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Abstract This paper proposes a novel model for determining the optimal number of transit 

operators and the allocation of new lines in an oligopolistic transit market. The proposed 

model consists of three interrelated sub-models that are associated with three types of players; 

namely, transit authority, transit operators, and transit passengers. In practice, the operating 

cost per unit of transit line of each operator is decreasing in the number of lines that it 

operates. These effects which are referred to as the scale economies of transit operations are 

explicitly incorporated in the proposed model. On the basis of a logit-type transit passenger 

travel choice sub-model with elastic demand, the fares and frequencies of transit services are 

determined by an oligopolistic competitive equilibrium model (i.e. transit operator sub-model). 

The transit authority sub-model for optimization of the number of operators and the allocation 

of new lines is expressed as a 0-1 integer programming problem. It can be solved by an 

implicit enumeration heuristic solution algorithm. Numerical results show that both the scale 

economies and the market demand level have significant impacts on the optimal number of 

operators and the allocation schemes of new lines. Ignoring the effects of scale economies on 

transit operations may lead transit authorities to make biased decisions. 
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1 Introduction 
 

In recent years, there has been an accelerating trend towards the deregulation of transit 

systems, particularly in developing countries. This is attributed to the brief that the 

privatization and deregulation of urban transit services can offer the possibility of significant 

improvements in efficiency and reliability of the transit system (Lo and Yip, 2001). However, 

empirical studies by Estache and Gomez-Lobo (2005) and Ardila (2008) recently showed that 

transit service competition may to some extent lead to market failure, including oversupply of 

transit vehicles, inflated fares and low service quality. They also showed that transit systems 

that were initially privately owned were eventually regulated, when cities became 

increasingly reliant on transit modes as a mass people mover. The phenomenon was called the 

cycle of private and public involvement (Estache and Gomez-Lobo, 2005). 

 

Similar phenomenon has also recently occurred in Hong Kong. Specifically, the transit 

industry in Hong Kong has experienced several significant mergers in the past several years. 

Two (i.e., the New World First Bus Company and the Citybus Company) of five bus 

companies (wholly-owned by the private sector) were merged in 2003. More recently, the two 

railway corporations (i.e., the MTR and the KCR) in Hong Kong have also been merged. 

These mergers raise some intriguing and important questions. If this tendency persists, then 

will the number of operators in the transit market continue to reduce and finally arrive at a 

monopoly? How many operators are optimal in a transit market? How can the transit authority 

(e.g., the government) create a “win-win-win” regulatory or incentive environment in which 

private investors can procure more profits while providing high-quality services, passengers’ 

travel needs can be satisfied with affordable services, and society as a whole is better off than 

it was before? The solutions to these problems would have a long-term implication on 

sustainable transportation in which a sustainable public transportation system can be 

maintained and improved to support the urban development and growth, especially for cities 

that are characterized by low car ownership and compact urban structure, such as Hong Kong 

(Tong and Wong, 1997; Loo and Chow, 2008). 

 

To address these interesting issues, advanced models need to be developed to help us 

understand and assess the effects of competition in transit market with various numbers of 

transit operators. In general, the number of operators in a transit system will influence the 

strategies of competing operators in relation to service frequencies and fares, the travel choice 
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behavior of passengers, and the performance of the system itself. For example, the monopoly 

regime (i.e. a single operator in a market) and oligopoly regime (i.e. multiple operators in a 

market) can lead to a significant difference in the efficiency and reliability of the transit 

system. It is therefore very important that transit authorities optimize the number of operators, 

particularly in large Asian cities, such as Hong Kong. 

 

Significant progress has been made in transit system modeling over the past decades, 

particularly in modeling competition between transit operators (Harker, 1988; Fernandez and 

Marcotte, 1992; Zubieta, 1998; Lo et al., 2000, 2004; Zhou et al., 2005; Wang and Yang, 

2005). However, most of these existing studies have assumed that the number of operators in 

the transit market was given and fixed exogenously. Little attention has been paid to exploring 

the impacts of the number of operators on a transit system. Some exceptions are Williams and 

Abdulaal (1993) and Williams and Martin (1993), who studied the market behavior of an 

arbitrary number of operators under oligopolistic competition. However, their studies did not 

provide a methodology for the determination of the optimal number of operators in a transit 

market. Moreover, their models implicitly assumed that each of the operators in the market 

only operated a single transit line (i.e., the one-to-one assumption). In reality, the number of 

transit companies (or operators) in a city is far less than the number of transit lines. It implies 

that each transit company operates multiple transit lines. Thus, these models may not be able 

to address the problems with unequal numbers of transit lines and operators, such as the 

allocation problem of new transit lines, which is a timely problem in large Asian cities.  

