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Generating coherent states of entangled spins
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A coherent state of many spins contains quantum entanglement, which increases with a decrease in the
collective spin value. We present a scheme to engineer this class of pure state based on incoherent spin pumping
with a few collective raising or lowering operators. In a pumping scenario aimed for maximum entanglement, the
steady state of N -pumped spin qubits realizes the ideal resource for the 1 → N

2 quantum telecloning. We show
how the scheme can be implemented in a realistic system of atomic spin qubits in an optical lattice. Error analysis
shows that high-fidelity state engineering is possible for N ∼ O(100) spins in the presence of decoherence. The
scheme can also prepare a resource state for the secret sharing protocol and for the construction of the large-scale
Affleck-Kennedy-Lieb-Tasaki state.
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I. INTRODUCTION

A coherent state in quantum mechanics usually refers to a
specific type of quantum state with minimum uncertainty. It
was first discovered in the context of an oscillator field and has
found wide applications in quantum optics [1–4]. A quantum
harmonic oscillator in a coherent state most closely resembles
the behavior of a classical oscillator. The notion was later
generalized to spin systems [5–8]. In an ensemble of N spin-I
particles, the term spin coherent state (or atomic coherent
state) is used to denote the states where the collective spin
Ĵ ≡ ∑

n În has the minimum uncertainty [8]. Such states can
easily be identified in the basis |J,μ,�λ〉, which are eigenstates
of Ĵ 2 and Ĵz with eigenvalues J (J + 1) and μ, respectively,
and �λ denotes additional quantum numbers to provide a
complete set of labels. The collective spin J gets every value
from NI down to 0 (or 1

2 ) in integer steps, and for each
collective spin value J , the magnetic quantum number μ =
−J, − J + 1, . . . ,J . One can easily show that the minimum
uncertainty relation 〈(�Ĵx)2〉〈(�Ĵy)2〉 = 1

4 〈Ĵz〉2 is satisfied for
all extremal states |J,μ = −J,�λ〉 in this basis. Hence, these
states and their rotations generated by Ĵ are the spin coherent
states (SCSs) [8]. Interestingly, two contrary characters coexist
in these states: the most classical collective spin behavior
and the fundamentally nonclassical phenomenon of quantum
entanglement. For every J < NI , there is a degenerate set
of |J, − J,�λ〉 with identical collective properties and distinct
entanglements where the number of unentangled spins is upper
bounded by J

I
[9].

The preparation of SCSs has been possible only in limited
cases. The J = NI SCS, nondegenerate and unentangled, is
obtained when all spins are fully polarized. Most experimental
studies of spin squeezing start in this state. Schemes were also
proposed to populate a mixed state of singlets (J = 0 SCS) by
collective pumping [10] and to select out a singlet by projective
measurement in a scattering model [11]. Engineering a pure-
state SCS of an arbitrary J value is a challenge but of multifold
significance. It is the sufficient condition for initialization into a
decoherence-free subsystem for robust quantum computation
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under strong collective decoherence [12]. SCSs of J � NI

are resources of large-scale entanglement with potential uses
in one-way quantum computation [13,14]. The ability to access
an SCS of entangled spins also opens up a new realm for the
study of the interrelation between collective spin behaviors
and quantum correlations in a spin ensemble [15,16].

In this paper, we propose control schemes for engineering
pure-state SCSs of an arbitrarily specified collective spin
value in a general spin ensemble. The schemes are based
on incoherent spin pumping of the N target spins and a
set of ancilla spins by a few (e.g., three) collective raising
and lowering operators. The desired pure state is obtained
with an N -independent probability by a single projective
measurement on the steady state of the pumping, and the
success rate approaches 100% with O(10) cycles of pump
plus measure. In a simplified pumping scenario aimed for
maximum entanglement, the steady state of N -pumped spin
qubits (without measurement projection) realizes the ideal
resource for 1 → N

2 optimal quantum telecloning [17]. We
show how the scheme can be implemented in the realistic
system of atomic spin qubits trapped in an optical lattice, where
the collective spin pumping is realized by Stokes or anti-Stokes
light scattering. Error analyses show that high-fidelity state
engineering is possible for up to N ∼ O(100) atomic spin
qubits in the presence of control errors and decoherence. This
is a concrete example of using simple and robust irreversible
dynamics to prepare a desired complicated quantum state
[18–23]. The scheme can also prepare a resource state for the
secret sharing protocol [24] and for the efficient construction
of a large-scale Affleck-Kennedy-Leib-Tasaki (AKLT) state
with applications in one-way quantum computation [25–27].

