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Chai L, Song Y-Q, Leung WK.
 
Genetic polymorphisms of Fc gamma receptors and 

periodontitis. J Periodont Res 

 

Periodontitis is a complex chronic subgingival plaque induced inflammatory disease 

influenced by multiple factors including genetic, behavior, and environment. Many 

genetic association studies have been conducted in periodontology. One of the most 

extensively investigated gene families is the Fc gamma receptor gene family, which plays 

a key role in regulating host immune responses to bacteria but the data available of this 

gene family influence in periodontitis are controversial. This article critically reviews the 

current understanding and research status of genetic polymorphism studies of Fc gamma 

receptors and periodontitis and also of other genes involved in the regulatory network of 

Fc gamma receptors with special reference to their anticipated biological roles. 

Moreover, some possible future research directions in the related area are discussed. 
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Human periodontitis is a chronic infectious disease that is characterized by plaque 

induced destruction of periodontal soft tissue and alveolar bone. The etiology of the 

disease is unclear but is commonly believed to be bacterial infection interacts with host 

defense which is modified by a multitude of agents, such as genetic, behavioral, and 

environmental factors (1). In the past decade, many studies have been carried out to 

investigate genetic susceptibility to periodontal diseases. In this respect, one of the most 

extensively studied gene families is that of the Fc gamma receptor (FcγR), which has 

been proven to be essential in the pathogenesis of periodontal disease. In this review, we 

summarize current genetic association studies on the FcγR gene family and other genes in 

its immune network. We hope the review will give readers a general idea of the 

association between FcγR and periodontitis, as well as the current status of genetic study 

in periodontology and its future directions. 

 

Periodontitis is a complex disease 

A classification system based on genetic involvement puts diseases into three categories: 

chromosomal, Mendelian, and complex (2). Chromosomal disorders are characterized by 

gross abnormalities in chromosome number or structure, and often result in preterm death 

related to developmental abnormalities. Mendelian disorders are caused by a few rare 

mutations of a single gene or, exceptionally, of more than one gene (3, 4). Mendelian 

disorders usually display familial patterns of inheritance, including autosomal recessive, 

autosomal dominant, or X-linked transmission of the disease-related alleles, and there is a 

direct correlation between genotype and phenotype. It is generally accepted that complex 
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diseases have a multifactorial pathogenesis and develop as a result of the interplay 

between several genes or genetic variants and environmental factors (including bacterial 

infection and smoking), somatic mutations, and epigenetic modifications (5). Thus, 

inherited genetic variation is not the direct cause of a complex disease but instead 

mediates the risk of disease development in response to exposure to one or more 

environmental factors. Therefore the clinical and genetic heterogeneity of such disorders 

makes the analysis of their exact causes extremely difficult (6) (Figure 1). 

Genetic factors can influence the intensity and severity of host responses to 

bacterial challenge, which may result in various levels of periodontal tissue destruction. 

As a consequence, different patients might exhibit different levels of immune responses 

to the same level of infection (7-9). Specifically, different allelic variants can lead to 

variations in different aspects of host immune responses such as innate immunity, 

adaptive immunity, and auto-immune reaction (10). Genetic variations may also serve as 

either protective or risk factors for diseases such as periodontitis (11). For these reasons, 

periodontitis is considered a complex disease whose phenotype is determined by both 

genetic make-up and environmental influences on the host bacterial interaction within an 

individual. Therefore, genetic polymorphism studies of periodontitis need careful design 

and cautious interpretation (9). 

 

Genetic polymorphism study of complex human diseases 

Until the availability of detailed genetic maps thanks to the Human Genome Project, the 

identification of DNA mutations that caused rare disorders, such as cystic fibrosis and 

Huntington’s disease depended on genetic linkage and positional cloning studies (12-15). 
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However, such approaches were unsuccessful in identifying loci that contribute to 

complex diseases. In 1996, Risch and Merikangas suggested that association studies 

could be more powerful than linkage studies in identifying susceptibility loci (16). 

Furthermore, some researchers postulated the hypothesis that common variants are the 

base of common diseases, suggesting that common DNA variation, as opposed to rare 

mutations, could be responsible for a proportion of common diseases (17-19). Although 

that hypothesis remains controversial, resources for association studies, such as dense 

genetic maps of single nucleotide polymorphisms (SNPs) across the human genome, 

enable investigators to more rapidly identify disease-associated loci that could have a 

major impact on public health (20). Association studies are currently the focus of most 

study designs for identifying loci involved in complex diseases such as cardiovascular 

diseases, diabetes, cancer, and periodontal diseases. 