 

For example, the transit markets in Hong Kong are partially regulated, and the bus services 

can be divided into three categories: franchised bus, public light bus or minibus (including red 

minibuses and green minibuses) and residential bus. In Hong Kong, some new transit lines 

(e.g., bus and/or railway lines) are proposed regularly and put into operation to accommodate 

the growing travel demands particularly in the newly developed outlying areas. The operating 

rights of these new lines are usually conferred by the Transport Department on one or several 

transit companies through competitive bidding exercise. Specifically, a transit company 

wishing to invest capital in an additional transit line has to bid for it in advance from the 

Transport Department, and if it is successful, the selected transit company is then granted a 

franchise for operating that line. This franchise for regular bus or green minibus routes is 

usually given to the existing transit companies or transit operators. However, for the third 

category of residential bus services, new transit companies would have the right to apply for 
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granting the license to provide the commuting services. Naturally, this raises another 

important issue, i.e., how should the authority allocate these new lines to bidders to create a 

“win-win-win” situation? 

 

In addition, the one-to-one assumption adopted in the models of Williams and Abdulaal (1993) 

and Williams and Martin (1993) also gives rise to another major limitation, i.e., the effects of 

the scale economies of transit operations cannot be considered properly. “Scale economies” 

means that the operating cost per unit of transit line of each operator decreases with the 

number of lines that it operates. A number of empirical studies have shown that these 

economies are commonplace in transit operations (Berechman and Giuliano, 1985; Savage, 

1997). Thus, it is necessary to incorporate the effects of scale economies into the allocation 

problem of new transit lines particularly in an oligopolistic transit market with competition. 

 

In view of the above, this paper proposes (1) to develop a novel model for simultaneously 

determining the optimal number of operators and the allocation of new lines in an 

oligopolistic transit market, (2) to incorporate the effects of scale economies on the transit 

system in the proposed model, (3) to develop a heuristic solution algorithm to solve the 

simultaneous optimization problem, and (4) to explore the effects of the allocation of 

additional lines, the scale economies and the transit market demand level. 

 

In order to facilitate the presentation of the essential ideas, this paper focuses on a transit 

market that consists of commuting trips between a residential area and an urban central area. 

In the proposed model, three types of players are involved. They are transit authority, transit 

operators, and transit passengers. The interactions between these three players result in a 

multi-level hierarchical system, as shown in Figure 1. In this multi-level system, the transit 

authority aims to determine simultaneously the optimal number of operators and to allocate 

the new transit lines to bidders in a way that maximizes the total social welfare of the transit 

system. However, the authority is not willing to subsidize the transit operators, but rather 

wants them to be able to survive in a competitive market. This is often the case in many large 

Asian cities with high density populated development, such as Hong Kong. The transit 

operators in the market seek to maximize their own profits by adjusting their service fares and 

frequencies, while accounting for the transit passengers’ travel choice decisions that minimize 

their own perceived disutility of travel. 
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The remainder of this paper is organized as follows. In Section 2, some basic assumptions and 

notation are described. Section 3 presents the model formulation and solution algorithm. 

Section 4 provides a numerical example to illustrate the application of the proposed model. 

Finally, conclusions are given in Section 5 together with recommendations for further studies. 

 

2 Basic considerations 

 

2.1 Assumptions 

 

To facilitate the presentation of the essential ideas without loss of generality, the following 

basic assumptions are made in this paper. 

 

A1 In the transit market, there are L lines, including new and existing lines, and K alternative 

companies or operators that are bidding for the operating rights of new lines. Suppose that all 

the bidders act independently to determine their fares and frequencies. Collusive behavior 

between the bidders is not considered in this paper, but will be explored in a future study. 

 

A2 Each transit operator in the market can operate more than one transit line, but each transit 

line can be allocated to one operator only. This relaxes the strict assumption in Williams and 

Abdulaal (1993) and Williams and Martin (1993) that each operator or company can operate 

one transit line only. 