II. GENERAL SCHEME

The key to the state engineering approach by irreversible
dynamics is to design the dissipative controls under which
the system saturates with the desired state vectors. Here, we
utilize the spin-pumping process that drives a spin system
toward a mixture of all singlets connected to the initial state
by the pumping operators [10]. If a target spin ensemble is
in a singlet with a spin-J ancilla, its collective spin value
also must equal J . With a proper constraint from conserved
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quantum numbers, the singlet can be unique from which the
desired pure-state SCSs of the target spins can be obtained.

The target spins are divided into two subgroups with col-
lective spins ĵA and ĵB , respectively, and the collective spin of
2J spin- 1

2 ancillas is denoted by ĵβ . When an inhomogeneous
collective operator of the form Ĵ+

i = cAĵ+
A + cBĵ+

B + cβ ĵ+
β

acts on an SCS, the final state can generally be written as

Ĵ+
i |JT , − JT ,�λ〉 =

∑

�,�λ′

χ
JT +�,�λ′

JT ,�λ |JT + �, − JT + 1,�λ′〉,

(1)
where the first two quantum numbers in the kets denote the
total spin and the z component of ĴT = ĵA + ĵB + ĵβ , respec-
tively. The calculation of coefficients χ is straightforward by
expanding the collective spin states in terms of the common
eigenstates of ĵ 2

A, ĵ z
A, ĵ 2

B, ĵ z
B, ĵ 2

β , and ĵ z
β . We find that only the

� = 0, ± 1 transitions are allowed [10], and the ratio between
transition rates � = ±1 is

∣∣χJT ,�λ′

JT +1,�λ
∣∣2 = (JT + 1)(2JT + 1)

∣∣χJT +1,�λ
JT ,�λ′

∣∣2
. (2)

Consider the incoherent strong pump by Ĵ−
T , which results

in a mixture of SCSs of ĴT and the weak pump by the
inhomogeneous operator Ĵ+

i , which then causes transitions
between these SCSs with the effective rate ∝|χ |2 and the
selection rule � = 0, ± 1. From Eq. (2), we can see that the
� = −1 transition is much faster than the � = 1 one between
any such pairs of states. Thus, the pump will saturate the
target and the ancilla spins to singlets where JT is minimized.
With the target and ancilla spins initialized on the fully
polarized state, the quantum numbers jA = NAI, jB = NBI ,
and jβ = J are all conserved by the pump operators. Only one
singlet exists under this constraint,

|SABβ〉 ≡
J∑

μ=−J

(−1)J−μ|J,μ,jA,jB〉AB ⊗ |J, − μ〉β, (3)

where |J,μ,jA,jB〉AB denotes eigenstates of (ĵA + ĵB)2 and
ĵ z
A + ĵ z

B with eigenvalues J (J + 1) and μ, respectively.
Figure 1(a) presents a simulation of the spin pump us-

ing the Lindblad master equation ρ̇ = − 1
2

∑2
m=0(L̂†

mL̂mρ +
ρL̂

†
mL̂m − 2L̂mρL̂

†
m), where L̂0 ≡ √

�hĴ
−
T and L̂m ≡√

�iĴ
+
m for m = 1,2. Here, we have chosen the inhomoge-

neous raising operators,

Ĵ+
1 = e(2/3)πi ĵ+

A + e(4/3)πi ĵ+
B + ĵ+

β ,

Ĵ+
2 = e(4/3)πi ĵ+

A + e(8/3)πi ĵ+
B + ĵ+

β ,

while other choices of coefficients cA,B,β lead to similar
results. For the simulated example, we set the spin pump
rates �h/�i = 5000 and jA = jB = jβ = 5. After a pump
time tp = 0.2�−1

i , |SABβ〉 is occupied by a population P (0) ∼
20%. For general values of jA, jB , and jβ , we require

�h〈Ĵ+
T Ĵ−

T 〉  �i〈Ĵ−
i Ĵ+

i 〉, (4)

which ensures the lowering operator Ĵ−
T to be applied much

more frequently than the raising operator Ĵ+
i . The largest

possible value of 〈Ĵ−
i Ĵ+

i 〉 is ∼ (jA + jB + jβ)2, while the
smallest possible value of 〈Ĵ+

T Ĵ−
T 〉 is ∼1. Thus, �h/�i 

(a)

(b)

FIG. 1. (Color online) (a) Simulation of spin pump and repump
by the collective operators Ĵ −

T , Ĵ +
1 , and Ĵ +

2 (see text). The target
and ancilla spins are in the fully polarized state at t = 0. (Solid
curve) Population in the singlet |SABβ〉. (Dotted curves) Populations
in the subspace of J = 1 (red), J = 2 (blue), and J = 3 (black),
respectively. We assume the singlet is projected out at t = 0.4�−1

i ,
and hence, the curve after is the repump dynamics. (b) Simulation
of the simplified scheme for engineering the telecloning resource for
N = 40 qubits. The populations in the singlet |0,0, N

4 , N
4 〉, the spin-1

SCS |1,−1, N
4 , N

4 〉, and the spin-2 SCS |2,−2, N
4 , N

4 〉 are shown as functions
of time using various pumping rates.