There are two approaches for studying candidate SNPs: direct and indirect. In the 

direct association study, the proposed causative SNP is genotyped directly. Despite the 

proven success of the direct approach using non-synonymous (non-synonymous change 

may either be missense or nonsense, where a missense change in the coding sequence 

results in a different amino acid, while a nonsense change in the coding sequence results 

in a premature stop codon) SNPs (21), a major challenge is predicting or determining a 

priori which SNPs are likely to be causative or predictive of the phenotype of interest, in 

particular, since our current knowledge about the pathogenesis of most complex diseases 

and SNP functions is limited. Hence, the selection of the candidate SNPs is usually 

difficult. The indirect approach, on the other hand, is much like a linkage study in that it 

assays multiple markers while assuming them to be neutral, without assuming the 
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location of the causative gene or locus (22). It is most often a case-control study on 

subjects drawn from the general population and uses a measure of allelic association or 

site correlation (known as linkage disequilibrium, LD) to detect historical recombination. 

This strategy, however, also has some problems: sample selection reduces statistical 

power, particularly for rare alleles; haplotypes at multiple loci cannot be resolved, 

thereby precluding some powerful mapping strategies; and clinical samples are less 

readily analyzable using stratification by phenotypic differences and environmental 

factors, which may be critical to understanding disease susceptibility (23). 

Among recent developments in genomic research is the genome-wide association 

study (GWAS), which seems more promising than traditional association studies in 

identifying molecular pathways of diseases, and in a lesser extent, risk variants of 

complex diseases since it scans the whole genome for association without any prior 

assumptions about the biological process, hence can possibly find out those variants 

would not usually be suspected to be associated based on our current limited knowledge 

of the biological functions of the genes (24). However, researchers are still debating the 

usefulness of the GWAS in actually helping to predict individual genetic risk of complex 

diseases because most of GWASs carried out so far have not identified variants by which 

we can accurately predict genetic risks since the associated variants found out are 

common and typically have very small effects on the variability of the traits, hence can 

explain only a small portion of the heritability (25-27). The majority of effect sizes of risk 

alleles that have been found so far in GWASs are small: typically with an odds ratio of 

<1.5, and with many around 1.1 and 1.2, which represent the limit of detection given the 

experimental sample sizes employed to date. Alternatively, an individual identified gene 
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variant results to only 10% to 20% more susceptible to a certain disease. Those findings 

suggested that many GWAS so far may not have sufficient power to discover 

associations with such small effects (Figure 2) (28). Larger-scale GWASs (sample size of 

more than 10,000) are thus required (27). Moreover, for most diseases, GWAS results 

usually indicate a substantial number of variants that generate small increases in disease 

risk; such variants cannot individually explain much of the genetic variance.  

Therefore, a combined strategy such as one using rare and low-frequency variants 

and structure variants may be required (26, 27). A recent combination approach used in 

diabetes research may show us a possible effective strategy (29). In that study, the 

researchers used GWAS to investigate 12,000 common non-synonymous SNPs in 

patients with type I diabetes and healthy controls. They identified a type I diabetes-

associated locus on chromosome 2q24 and subsequently used a newly developed high-

throughput sequencing technology to resequence the candidate genes in the associated 

locus. The group found that multiple rare variants in the “interferon-induced with 

helicase C domain 1” gene (IFIH1) was associated with type I diabetes and implicated 

involvement of the gene in this disease. These associations explained a substantial 

portion of disease risk and constituted proof of principle for the genome-wide approach 

and gene fine mapping in the elucidation of complex diseases (29). 

 

Genetic polymorphism study of periodontitis 

In the past decade, many association studies on periodontitis have been reported. 

However, owing to the complicated nature of the disease and the limitations of the study 

approaches used, our knowledge of the genetic background of periodontitis is still scant 
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(30). Most of the published research into genetic polymorphisms in periodontitis focuses 

on genes that play roles in immunoregulation or metabolism, such as genes for cytokines, 

cell-surface receptors, chemokines, and enzymes, as well as genes related to antigen 

recognition. The direct association approach is most commonly used, but ethnic 

heterogeneity, different clinical classification systems, and other factors such as 

variations in sample size and control criteria were often not standardized meaning that the 

diverse results remained difficult to comprehend (9). Among the studied genes, FcγRs are 

one of the gene families gained much attention since they link the cellular and humoral 

immunity and play a pivotal role in host versus bacteria response (31). However unlike 

IL-1 cluster, there are few reviews summarizing the FcγR gene family polymorphisms 

and periodontitis although genetic studies of FcγRs polymorphisms and periodontitis are 

numerous. The following sections will focus on research that has been undertaken to 

study the role of FcγRs and other factors such as IL-1 family and other cytokines that are 

relevant to FcγRs within and beyond their regulatory network in relation to periodontitis, 

under the context of genetic polymorphisms. 