 

A3 All transit passengers are assumed to be homogenous concerning their values of time 

(VOT) and disutility perception. However, this can easily be relaxed to incorporate passenger 

heterogeneity by introducing a distribution of passenger’s VOT, as done in Yang et al. (2001) 

and Huang and Li (2007). Transit passengers make their travel choice decisions in a stochastic 

manner based on the tradeoff between the service qualities or travel disutilities of different 

transit services. The disutility is measured by the weighted sum of the walking time for access 

to and egress from transit stations, the in-vehicle travel time, the waiting time at transit 

stations, the in-vehicle crowding discomfort, and the fare (De Cea and Fernandez, 1993; Wu 

et al., 1994; Lo et al., 2004; Uchida et al., 2007; Li et al., 2008). 

 

A4 The effects of the scale economies of transit operations are explicitly incorporated into the 

definition of transit operating cost and thus the profit function of transit operators. This 
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relaxes the assumption in many previous related studies, such as that of Uchida et al. (2007) 

and Yang and Woo (2000). They assumed that the transit operating cost was a linear function 

of the service frequency or fleet size. 

 

A5 An elastic demand function is used to capture the responses of passengers to the level of 

transit services and fares. The responses include switching to alternative modes (e.g. auto 

mode) and not making the journey at all (Zhou et al., 2005; Li et al., 2007). 

 

2.2 Notation 

 

Sets 

L   set of all transit lines in the transit market 

| |kL  total number of lines operated by operator k 

L  set of new or additional transit lines 

K  set of transit operators in the transit market 

Variables associated with transit passengers 

D  total resultant passenger demand in the market (passengers/h) 

lD  passenger demand selecting line l (passengers/h) 

D vector of resultant passenger demand;  ,lD l L  D  

l  proportion of passengers selecting line l 

lu  average travel disutility or generalized travel cost on line l (h) 

lw  average waiting time of passengers for using line l (h) 

lg   crowding discomfort cost of passengers in transit vehicles on line l (h) 

Variables associated with transit operators 

lN  transit fleet size or number of transit vehicles on line l (vehicles) 

lf  service frequency of line l (veh/h) 

lp  fare of line l ($) 

k  profit of operator k ($/h) 

( )k    change of operator k’s profit due to an additional line 

y vector of fares and frequencies; ( , )y p f  

p vector of fare;  ,lp l L  p  
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f vector of service frequency;  ,lf l L  f  

Variables associated with transit authority 

lkx  0-1 variable; equal to 1 if line l is allocated to operator k and 0 otherwise 

x vector of the 0-1 variable lkx ;  , ,lkx l L k K   x  

Constants 

lC   capacity of transit vehicle (including seats and standees) on line l (passengers/veh) 

D  potential (latent) passenger demand in the transit market (passengers/h) 

ld  total walking distance for access to and egress from transit stations on line l (km) 

0 1,   parameters in the in-vehicle crowding discomfort cost function 

Ll  length of line l (km) 

lt  average in-vehicle travel time on line l (h) 

lT  cycle journey time of a transit vehicle on line l (h) 

l  average walking time for access to and egress from transit stations on line l (h) 

Vl  average operating speed of transit vehicles on line l (km/h) 

  average walking speed of passengers (km/h) 

  expected disutility of using the transit services (h) 

0
k  fixed cost per unit of transit line for operator k ($/h) 

l  (variable) operating cost per vehicle-hour on line l ($/veh-h) 

0  value of in-vehicle travel time ($/h) 

1  value of walking time ($/h) 

2  value of waiting time ($/h) 

3  value of in-vehicle crowding discomfort ($/h) 

  demand dispersion parameter in the elastic demand function (1/h) 

   parameter for representing the perception variation of passengers on travel disutility 

  parameter for capturing the effects of the scale economies of transit operations 

 

3 Model formulation 

 

Consider a transit market that consists of the commuting trips between an origin-destination 
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(OD) pair that connects H (a residential area) and W (a workplace) in an urban central area. 

As previously stated, there are three types of players in the transit market, i.e., the transit 

passengers, the transit operators, and the transit authority. They constitute a multi-level 

hierarchical decision system. The decision variables associated with them are, respectively, 

transit service choice, service fares and frequencies, and number of operators and allocation of 

new transit lines. These can be formulated as three interrelated sub-models, i.e., the transit 

passenger travel choice sub-model, the transit operator optimal fare and frequency sub-model, 

and the transit authority optimal number of operators and allocation of lines sub-model. In the 

following, these three sub-models are presented in order. 

