractions is frequently elongated correspond-
ing to the typical shape of muscles, and uptake in salivary
glands is usually distributed symmetrically. The exponential
function was chosen as the kernel function to map the fea-
ture vector into a higher dimensional space as the dimension
of the extracted feature vectors was more than four. Com-
pared to the linear kernel, this radial basis function has less
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Table 1 The table shows the fivefold cross-validation accuracy of the image features and their combination

Combinations of image features Fivefold cross-validation accuracy

Sensitivity (%) False positive (%)

Position, average intensity, area, eccentricity, symmetry, compactness,
intensity difference, textual moments

90.2 11.8

Position, average intensity, area, eccentricity, symmetry, textual moments,
intensity difference

93.4 8.7

Position, average intensity, area, eccentricity, symmetry, intensity difference 93.8 8.5

Position, average intensity, area, eccentricity, symmetry 99.3 4.8

Position, average intensity, area, eccentricity 97.2 5.8

Position, average intensity, area, symmetry 97.4 5.8

Position, average intensity, eccentricity, symmetry 96.7 6.5

Position, area, eccentricity, symmetry 95.1 7.1

Average intensity, area, eccentricity, symmetry 92.3 10.1

Area, eccentricity, symmetry 88.2 14.2

The result illustrates that the combination of relative position, average intensity, area, eccentricity, and symmetry has the highest accuracy

hyperparameters that influence the complexity of model
selection and can nonlinearly map samples into a higher
dimensional space [12]. Other parameters of SVM were
selected by the method of fivefold cross-validation, including
the appropriate feature vectors. By comparing the accuracy
between these different image features, the vector comprising
the attributes of area, average intensity, eccentricity, relative
position, and symmetry was selected to train the SVM in the
final scheme. Other features would comprise a decision tree
as a complementary classification to the SVM result.

When the training process was completed, an SVM pre-
diction model was built. A cross-validation was used to verify
the efficiency and accuracy compared to the gold standard.
All the collected data were used to detect the malignancies.
Figure 3d shows a classification result of malignancy from
the bone artifacts. The final accuracy of the CAD in terms of
lesion identification and correct classification was evaluated
by comparison with the gold standard. After the classifica-
tion process, a 3D model of tumors was built from all the 2D
classified lesions which was then used for evaluation of the
accuracy.

Evaluation test

The SVM model was identified by fivefold cross-validation
test with the training-validation dataset. The image features
and SVM parameters producing the highest average accu-
racy of the fivefolds were selected and used in our scheme.
Then, the 2D classification result on the testing dataset was
compared to the gold standard.

In terms of the 3D classification, lesions were identified
as discontinuous volumes in the 2D PET/CT ROIs, and there
were 53 lesions in all the 10 patients, ranging from 6 in case
1–0 (after radiotherapy) in case 10. For the evaluation, we

defined a positive identification if a lesion volume produced
by the algorithm overlapped at least 80% of the lesion volume
drawn by radiologists.

Results

2D evaluation test result

By a fivefold leave-one-out cross-validation test with ran-
domization of all the suspicious regions segmented from the
20 sets of imaging data from eight patients, the average sen-
sitivity and false-positive rate of the fivefolds are listed in
Table 1. The image feature combination of relative position,
average intensity, area, eccentricity, and symmetry has the
highest accuracy, and the relative position is significantly the
most important feature. The confusion matrix of the SVM
cross-evaluation with the image features mentioned above
is listed in Table 2. The classification result with the test-
ing data is listed in Table 3. The final sensitivity of the CAD
scheme with the testing data was 95.1% and the false-positive
rate was 7.0%. Accuracy of the SVM was 93.3%, while the
original segmentation result accuracy without SVM was only
22.3%.

Table 2 The table shows the confusion matrix of cross-validation result
of the classification of the 20 sets of training data

Count Predicted Total

Malignancies Artifacts

Gold Standard

Malignancies 159 7 166

Artifacts 8 1,149 1,157

Total 167 1,156 1,323
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Table 3 The table shows the confusion matrix of the classification
result of the five sets of testing data

Count Predicted Total

Malignancies Artifacts

Gold Standard

Malignancies 58 3 61

Artifacts 19 250 269

Total 77 253 330

3D classification result

Based on the comparison with manual segmentation by
an experienced radiologist, the system identified all the 53
lesions in all 25 cases on an 80% coverage level. It also
successfully excluded normal physiological uptake in brown
fat, muscles, bone marrow, brain, and salivary glands via the
SVM classification procedure in all cases, including training
and testing datasets.