(jA + jB + jβ)2 is sufficient to ensure the condition in
Eq. (4). The steady-state population in |SABβ〉 is given by
[
∑

k g(k)]−1 = 20% where g(k) ≡ (2k + 1)
∏k−1

i=0 (2i2 + 3i +
1)−1 [10]. The time scale to reach the steady state is ∼ (jA +
jB + jβ)−1�−1

i . The singlet can be selected out by projective
measurement of Ĵ z

T or Ĵ 2
T . If the measurement outcome is not

the singlet, the spins can be repumped to the steady state in
a much shorter time scale ∼ (jA + jB + jβ)−2�−1

i [Fig. 1(a)].
The probability of not obtaining |SABβ〉 is reduced to 0.1%
after 30 cycles of measure plus repump.

From the singlet |SABβ〉, further pumping by the target spin
operator ĵ−

A + ĵ−
B brings the target spins to the desired SCS

|J,μ = −J,jA = NAI,jB = NBI 〉. Here, the collective spin
value J of the target spins is controlled by the number of
the ancilla spins involved. Different choices of NA and NB

realize distinct pure SCSs of the same collective spin value,
which are fully symmetric under the permutation of spins
within subgroup A (or B). A and B can also be initialized with
any jA < NAI and jB < NBI by applying the scheme first to
the subgroups. Therefore, a concatenation of the scheme can
realize pure SCSs with more general permutation symmetries.

SCSs of the smallest collective spin values are most
desirable as a resource of entanglement. We consider the
J = 0 scenario of the above scheme (i.e., no ancilla spins),
which uses two pump operators: the homogeneous ĵ−

A + ĵ−
B

and the inhomogeneous ĵ+
A − ĵ+

B , where A and B each contain
N
2 target spins. For �h/�i  N2, we find the steady state of
the pumping ρ = ∑

J P (J )|J, − J,N
2 I,N

2 I 〉〈J, − J,N
2 I,N

2 I |
where P (J ) = (2J 2 + 3J + 1)P (J + 1). This steady state is
reached with a pump time tp ≈ 3+ln NI

2NI
�−1

i by our numerical
estimation and is largely a mixture of the singlet |0,0,N

2 I,N
2 I 〉,
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(a)

(b)

FIG. 2. (Color online) (a) Fidelity of 1 → 20 telecloning of a
state cos θ

2 |0〉 + sin θ

2 eiφ |1〉 using the above singlet (solid), spin-1
SCS (dashed), spin-2 SCS (dotted), and spin-3 SCS |3, − 3, N

4 , N

4 〉
(dot-dashed) as the resource, respectively. (b) The fidelity of 1 → N

2
telecloning (averaged over the Bloch sphere) using the above resource
states, respectively.

the spin-1 SCS |1, − 1,N
2 I,N

2 I 〉, and the spin-2 SCS |2,

− 2,N
2 I,N

2 I 〉, with some residue population of 0.5% on the
spin-3 SCS |3, − 3,N

2 I,N
2 I 〉. These states can be distinguished

in a nondemolition way by measuring ĵ z
A + ĵ z

B . A single cycle
of pump plus measure, thus, ends up with one of these pure
states, which all have large-scale entanglement. Figure 1(b)
shows a simulation of this spin pumping for a cluster of 40 spin
qubits.

The singlet |0,0,N
4 ,N

4 〉 of N qubits turns out to be the ideal
resource for universal optimal quantum telecloning [17]. If
Alice holds subgroup A and each of her N

2 associates holds
a qubit in subgroup B, Alice can transmit identical copies
of her unknown state cos θ

2 |0〉 + sin θ
2 eiφ|1〉 with a fidelity

of F0 = 2N+2
3N

to the N
2 associates using local operations and

classical communications (LOCCs) [17]. By a single cycle of
pump plus measure, the success rate for obtaining this state is
∼46%, which is a substantial improvement over the existing
scheme where the success rate is 2

2+N
[11]. Most remarkably,

all alternative outcomes by our scheme, i.e., |J, − J,N
4 ,N

4 〉
with a finite but small J , can also be used as quantum
telecloning resources under the same LOCC. Following the
same procedure of Ref. [17] but replacing |0,0,N

4 ,N
4 〉 with

|J, − J,N
4 ,N

4 〉, we obtain the telecloning fidelity, which is then
a function of θ [Fig. 2(a)], and it reaches the maximum value
on the equator of the Bloch sphere,

F max
J = (3J + 4)N2 + 4(J + 1)N − 4J (J + 1)(J + 2)

2(2J + 3)N2
.