 

3.1 Transit passenger travel choice sub-model 

 

According to A3, transit passengers choose transit services based on their own perceptions of 

the service quality or the disutility of the transit services. A multinomial logit formulation has 

often been adopted in the previous studies to model transit passenger travel choice behavior 

(Lam et al. 1999, 2002; Lo et al., 2000; Uchida et al., 2007). With the use of a logit-type 

formulation, the passenger demand, lD , selecting line l can be determined by 

exp( )
,   

exp( )
l

l l
ll

u
D D D l L

u


    


,  (1) 

where L is the set of all transit lines in the market, including new and existing lines, D  is the 

total resultant passenger demand in the market, l  is the proportion of passengers selecting 

line l, and lu  is the average disutility or generalized travel cost on line l. The parameter   

represents the variation in passenger perceptions of travel disutility. The higher the value of 

 , the smaller the variation in passenger perceptions, and vice versa. 

 

The average travel disutility lu , measured in terms of equivalent time units, on line l is 

composed of the average walking time l  for access to and egress from transit stations, the 

average in-vehicle travel time lt , the average passenger waiting time at stations lw , the 

in-vehicle crowding discomfort cost lg , and fare lp , i.e., 

31 2

0 0 0 0

1
,   l l l l l lu t w g p l L

 
       

   
, (2) 

where the parameters 0 , 1 , 2  and 3  are, respectively, the value of in-vehicle travel 
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time, the value of walking time, the value of waiting time and the value of crowding 

discomfort of passengers, which are all measured in monetary value per unit time.  

 

The average in-vehicle travel time lt  depends on the length Ll  of line l and the average 

operating speed Vl  of transit vehicles on line l, expressed as 

L
,   

V
l

l
l

t l L   ,  (3) 

where the average vehicle operating speed Vl  is calculated on the basis of the whole journey 

time including boarding and alighting times at transit stations (Yang and Woo, 2000). 

 

The average walking time l  of passengers using line l can be determined by the total 

walking distance ld  for access to and egress from transit stations on line l divided by the 

average walking speed   of passengers, i.e., 

,   l
l

d
l L   


.  (4) 

 

The average passenger waiting time lw  on line l can be estimated by 

,   l
l

w l L
f


   , (5) 

where lf  is the service frequency of line l. The value of   is dependent on the distributions 

of transit vehicle headways and passenger arrival times. The typical value of   adopted in 

the literature is 0.5, with an assumption of a uniform random arrival distribution of passengers 

and a constant transit vehicle headway (Lam and Morrall, 1982). 

 

Similar to Wu et al. (1994), Lo et al. (2004), and Uchida et al. (2007), the in-vehicle crowding 

discomfort cost, lg , measured in terms of generalized time units, can be expressed as a 

function of passenger volume on line l and the capacity of vehicle on line l, formulated as 

1

0 ,   l
l l

l l

D
g t l L

f C


 

    
 

, (6) 

where 0  and 1  are constants, lC  is the vehicle capacity (including seats and standees) 

on line l, and l lf C  is the total capacity of line l. lt  can be calculated by Equation (3). 
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To capture the responses of passengers to the level of transit services and fares, an 

exponential form of elastic demand function, which is widely used in transport models (Zhou 

et al., 2005; Li et al., 2007), is adopted and specified as 

exp( )D D  , (7) 

where D  is the potential (latent) passenger demand in the transit market and   is the 

expected disutility of using the transit services.   is the demand dispersion parameter that 

reflects the demand sensitivity to the expected disutility of the transit services. According to 

the random utility theory,   can be measured by the following log-sum formula (Oppenheim, 

1995) 

1
ln exp( )l

l L

u


   
  . (8) 

 

It should be pointed out that for given transit fares and frequencies, according to Equations 

(1)-(8), the passenger demand lD , l L   on line l is a function of the travel disutility 

lu , l L  , which would be affected by the crowding discomfort cost lg , which is a function 

of the passenger demand lD , l L   itself in terms of Equation (6). Therefore, the passenger 

travel choice sub-model can be formulated as a fixed-point problem with regard to the 

passenger demand lD , l L  . 

 

Proposition 1 (The passenger travel choice sub-model). For a given transit fare and frequency 

pattern, the logit-based passenger travel choice sub-model is equivalent to finding a vector 

*D , such that the following fixed-point problem holds. 