 

Fc gamma receptor polymorphisms 

 

Biology of Fc gamma receptors 

Fc receptors for immunoglobulin G (IgG), or FcγRs, were identified more than 40 years 

ago with the observation that IgG antibodies could be directly cytophilic for macrophages 

when presented on opsonized red blood cells (32). This binding property of IgG 

antibodies was found to be independent of the antibody’s hyper-variable (Fab) region and 
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required only the constant (Fc) portion of the IgG. Subsequent in vitro studies established 

the role of FcγRs in triggering effector responses such as macrophage phagocytosis, 

natural killer (NK) cell antibody dependent cell-mediated cytotoxicity, neutrophil 

activation, and the paradoxical inhibition of B cell activation by IgG immune complexes 

(33-37). Currently, three different classes of human FcγR family are recognized, 

encompassing nine genes (CD64: FcγRIa, Ib, and Ic; CD32: FcγRIIa, IIb, and IIc; and 

CD16: FcγRIIIa and IIIb), which have been mapped to the long arm of chromosome 1 

(1q21 and 1q23-24) (38-41). Whereas FcγRI has a high affinity for the antibody-Fc 

region, FcγRII and FcγRIII have a low affinity for the Fc region of IgG (42, 43). A new 

member of the FcγR family, FcγRIV, was recently identified in mice. It is considered to 

be conserved in all mammalian species and to have intermediate affinity (44-46). 

Although only single copies of the low-affinity Fc-receptor genes are present in most 

species, duplications and diversification processes have led to the presence of multiple 

genes in the human genome (47). The copy number variation of FcγRs is becoming one 

of important genetic polymorphisms for this gene family that we will discuss later in this 

review. Unfortunately, most likely owing to their highly homologous sequences, many 

genome databases list these low-affinity FcγRs not as separate genes but, incorrectly, as 

allelic version of one gene (39).  

Most FcγR subclasses consist of a separate ligand-binding chain, whose 

extracellular domain contains the IgG-binding region, and signaling chains essential for 

the initiation of signal transduction. The exception is neutrophil FcγRIIIb, which is 

attached to the outer layer of the cell membrane via a glycosyl-phosphatidylinositol 

anchor. Functionally, there are two different FcγR classes: activating and inhibitory 
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receptors, which transmit their signals via immunoreceptor tyrosine-based activation 

(ITAM) or immunoreceptor tyrosine-based inhibitory motifs (ITIMs), respectively (48). 

The general characteristics of human FcγRs are summarized in Table 1. The paired 

expression of activating and inhibitory molecules on the same cell is the key for the 

generation of a balanced immune response (48).  

 

Fc gamma receptors and periodontitis 

FcγRs are found on a wide variety of immune cells, such as polymorphonuclear 

granulocytes, lymphocytes, and dentritic cells, in both gingival epithelium and pocket 

epithelium of periodontal tissues (49). Indeed, strong, specific IgG responses against 

periodontopathic bacteria have been observed in gingival tissue and gingival crevicular 

fluid (50). Furthermore, microorganisms and bacterial antigens that have been opsonized 

with antibody, can be either phagocytosed via FcγRs on neutrophils or internalized via 

FcγRs by antigen-presenting cells (dendritic cells, monocytes, macrophages, and B cells). 

As a consequence, T cells and NK cells may become activated; a variety of cytokines and 

chemokines may also be released (51). Because FcγRs on leukocytes in effect link 

cellular and humoral branches of the immune system, they can be considered to be an 

essential component of the host-defense mechanism against bacteria (31). Therefore, any 

alteration in FcγR expression and function would alter host immune responses against 

periodontal pathogens and hence susceptibility to periodontal diseases. 

Since the recent realization that FcγRIV is a highly conserved member of the 

FcγR family, researchers have begun refocusing on the affinity of individual Fc receptors 

for different antibody isotypes (52). One hypothesis is that the low-affinity inhibitory 
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FcγRIIb differentially regulates each activating Fc receptor type, depending on the 

antibody isotype it is regulated by (39). The in vivo activity of an IgG antibody, therefore, 

can be predicted on the basis of its activation/inhibition ratio, which in turn is influenced 

by several factors. Inflammatory mediators, including interferon (IFN-) γ, complement 

component 5a (C5a), and Th-1 cytokines such as interleukin (IL-) 1β and tumor necrosis 

factor (TNF-) α can upregulate activating Fc receptors, while simultaneously decreasing 

the level of FcγRIIb expression (52-54). The expression of FcγRI can be upregulated by 