But in the total 25 cases of the dataset, five asymmet-
rical and unusually hot tonsils and larynx were mistakenly
reported as lesions. The false-positive rate was 8.6% based
on the 3D model result.

Discussion

Magnetic resonance imaging (MRI) is imaging modality of
choice evaluation of NPC due to its high spatial resolution,
especially for the assessment of locoregional invasion and
retropharyngeal nodal metastasis in NPC patients. However,
previous studies showed that in interpreting MRI images of
NPC, lymph nodes of borderline size, without nodal necrosis
or extracapsular spread, always pose a diagnostic challenge
to the radiologists [23,24]. PET/CT is more accurate than
MRI for determining cervical nodal metastasis and a better
reference for the neck status [25]. In addition, PET/CT is
highly sensitive for the detection of distant metastasis and
can play an important role in the evaluation of NPC.

A small number of reports on research of computer-
aided detection and decision support for whole-body PET or
PET/CT imaging are available in the literature. There were
computer-aided detection systems of FDG avid lesions on
PET [7] and PET/CT [26]. These studies located regions
showing high FDG uptake, based on the intensity levels
above background and/or comparison between both sides.
These appeared to be early developments with little support-
ive evidence of feasibility for clinical use. Recently, a sys-
tem that automatically evaluated deviation of FDG uptake
from normal distribution obtained from screening population
was reported [27]. This work has hinted but not addressed
the problem of classification of lesions into genuine ones or

mimickers and hence may not be efficiently used for deci-
sion support in clinical setting. A system that tracked lesions
showing FDG uptake on serial following and measures SUV
of the same lesion over time has been reported [8]. This sys-
tem registered the serial examinations against one another
and locates lesions by looking for regions of high SUV. The
limitation is that this system still required user input to define
the index lesion in the first place, meaning that it is not useful
for initial diagnosis.

Compared with the previous works, the main contribution
of our scheme was the application of the clinical a priori
knowledge to differentiate between physiologic and patho-
logic FDG accumulation via SVM automatic classification.
As cancers frequently spread by direct invasion or via lym-
phatic route, the likelihood of malignancies varies for dif-
ferent anatomical locations; hence, the relative position is a
most important feature for identifying tumors. Other features,
including the CT intensity, symmetry, and eccentricity, can
all become useful for the identification of specific mimics or
artifacts.

Figure 5 shows an example of salivary and thyroid glands.
In addition to their characteristic anatomical locations, these
normal tissues are frequently symmetric, especially the thy-
roid glands and salivary glands, while the tumors are usually
asymmetric. Hence, the scheme classified malignancies from
these artifacts successfully with the attributes of symmetry
and locations, which are used by the interpreting physicians
often. Figure 6 shows an example of brain and muscle. Promi-
nent FDG uptakes within the muscles are usually linear, while
the lesions are often as circular as the lymph nodes. Hence,
the physiological uptake can be recognized by our scheme,
with the attribute of eccentricity in SVM. Figure 7a–c shows
an example of true-positive and true-negative case of classi-
fication.

Robustness of the algorithm

One major challenge of a useful CAD scheme is to achieve
high robustness despite patient variability. A large database
of normal FDG distribution in healthy subjects can improve
the robustness of the algorithm by identifying differences
between diseased and normal individuals. Without the ben-
efit of having such database, the current algorithm that only
segments ROIs having significantly high uptake would be
selected as candidate. Also, since all the image features of
the ROI were standardized to 0–1 scale before classification
to eliminate the differences between patients, including area
and relative position, some individual variations related to
body habitus are avoided.

The algorithm can be readily applicable for images pro-
duced from different manufacturers, since it worked on stan-
dard DICOM format with functions that normalized signal
intensities. However, as the segmentation process relied on
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Fig. 5 Examples of the salivary
and thyroid glands. a Original
PET image. b Salivary glands
and malignancy are suspected as
lesions after registration. c The
malignancy is classified
successfully from the salivary
glands. d Original PET image
with thyroid uptake. e Thyroid
glands and malignancy are
suspected as lesions after
registration. f Successful
classification of malignancy
from the thyroid glands via
support vector machine