* * *( ) ,     D F D 0 D  (9) 

with  ,lD l L  D ,  ( ) ,lD l L   F D  and { | , }ll
D D l L    D .  

 

Remark 1. The crowding discomfort cost function (6) and the elastic demand function (7) in 

this paper are assumed to be continuous. Consequently, the feasible set   is closed because 

the OD demand is bounded, thus there exists at least one solution to the fixed-point problem 

(9) according to the Brouwer’s fixed-point theory. Moreover, it is easily proved that the 

uniqueness of the model solution can be guaranteed if the discomfort cost function and the 

elastic demand function are strictly monotone (Patriksson, 1994). The fixed-point problem (9) 
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can be solved effectively by using the solution algorithm recently proposed by Huang and Li 

(2007), which is based on the method of successive averages (MSA) in conjunction with the 

logit-type assignment process. 

 

3.2 Transit operator optimal fare and frequency sub-model 

 

In Hong Kong, over 90% of the 11 million daily person trips are served by privately operated 

transit services (Transport Department, 2003). The transit industry in Hong Kong operates 

profitably without government subsidy. This is different from the situation in most Western 

cities in which the transit industry is often subsidized by the local government due to 

insufficient ridership. Under such a profitable operating environment in Hong Kong, the 

principal objective of the private transit operators is neither welfare gain nor the efficient 

utilization of road space, but rather profit maximization. Consequently, these privately owned 

transit operators compete against each other for maximizing their patronage and revenues 

(Zhou et al., 2005). 

 

The net profit of a transit operator is the total revenue that is generated from the passenger 

fares minus the total transit service operating costs. For formulating the net profit obtained by 

a transit operator, we let 

1   if line  is operated by operator ,

0  otherwise.lk
l k

x


 


  (10) 

The net profit, k , of operator k can then be expressed as 

     0, ( ) ,   k k
k l l lk k lk l l lk

l L l L l L

p D x x N x k K




  

               
  y y y , (11) 

where K is the set of all operators in the transit market.  ,k k ky p f  is the vector of the fare 

and frequency of operator k, and  ,k k k  y p f  is that of the other operators excluding k. 

0
k  is the fixed cost per unit of transit line for operator k. l lN  is the variable operating cost 

on line l, where l  is the operating cost per vehicle-hour on line l and lN  is the transit fleet 

size or number of transit vehicles on line l. lN  can be determined by l l lN T f , where lT  

is the cycle journey time of a transit vehicle on line l and 2L Vl l lT  . 
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Remark 2. The first term on the right-hand side of Equation (11) represents the total revenue 

of operator k. The square brackets represent the total cost of operator k, which consists of the 

fixed cost (i.e. the first term in the bracket) and the variable operating cost (i.e. the second 

term in the bracket) that is proportional to the total vehicle-hours (Yang and Woo, 2000). 

According to White (2002), the fixed cost consists of the capital costs for building the depot 

and providing other fixed assets, overhead and administration costs of the offices etc. It is 

related to the total number of lines (i.e. lkl L
x ) that are operated by an operator. The 

variable operating cost includes the fuel costs, vehicle maintenance costs, crew wages, tires, 

and insurance etc. 

 

Remark 3. According to Berechman and Giuliano (1985), the exponent   ( 0.0 1.0   ) in 

Equation (11) can be introduced to capture the effects of the scale economics of transit 

operations, as shown in Figure 2. In this figure, 0  is the fixed cost per unit of transit line. It 

can be seen in Figure 2 that when 1.0  , the total fixed cost is a linear function of the total 

number of lines that are operated by an operator (i.e. lkl L
x ), implying that the effects of 

the scale economies of transit operations are not considered. When 0.0  , the total fixed 

cost is a constant independent of the total number of lines operated. When 0.0 1.0   , the 

fixed cost that results from an additional transit line service (i.e. the marginal cost) decreases 

as the total number of lines operated increases. Hence, the parameter   ( 0.0 1.0   ) can 

indeed capture the effects of the scale economies of transit services. In particular, for a given 

number of lines, the smaller the value of  , the larger the scale economies, and vice versa. 

 

In a competitive transit market, profit-driven operators have to decide their service fares and 

frequencies carefully to compete with other operators so as to maximize their own profits. 