IFN-γ resulting in elevated mRNA expression of TNF-α, granulocyte macrophage colony 

stimulating factor (GM-CSF), IL-3, and IL-13 (55). In contrast, Th-2 cytokines such as 

IL-4, IL-5, IL-10, IL-13, or transforming growth factor (TGF-) β upregulate expression of 

inhibitory Fc receptors and downregulate that of activating Fc receptors on innate 

immune effector cells (53, 55-58). It should be noted, however, that cytokine-mediated 

regulation of FcγR expression is cell type-specific. For example, IL-4 upregulates 

FcγRIIb expression on myeloid cells, but downregulates FcγRIIb expression on activated 

B cells (59). Table 2 lists members the FcγR regulatory network and their relation with 

FcγRs (except FcγRIV). 

 

Fc gamma receptor polymorphisms 

Functional bi-allelic polymorphisms have been identified for four FcγR subclasses: 

FcγRIIa, FcγRIIc, FcγRIIIa, and FcγRIIIb (60-64). FcγRIIa contains either an arginine (-

R131) or a histidine (-H131) at amino acid position 131 in the second extracellular 

immnunoglobulin-like domain (RefSNP: rs1801274) (65, 66). Depending on the amino 

acid, the receptor affinity for IgG2 is strongly affected (67). For example, FcγRIIa-
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H/H131 neutrophils internalize human IgG2-opsonized bacteria more efficiently than 

FcγRIIa-R/R131 neutrophils (68). Several studies have shown that allelic polymorphisms 

in the first extracellular domain (EC1) of FcγRIIc corresponding to amino acid position 

13 (EC1-13) with either a CAG or a TAG can possibly determine the expression and 

function of FcγRIIc on normal human NK cells because CAG is a codon for Gln while 

TAG is a stop codon, hence results in either a functional open reading frame or a null 

allele (60, 61). Further, receptor affinity for both monomeric and immune-complexed 

IgG1and IgG3 is higher for the FcγRIIIa-158V allotype than the FcγRIIIa-158F allotype 

(rs396991) (69). Neutrophil-specific FcγRIIIb polymorphisms are characterized by their 

reactivity to anti-FcR III monoclonal antibodies and alloantisera that recognize 

determinants of the biallelic neutrophil antigen (NA) system. Receptors that react with 

only monocolonal antibody Gran 11 and anti-NA1 alloantibodies are regarded as 

NA1NA1, while receptors that react with only anti-NA2 alloantibodies are NA2NA2 and 

the remainder, which can react with both anti-NA1 and anti-NA2 alloantibodies, are 

NA1NA2 (62, 70). The NA1-NA2 polymorphisms caused by five bases changes in 

codons 36, 38, 65, 82, and 106 lead to four predicted amino acid substitutions within the 

first extracellular immunoglobulin-like domain (70). As a result, NA1 has only four 

potential N-linked glycosylation sites as compared with six in NA2 FcγRIIIb (70). 

Neutrophils from FcγRIIIb-NA2 individuals bind IgG1 or IgG3 less efficiently than 

neutrophils from individuals with FcγRIIIb-NA1 (68). In vitro findings have suggested 

that inter-individual differences in the efficacy of FcγR-mediated effector functions 

depend on FcγR polymorphisms. Figure 3 illustrates the function of FcγRs and 

summarises most of their related polymorphism studies. 
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Apart from SNPs, Fcγ receptor genes exhibit variation in their copy numbers as 

well. Copy number variation has been demonstrated for FCGR3B, FCGR2C and 

FCGR3A genes, but not for FCGR2A or FCGR2B (71). Copy number variation in 

FCGR3B has been shown to be associated with surface expression of FcγIIIb in 

neutrophils. In addition, neutrophils isolated from donors with more than two gene copies 

displayed enhanced IgG-induced effector responses as well as increased cell adherence in 

IgG-coated surfaces compared with those from donors with less than two (72). The copy 

number variation of FCGR3B has been reported to be associated with several chronic 

inflammatory diseases such as SLE (72), rheumatoid arthritis (73) and immune-mediated 

glomerulonephritis (74). FCGR2C copy number variation is found to be associated with 

idiopathic thrombocytopenic purpura (75). The same study also reported that NK cells 

from individuals with two or three copies of FCGR3A seem to express higher levels of 

receptor and exhibit greater antibody-dependent killing capacity than those from 

individuals with one copy of the gene (75). It should be noticed that although a number of 

studies have made use of well validated complementary techniques for the assessment of 

copy number variation, there is controversy on the accuracy and sensitivity of some of 

these techniques, as they are still at an early stage of technical development.  