Since F max
J > F0, better telecloning fidelity can be achieved

with these finite J SCSs in the presence of partial information
(i.e., the range of θ value). For N  J , the telecloning

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

P
F

FIG. 3. (Color online) Merits of state engineering in the presence of spin decoherence (a)–(d) and system parameter errors (e)–(h) for
engineering the telecloning resource for N = 8 qubits. �h/�i = 100. (a) and (e) Probability of obtaining singlet (blue triangles), spin-1 SCS
(green squares), and spin-2 SCS (red diamonds) at tp = 0.75�−1

i . (b) and (f) Bipartite entanglement E(A|B) in the obtained states measured
with the logarithmic negativity. (c) and (g) Entanglement between one qubit in A and another in B. (d) and (h) Fidelity of the obtained states
with the target states |0,0, N

4 , N

4 〉, |1, − 1, N

4 , N

4 〉, and |2, − 2, N

4 , N

4 〉.
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FIG. 4. (Color online) Increasing the length of an AKLT chain
with the resource of a four-qubit-AKLT state. By measuring the parity
of the two atoms, the n-qubit AKLT chain either becomes an (n + 4)-
qubit (lower left) or an (n + 2)-qubit AKLT chain (lower right). See
text.

fidelity averaged over the entire Bloch sphere approaches F0

[Fig. 2(b)]. Thus, the mixed steady state of the spin pumping
can be used as an equally efficient telecloning resource as the
ideal singlet.

A major cause of error for the state engineering is the
local spin decoherence process. If each spin loses its phase
coherence with a rate γ , a total leakage of ∼Nγ tp ∼ γ /�i

out of the desired subspace is accumulated in the entire
duration tp ∼ 1

N
�−1

i of the state preparation. High-fidelity
state engineering, thus, requires γ � �i . This is confirmed
by numerical simulation for a cluster of N = 8 spin qubits
where we have added pure dephasing processes described by
Lindblad operators

√
2γ Î z

n for all spins [Figs. 3(a)–3(d)]. We
also studied the effect of errors from system parameters. For
the simulation presented in Figs. 3(e)–3(h), spins are pumped
instead by �̂−

A + �̂−
B and �̂+

A − �̂+
B where �̂± ≡ ∑

n(1 +
ηn)Î±

n , ηn being a random error between η and −η. The figure
of merit is reasonably good when the error amplitude η < 10%.
Moreover, by pumping with the operators U (ĵ−

A + ĵ−
B )U †

and U (ĵ+
A − ĵ+

B )U † where U ≡ ∏
n exp(iθnÎ

z
n ), state U |J, −

J,N
2 I,N

2 I 〉 is obtained instead of |J, − J,N
2 I,N

2 I 〉. Namely,
systematic phase errors in the collective pumping operators do
not affect the entanglement, and single spin rotations about the
z axis can deliberately be encoded in the pumping.

When A and B each contain two qubits, the resultant
singlet |0,0,1,1〉 by our scheme is the four-qubit AKLT
state P23|S〉12|S〉34, where |S〉ij stands for the singlet of
qubits i and j and Pjk is the projection operator to the
triplet subspace for qubits j and k [25]. Its optical analog
has been used to demonstrate four-party secret sharing [24]
and measurement-based single-qubit rotation [26]. This state
is also an efficient element for constructing a large-scale
AKLT state as schematically illustrated in Fig. 4. Consider
two four-qubit clusters in P23|S〉12|S〉34 and P67|S〉56|S〉78,
respectively, by measuring the parity of atom pair {4,5}, the
spin configuration of this pair will be projected to either the
singlet or the triplet subspace [28]. With 75% probability,
the measurement outcome is triplet and an eight-qubit AKLT
chain P23P45P67|S〉12|S〉34|S〉56|S〉78 is obtained. The remain-
ing 25% probability will give P23P67|S〉12|S〉36|S〉78 ⊗ |S〉45

where a six-qubit AKLT state is obtained. With our scheme as
an efficient source of four-qubit AKLT states, a long AKLT
chain, thus, can be constructed.