Clearly, the profit obtained by an operator depends significantly on the strategies adopted by 

the other competitors and the responses of passengers in the transit market. At the same time, 

the strategies adopted by one operator have a significant impact on the strategies of the 

competitors and on the travel choice behavior of passengers. In turn, the subsequent effects on 

the passenger demand share over transit lines would affect the profits of the operator itself. 

This leads to an oligopolistic competitive equilibrium or a Cournot-Nash game between 

operators. 

 



 13

Proposition 2 (The transit operator optimal fare and frequency sub-model). The equilibrium 

fares and frequencies of operator k in an oligopolistic competitive market can be obtained by 

the following maximization problem. 

  
{ }
max   , , , ,   

k

k k k k
k k K   

y
y y D y y , (12) 

where the passenger demand vector  ,k kD y y  can be determined by the passenger travel 

choice sub-model (9). 

 

To search the oligopoly solution resulting from the competition between K operators, a 

diagonalization method here is developed. The basic idea of this method is to solve the 

individual maximization problem (12) of the operators separately and sequentially, holding 

the decision variables of the other operators fixed in turn until the sequence converges. This 

method is heuristic, and thus cannot guarantee that the solution is a global optimum. The 

step-by-step procedure is given as follows. 

 

Step 0.  Initialization. Choose an initial fare and frequency pattern 

(1) (1){ , 1, 2,..., }k k K y y  for all K operators. Set iteration counter n = 1. 

Step 1.  Determination of passenger demand pattern. Determine the passenger demand 

pattern ( )( ) { }nn
lDD  by the passenger travel choice sub-model (9). 

Step 2.  Diagonalization. Solve the transit operator sub-model (12) independently for all K 

operators, one then obtains the fare and frequency pattern 

( 1) ( 1){ , 1, 2,..., }n k n k K  y y . 

Step 3.  Convergence check. If ( 1) ( )|| || ,k n k n   y y 1,2,...,k K , where   is a 

pre-specified tolerance, then stop. Otherwise, set n = n +1, and go to Step 1. 

 

3.3 Transit authority sub-model 

 

As previously stated, the transit authority aims to determine the optimal number of operators 

and to allocate new transit lines to bidders in a way that maximizes the total social welfare of 

the transit system. At the same time, it is not willing to subsidize the transit operators, but 

rather expects them to be able to survive in the competitive market. Transit operators, as profit 

maximizing entities, are not obliged to serve the lines the transit authority allows them to bid. 
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That is, a transit operator may not serve that line if its (marginal) profit decreases by serving 

this extra line. Consequently, the objective of the authority is, in fact, to determine an optimal 

line-operator matrix (referred to as the decision matrix in this paper), as shown in Equation 

(13), that maximizes the total social welfare, subject to the constraint that the profit of each 

operator is non-decreasing with the introduction of an additional line. 

 

1 2

11 12 1 11

21 22 2 22

1 2

1 2

                                 k K
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  (13) 

 

The decision matrix is an L K  matrix, where L  is the set of new transit lines to be 

allocated. Each row of the matrix is associated with a new line ( lL ), and each column is 

associated with a bidder ( kO ). Each element lkx  in the matrix is a binary variable, i.e., 

  lkx = 0 or 1, ,l L k K   . (14) 

According to A2, each line can be allocated to one bidder only, thus implying that the sum of 

all the elements in each row of the decision matrix is equal to one, i.e.,  

  1,   lk
k

x l L   .  (15) 

In addition, an operator expects to bid an extra line if and only if the marginal profit due to the 

additional line is nonnegative, i.e., 

    | 1|,| | 0,   k k
k L L k K    y ,  (16) 

where ( )k   is the change of operator k’s profit caused by an additional line, and | |kL  is 

the total number of lines that are being operated by operator k. 

 

The total social welfare of the transit system is the sum of the consumer surplus and the 

producer surplus. Following Williams and Abdulaal (1993) and Evans (1987), the consumer 

surplus can be represented by ( D  ), measured in time units. It expresses the perceived 

benefits experienced by the potential passenger demand. The producer surplus is the total 
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profits of all transit operators in the network, i.e., kk
 , measured in monetary units. 

Consequently, we obtain the following transit authority sub-model. 

 

Proposition 3 (The transit authority sub-model). The optimal number of operators and the 

allocation of new transit lines can be obtained by solving the following maximization 

problem. 