123



Int J CARS

Fig. 6 Examples of brain and
muscle. a Original PET image.
b Brain and malignancy are
suspected as lesions after
registration. c The malignancy is
classified successfully from the
brain. d Original PET image
with muscle uptake. e Muscle
and malignancy are suspected as
lesions after registration. f
Successful classification of
malignancy from the muscle via
support vector machine

the uptake threshold, scanning techniques or patient fac-
tors that might alter uptake would affect the final results.
For instance, the intrinsic sensitivity of the machines or the
use of different scanning protocol could affect the measured

radioactivity significantly, which would require adjustment
of the absolute threshold values or conversion of such thresh-
old to a relative function of scanning parameters. Also, scan-
ning patients at different time points after treatment may
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Fig. 7 Examples of true and false classification results. a Original PET
images. b Registration results. Tumors, muscle artifacts, and salivary
glands are segmented as candidates. c Both the malignancy and salivary
glands are classified successfully. d Original PET images. e Registration
result with muscle and larynx artifact as candidates. f Larynx is recog-

nized as a false-positive case. g Original PET images. h Registration
result. The malignancy and soft palate are misrecognized as one tissue.
i A false-negative case that the malignancy could not be classified from
the soft palate
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be variably affected by post-treatment changes, e.g., FDG
uptake due to post-radiotherapy inflammatory changes that
tend to wear off with time.

There were circumstances where intrinsic limitations of
PET/CT lead to erroneous classification by the CAD [28].
For example, there could be false negatives when the uptake
malignancy was unexpectedly low due to the small size or
necrosis, leading to reduced number of metabolically active
cells per voxel; there could be false negatives or false posi-
tives where there were significant body movements between
the PET and CT scan leading to misregistration. Misclassi-
fication could occur when the listed image attributes could
not differentiate the artifacts from malignancies. A case of
false-positive misclassification is shown in Fig. 7d–f, as the
attributes of the larynx artifact in this slice were quite simi-
lar with the malignancies. Figure 7g–i shows an example of
false-negative misclassification. The malignancy could not
be identified based on the image features of the combined
ROI.

Collection of a large sample of clinical examinations will
better determine the applicability and accuracy of the system.
Also, comparison between clinicians’ performance with and
without use of this system can resolve issues such as signif-
icance of missed lesions on the CAD and whether or not the
use of the CAD complements expert human readers.

Time complexity

This CAD scheme consisted of the following major compo-
nents: region growing segmentation, rigid registration, image
feature extraction, and SVM classification. For a case of
m slices with n pixels in each slice, the whole complexity
became m times of that in each slice.

In automatic region growing method, seeds were selected
by threshold with a complexity O(n). Checking the region
margins and growing could be done in constant time. As each
unclassified pixel was inserted into the sorted class-labeled
list once, the time complexity of the growing process was
O(n log n). In addition, it took O(np) to calculate the differ-
ence between the regions and merge the similar ones, where
p was the number of regions. Hence, the time complexity of
each slice segmentation was O(np + n log n) [29].

In global rigid registration, the margin of the neck or head
was obtained by threshold and image dilation, and hence the
time complexity was O(n). For the image feature extraction
of each ROI, it took constant time to calculate all the features
including area, centroid point, and eccentricity in MATLAB
toolbox since both the number of ROIs and the pixel number
in each ROI were much smaller than n.

In terms of the SVM classification, the standard SVM
training has O(q3) time complexity, where q is the training
set size [30,31]. In our scheme, the training set size is the
number of ROIs that ranges from zero to around ten each

slice. Hence, q is O(m) and the training time complexity
is about O(m3). The prediction process of the LibSVM is
O(m ∗ n) [21] with trained support vectors.

Hence, for a case of m slices with n pixels in each slice,
the time complexity of our scheme to classify the nasopha-
ryngeal carcinoma was O(m ∗n log n) with a O(m3) time to
train the SVM in advance.

Conclusion

An automatic algorithm for identifying NPC on PET/CT
examination was developed. It combined both imaging
features and a priori clinical knowledge for classification
between pathological and physiological uptake. Preliminary
results showed that the system was highly accurate and prom-
ising for adoption in clinical use.

Conflict of interest None.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Kapoor V, McCook BM, Torok FS (2004) An introduction to PET-
CT imaging. Radiographics 24(2):523–543

2. Townsend DW et al (2004) PET/CT today and tomorrow. J Nucl
Med 45(Suppl 1):4S–14S

3. Weber WA, Figlin R (2007) Monitoring cancer treatment with
PET/CT: does it make a difference?. J Nucl Med 48(Suppl 1):36S–
44S

4. Lee SW et al (2008) Prediction of prognosis using standardized
uptake value of 2-[(18)F] fluoro-2-deoxy-d-glucose positron emis-
sion tomography for nasopharyngeal carcinomas. Radiother Oncol
87(2):211–216

5. Schinagl DA et al (2011) Can FDG PET predict radiation treat-
ment outcome in head and neck cancer? Results of a prospective
study. Eur J Nucl Med Mol Imaging 38(8):1449–1458