 

Fc gamma receptor polymorphisms and periodontitis 

Most studies on the association between genetic polymorphisms of FcγRs and 

periodontitis are based on the bi-allelic polymorphisms mentioned above. Studied groups 

have come from Caucasian, African-American, Japanese, and Chinese populations. 

Different definitions of periodontitis that have been used include early onset 
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periodontitis, adult periodontitis, aggressive periodontitis, chronic periodontitis and 

recurrent periodontitis (31, 76-88) (Table 3). Unsurprisingly, the differing populations, 

periodontitis types, and study designs have led to mixed conclusions (89). Apart from 

most of the association studies trying to establish confirmed association between those 

single FcγR polymorphism mentioned above and periodontitis, some researchers tried to 

use different strategies to look for associated variations. Chai et al. has screened 103 

SNPs in FcγRs and reported a novel SNP (rs445509) in FcγRIIIa that may associated 

with chronic periodontitis in Chinese (76). Nicu et al. have investigated the function of 

FcγR genetic variants on host against periodontopathogenic bacteria. They has reported 

periodontitis patients with FcγRIIa H/H-131 genotype seemed suffering more bone loss 

comparing to H/R or R/R genotype periodontitis patients and their PMNs showed higher 

reactivity in response to periodontopathogenic bacteria than those of patients with other 

genotypes (89-91). So far there is no study about copy number variation of FcγRs and 

periodontitis can be found yet. 

Although researchers have shown some evidence that FcγRIIa and FcγRIIIa 

polymorphisms as well as FcγRIIIb polymorphisms (except for chronic adult 

periodontitis) may be associated with periodontitis, more studies on various populations 

are needed to confirm if these conclusions can be extrapolated to the general population. 

Moreover, it should be noticed that FcγRIIb polymorphisms may also play an important 

role in the pathogenesis of periodontitis, because there are large numbers of FcγRII-

bearing B lymphocytes in periodontal lesions and FcγRIIb is so far the only known 

inhibitory receptor in the FcγR family that is pivotal in the regulation of B cell activation. 
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Indeed, an association between FcγRIIb-232T and aggressive periodontitis has been 

shown in Japanese subjects (89, 91). 

 

Genetic polymorphisms within the Fc gamma receptor regulatory network 

As shown in Table 2, the members of the FcγR regulatory network can be categorized as 

upregulatory factors such as IL-1β, TNF-α, IFN-γ, IL-13, C5, IL-3 and GM-CSF; 

downregulatory factors such as IL-10, TGF-β and IL4; and cytokines that have both 

functions (Figure 3). Compared with FcγRs, cytokines of their regulatory network, such 

as IL-1 and TNF-α, have received more attention in terms of the number of studies on 

polymorphisms and periodontitis susceptibility. Nevertheless, some members of the 

regulatory network have been neglected, especially in periodontal susceptibility studies. 

The following sections will discuss genetic polymorphisms within the FcγR regulatory 

network in detail. 

 

Upregualtory factors 

Interleukin-1 family 

The biological activity, molecular biology, and clinical relevance of the IL-1 family have 

been studied extensively. IL-1 is a potent pro-inflammatory cytokine that is released by 

macrophages, platelets, and endothelial cells. The gene encoding this cytokine lies on 

chromosome 2q13-21 (92-94). In 1997, Kornman et al reported an association between 

polymorphisms in the genes encoding IL-1α (-889) (rs1800587) and IL-1β (Y3953) 

(rs1143634) (termed the “composite genotype”) and an increased severity of periodontitis 

(95). This initial study has been highly influential in arousing interest in gene 
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polymorphisms and periodontitis. The IL-1 family has become the most studied in the 

search for genetic associations with periodontitis and can serve as a useful example for 

considering the strengths and limitations of using gene polymorphisms in disease 

association studies in periodontitis. 

On the basis of numerous studies of IL-1 composite genotypes and periodontitis, 

Kinane et al (10) summarized current understanding of the association between IL-1 

family genotypes and periodontitis. The overall findings are as follows: a) the IL-1 

composite genotype appears irrelevant in aggressive periodontitis; b) such composite 

genotype may be in linkage disequilibrium with the gene contributing to susceptibility to 

chronic periodontitis; c) the composite polymorphisms may be part of several involved in 

the genetic risk for chronic periodontitis; d) the polymorphism is only a useful marker in 

defined population (96, 97); e) comfirmation of the functional significance of this gene 

polymorphism remains to be established; f) clinical utilization of the composite 

polymorphisms for risk assessment and prognostic determination is premature. A recent 

meta-analysis supports these opinions by showing a statistically significant association 

between IL-1 cluster polymorphisms and chronic periodontitis (98). The same 

metaanalysis also found a weak positive association with IL-1β (-511) (rs16944) (98). 