(a)

(b)

Atom i Atom j

Ω
Ω

Δ Δ

ω↓
↑› ›

FIG. 5. (Color online) (a) The level structure of the atoms. The
red dashed arrow represents the cavity field, and two solid arrows
denote two laser fields. (b) The collective spin pumping of atoms
realized by the cavity-assisted Raman process. Atoms are trapped
in the optical lattice and are loaded into a Fabry-Pérot cavity. The
inhomogeneous coefficients are controlled by laser emission angles
θ1 and θ2.

III. APPLICATION TO ATOMS IN AN OPTICAL LATTICE

Here, we apply our scheme to cold atoms of a typical
�-level structure, which are trapped in an optical lattice.
This system has been explored widely in various schemes for
quantum information processing. The two lower-energy levels
are used to represent the spin qubit [Fig. 5(a)]. The atoms
trapped in an optical lattice can first be initialized to the |↓〉
state and can be loaded into a Fabry-Pérot cavity [Fig. 5(b)].
For simplicity, we assume the optical lattice constants in both
directions equal to the wavelength of the cavity mode, and all
atoms are at the peak of the cavity field. Driven by two lasers
of frequency ωc ± ωz with ωc being the cavity resonance and
ωz being the spin splitting, the cavity-assisted Raman process
lowers or raises the spin state. The Raman processes in the
large detuning regime (g2,�2

± � �2
±) can be described by the

effective Hamiltonian,

Ĥ± = g�±
2�±

Ĵ±(k)â†
c + H.c., (5)

where �± is the Rabi frequency of the two pumping lasers, g

is the atom-cavity coupling, and �± is the detuning. â†
c creates

a cavity photon, and Ĵ±(k) ≡ ∑
j e−ik·rj σ̂±

j realizes various
collective spin-raising and lowering-operations by controlling
the laser wave vector k. For the setup shown in Fig. 5(b)
where the pump lasers are perpendicular to the cavity axis,
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the blue laser with θ1 = π
2 realizes the homogeneous operator

Ĵ−
T , and the green laser with cos θ2 = 1

3 (or 2
3 ) realizes the

inhomogeneous collective operator Ĵ+
1 (or Ĵ+

2 ) where the
subgroups A, B, and the ancilla are represented by spheres
with different colors.

A projective measurement for selecting out the singlet state
can be realized in the same setup. Applying a blue and a green
laser with both θ = π

2 and comparable Rabi frequency �− ∼
�+ realizes the homogeneous raising and lowering operators
Ĵ±

T on the spin qubits. If the system is in a finite J state, then
Raman scatterings are allowed, and we will observe continuous
cavity photon emission when Ĵ+

T and Ĵ−
T pump the spins. When

the system is in a singlet, Raman scattering is forbidden since
both Ĵ+

T and Ĵ−
T annihilate the state, and there will be no cavity

photon emission.
The Raman-scattering rate by a single atom is �h/i =

P��2
±/�2

± with � being the spontaneous emission rate of the
atomic excited state in vacuum and P as the cavity-induced
enhancement factor (Purcell factor). Consider the Cs atom
( �

2π
= 2.6 MHz) in a typical Fabry-Pérot cavity with a mode

volume of 104 μm3and a quality factor of 1.7 × 107, which

correspond to P ≈ 80,
g

2π
≈ 45 MHz, and a cavity-decay rate

of κ
2π

≈ 20 MHz [29]. � ≈ 15 MHz can then be achieved
with �

2π
≈ 150 and �

2π
≈ 40 MHz [30]. The collective Raman-

scattering rates should satisfy �i〈Ĵ−
1 Ĵ+

1 〉 � �h〈Ĵ+
T Ĵ−

T 〉 < κ

[10]; the last inequality is to ensure that the emission of the
cavity photon is spontaneous. For N atoms in the cavity,
the matrix element 〈Ĵ+

T Ĵ−
T 〉 (〈Ĵ−

1 Ĵ+
1 〉) is ∼N (∼N ) in the

neighborhood of the polarized initial state and ∼1 (∼ N2

4 ) in
the neighborhood of the target singlet state. Thus, we can
use �h ∼ 15 MHz. Correspondingly, �i will be ramped down
from an initial value of ∼1/N MHz to the steady-state value
∼ 1

N2 MHz along with the spin pumping. Since an atom in an
optical lattice can be of an ultraslow spin decoherence rate
γ

2π
∼ 1 − 25 Hz [31], the condition γ � �i can be satisfied

for N ∼ O(100) qubits.
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