6. Doi K (2005) Current status and future potential of computer-aided
diagnosis in medical imaging. Br J Radiol 78(Spec No 1):S3–S19

7. Tozaki YT et al (2003) Computer assisted diagnosis method of
whole body cancer using FDG-pet images. In: Proceedings of inter-
national conference on image processing, vol 2, pp 1085–1088

8. Opfer R et al (2008) Automatic lesion tracking for a PET/CT based
computer aided cancer therapy monitoring system. In: Giger ML,
Karssemeijer N (eds) Medical imaging 2008: computer-aided diag-
nosis. Proceedings of the SPIE, vol 6915, pp 691513.1–691513.10

9. Sharif MS et al (2010) Artificial neural network-based system for
PET volume segmentation. Int J Biomed Imaging 2010

10. Gao X et al (2010) Computer-assisted quantitative evaluation of
therapeutic responses for lymphoma using serial PET/CT imaging.
Acad Radiol 17(4):479–488

11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

12. Suykens JAK, Vandewalle J (1999) Least squares support vector
machine classifiers. Neural Process Lett 9(3):293–300

123



Int J CARS

13. Thie JA (2004) Understanding the standardized uptake value, its
methods, and implications for usage. J Nucl Med 45(9):1431–
1434

14. Aoki J et al (2001) FDG PET of primary benign and malignant
bone tumors: standardized uptake value in 52 lesions. Radiology
219(3):774–777

15. Kao CH et al (1998) Detection of recurrent or persistent
nasopharyngeal carcinomas after radiotherapy with 18-fluoro-2-
deoxyglucose positron emission tomography and comparison with
computed tomography. J Clin Oncol 16(11):3550–3555

16. Yen TC et al (2005) Are dual-phase 18F-FDG PET scans neces-
sary in nasopharyngeal carcinoma to assess the primary tumour and
loco-regional nodes?. Eur J Nucl Med Mol Imaging 32(5):541–548

17. Allal AS et al (2002) Standardized uptake value of 2-[F-18] flu-
oro-2-deoxy-D-glucose in predicting outcome in head and neck
carcinomas treated by radiotherapy with or without chemotherapy.
J Clin Oncol 20(5):1398–1404

18. Pham DL, Xu CY, Prince JL (2000) Current methods in medical
image segmentation. Annu Rev Biomed Eng 2:315–337

19. Hill DLG et al (2001) Medical image registration. Phys Med Biol
46(3):R1–R45

20. Furey TS et al (2000) Support vector machine classification and
validation of cancer tissue samples using microarray expression
data. Bioinformatics 16(10):906–914

21. Chang C, Lin CJ (2001) LIBSVM: a library for support vector
machines. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

22. Hsu C, Chang CC, Lin CJ (2003) A practical guide to support vec-
tor classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf

23. Ng SH et al (2004) Nodal metastases of nasopharyngeal carci-
noma: patterns of disease on MRI and FDG PET. Eur J Nucl Med
Mol Imaging 31(8):1073–1080

24. Ng SH et al (2009) Staging of untreated nasopharyngeal carci-
noma with PET/CT: comparison with conventional imaging work-
up. Eur J Nucl Med Mol Imaging 36(1):12–22

25. King AD et al (2008) The impact of 18F-FDG PET/CT on assess-
ment of nasopharyngeal carcinoma at diagnosis. Br J Radiol
81(964):291–298

26. Aung W et al (2005) In-vivo PET imaging of inducible D2R
reporter transgene expression using [11C]FLB 457 as reporter
probe in living rats. Nucl Med Commun 26(3):259–268

27. Hara T et al (2008) Automated scoring system of standard
uptake value for torso FDG-PET images. Proc SPIE 6915:691534–
691534-4

28. Griffeth LK (2005) Use of PET/CT scanning in cancer patients:
technical and practical considerations. Proc (Bayl Univ Med Cent)
18(4):321–330

29. Shih FY, Cheng SX (2005) Automatic seeded region growing for
color image segmentation. Image Vis Comput 23(10):877–886

30. Loosli G, Canu S (2007) Comments on the “core vector machines:
fast SVM training on very large data sets”. J Mach Learn Res
8:291–301

31. Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines:
fast SVM training on very large data sets. J Mach Learn Res 6:363–
392

123

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

	Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine
	Abstract
	Introduction
	Materials
	Methods
	Locate neck and head positions
	Region growing
	PET/CT registration
	Feature extraction
	Classification
	Evaluation test

	Results
	2D evaluation test result
	3D classification result

	Discussion
	Robustness of the algorithm
	Time complexity

	Conclusion
	Conflict of interest
	References