 

Tumor necrosis factor 

TNF is a pro-inflammatory cytokine that possesses a wide range of immunoregulatory 

functions. It has the potential to stimulate the production of secondary mediators, 

including chemokines or cyclooxygenase products, which consequently amplify the 

degree of inflammation (99, 100). The TNF gene is located on chromosome 6 within the 
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major histocompatibility complex, in the 6p21.3 Class III human leukocyte antigen zone 

(101). Research on some SNPs such as -1031T/C (rs1799964), -863C/A (rs1800630), -

857C/T (rs1799724), and -308G/A (rs1800629) in the promoter region of this gene has 

revealed conflicting findings for their association with periodontitis (102-110). Meta-

analysis of studies done so far on -308G/A could not establish an association between the 

polymorphism and susceptibility to chronic periodontitis (98). 

 

Miscellaneous factors  

Studies on IFN-γ -874T/A (rs2430561) and chronic periodontitis have shown mostly 

negative results (111-113). A study on the IL-13 promoter polymorphisms -1112C/T 

(rs1800925) and -1512A/C (rs1881457) in aggressive periodontitis also did not show 

significant results (114). Other inflammatory mediators such as C5 rs17611 have been 

found to be associated with severe chronic periodontitis in the Chinese population (115). 

Additionally, C5 1632C/T (rs25681) and 2404A/G (rs17611) have been found to be 

associated with bronchial asthma (116), rs17611 and rs2300929 with liver fibrogenesis 

(117). 

 

Downregulatory factors 

Interleukin-10 

IL-10 stimulates the production of protective antibodies and downregulates 

proinflammatory cytokines produced by monocytes (118-120). The gene encoding IL-10 

has been mapped to chromosome 1q31-32 (121). Three promoter SNPs have been 

described: -1087G/A (rs1800896), -819C/T (rs1800871), and -592C/A (rs1800872) (122, 
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123). These three loci exhibit strong LD (124). There is some evidence of association of 

such polymorphism with periodontitis, but only in particular populations (125-128). 

Microsatellite polymorphisms have been identified in the 5’-flanking region of the gene, 

but no association with periodontitis has been established (108, 129). 

 

Transforming growth factor-β1 

TGF-β1 is released during tissue injury and by inflammatory cells exposed to bacteria 

and their products (130). It has both therapeutic and pathologic potential (131). The gene 

is located on chromosome 19q13.1 (132), and SNP -509C/T (rs1800469) has been 

reported to be associated with periodontitis in Brazilian Caucasians but not Czech 

Caucasians (133, 134). 

 

Interleukin-4 

IL-4 can rescue B lymphocytes from apoptosis and enhance their survival, thus playing a 

role in promoting B cell mediated autoimmunity (111). It is also a potent downregulator 

of macrophage function (135, 136). The gene has been mapped to chromosome 5q31.1 

(137), with a promoter SNP at position -590 (rs2243250) and a 70-bp variable-number 

tandem repeat polymorphism at intron 2 (11). Case-control reports relating to aggressive 

periodontitis and chronic periodontitis susceptibility and severity across several 

populations did not find a connection between these polymorphisms and periodontitis 

(138-142). 

 

Other regulatory members 
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So far, no study on IL-3 and IL-5 polymorphisms in periodontal diseases has been 

reported. However, reports on IL-3 +79T/C (rs40401) in association with asthma and 

atopy (143), IL-3 -16T/C, -131T/C in association with rheumatoid arthritis (144), and IL-

5 rs2522411 and -703C/T in association with atopic dermatitis (145, 146) have been 

published. GM-CSF 545G/A (rs2069616), 3606T/C (rs25881), and 3928C/T (rs25882) 

have also been found to be associated with atopic diseases (147). Whether any of these 

genetic polymorphisms are related to periodontitis still need further investigation. 

 

Limitations and future directions 

Other than genetic polymorphism studies, large-scale genomic screening and large scale 

population investigations in periodontal research, such as multi-community screening, are 

rare. The paucity of research may be due to the complex natural course of periodontitis, 

lack of a robust classification system, difficulties in searching matched controls, or other 

factors (30). Most of the studies about FcγR polymorphisms and periodontitis have 

focused on single or several variations of the candidate genes in a certain population (e.g. 

studies listed in Table 3), and have provided vast quantities of diverse data that are 

difficult to interpret and lead to general conclusions. Even for the most extensively 

studied variations in the IL-1 cluster, meta-analysis can only give a positive conclusion in 

Caucasians (10, 98). Moreover, the number of studies providing thorough data (e.g. allele 

type, genotype, haplotype) together with Hardy-Weinberg equilibrium and minor allele 

frequencies, is small.  
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Although the FcγR genetic polymorphism studies related to periodontal diseases 

in the past decade have given us some evidence that FcγR genetic variants can modify 

host immune responses and lead to different phenotypes of periodontal disease, it is too 

early to draw any conclusions. With the completion of the Human Genome Project and 

the availability of cutting-edge technology, the application of genetic information and 

technology to the diagnosis and treatment of periodontitis is conceptually compelling. 

Nonetheless, it is important to maintain a realistic perspective of the clinical utility of 

genetic information (148, 149). In the future, researchers should also be cautious of 

numerous weak associations that may turn out to be spurious at repeated testing (150). It 

is not enough that only the racial and ethnic backgrounds of the subjects are taken into 

account; studies must have sufficient numbers of cases and controls, with the controls 

carefully chosen to make the association between polymorphisms and periodontitis much 

clearer. The choice of candidate genes must also be justifiable and the data clearly 

presented to show the range of effect and risk attributable to the gene variation. In many 

currently published genetic association studies, the reported associated SNPs show no 

obvious function, thus providing few clues on pathogenesis. Recent developments in 

high-throughput target resequencing can overcome this limitation by searching for 

variants in targeted gene regions such as exons or other regions with known function 

(29). Combination strategies can also be utilized, such as combination of genome-wide 

scanning and candidate gene strategy, to improve the both efficiency and efficacy of 

studies, especially periodontal genetic studies, for which it is usually difficult to screen a 

large population. It should be kept in mind that our knowledge of FcγR genetics is 

expanding, new technology for detecting different kind of variation is continually 
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developed. The most important task for us before we dig in is to understand these new 

knowledge and technology thoroughly and find a way to incorporate these knowledge 

and technology with the unique nature of periodontitis. Only that can help us to establish 

a reasonable and practical strategy for association study in periodontitis. 
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Table 1. General characteristics of human FcγRs 

Receptor class kDa Chromosome Genes 

Signaling 

motif
a
 Affinity for IgG (Ka) 

FcγRI (CD64) 72 1q21.1 FcγRIa 

FcγRIb 

FcγRIc 

- 

- 

- 

High (10
8
-10

9
/M) 

      

FcγRII (CD32) 40 1q23-24 FcγRIIa 

FcγRIIb 

FcγRIIc 

ITAM 

ITIM 

ITAM 

Low (<10
7
/M) 

      

FcγRIII (CD16) 50-80 1q23-24 FcγRIIIa 

FcγRIIIb 

- 

- 

Medium (±3×10
7
/M) 

Low (<10
7
/M) 

a
ITAM: immunoreceptor tyrosine-based activation motif; ITIM: immunoreceptor tyrosine-

based inhibitory motif. 

Page 35 of 43

Journal of Periodontal Research

Journal of Periodontal Research - manuscript proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



M
anuscript proof

 

Table 2. Factors that regulate human FcγRs and their actions 

FcγRs regulatory function Factors Reference 

Increase expression of FcγRI via 

upregulation of mRNA expression 

GM-CSF 

IL-3 

TNF-α 

Okayama et al. 2000 (55) 

Pricop et al. 2001 (57) 

Radeke et al. 2002 (53) 

   

Upregulate activating FcγRs and 

reduce FcγRIIb expression 

C5a 

IFN-γ 

IL-1β 

TNF-α 

Guyre et al. 1983 (52) 

Okayama et al. 2000 (55) 

Pricop et al. 2001 (57) 

Radeke et al. 2002 (53) 

Shushakova et al. 2002 (54) 

   

Upregulate FcγRIIb expression on 

myeloid cells and downregulate 

FcγRIIb expression on activated B 

cells 

IL-4 Rudge et al. 2002 (59) 

   

Upregulate inhibitory FcγRIIb and 

reduced expression of activating 

FcγRs on innate effector cells 

IL-5 

IL-10 

IL-13 

TGF-β 

 

Okayama et al. 2000 (55) 

Pricop et al. 2001 (57) 

Radeke et al. 2002 (53) 

Tridandapani et al. 2003 (58) 

Nimmerjahn et al. 2005 (56) 
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Table 3. Summary of findings from studies of association between human FcγR genes and 

periodontitis
a
 

Periodontitis Population FcγRIIa FcγRIIb FcγRIIIa FcγRIIIb References 

Caucasian + ND + - Loos et al. 2003 (31) 

 - ND - + Nibali et al. 2006 (84) 

African-

American 

- ND - + Fu et al. 2002 (80) 

Japanese - ND - + Kobayashi et al. 2000 (81) 

 ND + ND ND Yasuda et al. 2003 (89) 

Chinese + ND ND - Chung et al. 2003 (77) 

Aggressive 

(early onset) 

Brazilian + ND ND + de Souza et al. 2006 (79) 

Caucasian + 

+ 

ND 

ND 

- 

ND 

- 

ND 

Loos et al. 2003 (31) 

Yamamoto et al. 2004 (88) 

 - ND ND - Wolf et al. 2006 (87) 

Japanese - 

ND 

ND 

ND 

- 

+ 

- 

ND 

Kobayashi et al. 1997 (82) 

Sugita et al. 1999 (86) 

 ND + ND ND Yasuda et al. 2003 (89) 

 ND + ND ND Honma et al. 2008 (91) 

Chronic 

(adult) 

Chinese - ND ND - Chung et al. 2003 (77) 

Caucasian + 

+ 

+ 

ND 

ND 

ND 

+ 

- 

ND 

- 

- 

ND 

Meisel et al. 2001 (83) 

Loos et al. 2003 (31) 

Yamamoto et al. 2004 (88) 

Severe 

chronic 

(adult) 

Japanese - ND + - Kobayashi et al. 2000 (81) 

 Chinese - - + - Chai et al. 2010 (76) 
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Caucasian - ND - - Colombo et al. 1998 (78) Recurrent 

chronic 

(adult) 

Japanese - 

ND 

ND 

ND 

+ 

ND 

+ 

+ 

Kobayashi et al. 2000 (81) 

Sugita et al. 2001 (85) 

+: positive association reported; -: negative association reported; ND: not determined. 

a
No data available regarding FcγRIa, FcγRIb, FcγRIc, FcγRIIb, FcγRIIc and FcγRIV 

polymorphism and periodontitis. 
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Legends 

Fig. 1. Impact of mutation or variations on disease phenotype for Mendelian or complex 

diseases. A. In Mendelian diseases, mutation in a single dominant gene is necessary and 

sufficient to produce the clinical phenotype and cause disease. B. In complex disorders with 

multiple causes, variations or mutations in a number of genes encoding different proteins 

result in a genetic predisposition to a clinical phenotype. Pedigrees reveal no Mendelian 

inheritance pattern, and gene mutations are often neither sufficient nor necessary to explain 

the disease phenotype. Environment and behavioral factors are major contributors to the 

pathogenesis of complex diseases (151). Box(es): gene(s) involved; arrow: genetic mutation 

or variations. 

 

Fig. 2. The power of a genome wide association study (GWAS) is determined by study 

sample size, minor allele frequency (MAF) as well as the odds ratio of the risk variant. This 

figure demonstrated when a disease with 0.5-1% prevalence (solid lines, e.g. aggressive 

periodontitis) and the risk variant odds ratio is 1.2, the relationship between the expected 

power and sample size under different MAFs. It showed when MAF is 0.2 (light solid line), 

sample size over 11,000 cases and 11,000 controls could reach an accepted power of 0.8. 

However when MAF is dropped to 0.1 (dark solid line), the required sample size is increased 

to 16,000 both case and control subjects (28). When a disease is with 15-20% prevalence 

(dash lines, e.g. chronic periodontitis) and risk variant odds ratio is 1.2, MAF of 0.1-0.2 

(between light and dark dash lines) means sample size of 1,500 – 3,000 cases and controls 

could reach an acceptable power of 0.8. Therefore most of the GWAS today, particularly 

those for periodontitis, may not have sufficient power to detect genetic association of 

complex diseases with small effects.  
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Figure 3 Fc-gamma receptors and their regulatory factors. FcγI, FcγIIa, IIIa, and IIIb are 

immune activation receptors. FcγIIa activates an immune response through a immunoreceptor 

tyrosine-based activation motif (ITAM). FcγIIb is the inhibitory receptor and mediates an 

immune response via an immunoreceptor tyrosine-based inhibition motif (ITIM). The most 

studied polymorphisms are labeled on corresponding receptors. The left hexagon indicates 

factors that activate those activating receptors but inhibit FcγIIb. In the right hexagon are 

factors inhibit activating receptors but enhance inhibition of FcγIIb. The solid line means 

upregulation while dash-dotted line means downregulation. Influence of other minor 

regulatory factors like GM-CSF, IL-3, IL-4 and IL-13 were not included. 
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