         0

{ }
max   Z , ( )

lk
k

x k K

D




  

 D u y x Φ y x y x ,    (17) 

subject to     (14)-(16), (18) 

where x is the vector that consists of the elements in the decision matrix  lkx . Vectors D 

and Φ , which are the functions in x through y, can be determined by the passenger 

sub-model (9) and the operator sub-model (12), respectively. 0  (see Equation (2)) is the 

passenger’s value of time that is used to convert time into monetary cost. 

 

The transit authority sub-model (17)-(18) is a 0-1 integer programming problem with the 

binary variable lkx  as the decision variable. Note that only one element in each row of the 

decision matrix  lkx  is 1, and all other elements in the same row are zero (see Equation 

(15)). This characteristic of the decision matrix significantly reduces the size of the feasible 

solution space. In view of this, an implicit enumeration solution algorithm can be developed 

to solve the transit authority problem (17)-(18). The basic idea behind this algorithm is to 

execute repeatedly a step-by-step procedure for maximizing the objective function (17), by 

examining the local conditions but considering one input at a time. At each step, a decision is 

made about whether a particular input is an optimal solution. The step-by-step procedure of 

the solution algorithm is given as follows. 

 

Step 0.  Initialization. Choose an initial feasible solution, for example, allocate all new lines 

to a single operator (say, operator k). Set Z    (i.e., the lower bound of the 

objective function (17)). 

Step 1.  First loop operation. Set iteration counter j = 1. 

Step 2.  Second loop operation. Set the level (or new line to be allocated) counter l = 1. 

Step 3.  Third loop operation. At level l, check all K allocations sequentially in each of 

which line l is allocated to one operator. Set the operator counter k = 1. 
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Step 3.1. If k K , then go to Step 4. 

Step 3.2. Use the operator sub-model (12) and the passenger sub-model (9) to determine the 

fare and frequency pattern ( ) ( ) ( ){ , }k k ky p f , the corresponding passenger demand 

pattern ( )( ) { }kk
lDD , and the travel disutility ( )( ) { }kk

luu . Then, calculate the 

value ( )Z k  of the objective function (17). 

Step 3.3. Termination check for the third loop operation. If ( )Z Zk   and ( ) 0,k    

k K  , then put * ( )ky y , * ( )kD D , * ( )Z Z k , k = k +1, and go to Step 3.1. 

Otherwise, set k = k +1, and go to Step 3.1. 

Step 4.  Termination check for the second loop operation. If l L , then go to Step 5. 

Otherwise, set l = l +1, and go to Step 3. 

Step 5.  Termination check for the first loop operation. Repeat Steps 2-4. If no better 

solution can be found for a complete search across the L  new lines, then terminate 

the algorithm and output the optimal solution * * *{ , , }x y D  and the corresponding 

objective function value *Z . Otherwise, set j = j +1, and go to Step 2. 

 

It should be pointed out that the proposed implicit enumeration algorithm determines a 

solution by a sequence of decisions, each of which searchs for the best solution at that stage. 

That is, each decision is locally optimal. Therefore, the proposed solution algorithm cannot 

guarantee the solution is a global optimum, but offers a heuristic method of finding an 

approximate but acceptable solution to the line allocation problem. 

 

3.4 Summary of the model and solution algorithms 

 

In the previous sections, we have formulated three interrelated sub-models that are associated 

with three types of players in the transit market, respectively. The solution algorithms for 

these three sub-models are also discussed and presented. For the convenience of readers, the 

interactions among the three sub-models together with the solution algorithms are further 

summarized in Table 1. It can be seen in Table 1 that the input of a sub-model is the outputs 

of the other two sub-models, and vice versa. The solution algorithm consists of three stages, 

each of which is corresponding to solving one of the three sub-models. The solution algorithm 
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proposed in our paper is a heuristic algorithm, thus a global optimum solution is not always 

guaranteed. 

 

4 Numerical studies 

 

To facilitate the presentation of the essential ideas and illustrate the contributions of this 

paper, we apply the proposed model and solution algorithm to a simple transit network. We 

explore the effects of the allocation of additional lines on the equilibrium fares and 

frequencies of the operators and on the transit system performance. The effects of the scale 

economies of transit operations and the market demand levels are also explored.  

 

4.1 Problem setting 

 

The example transit network is shown in Figure 3. There are four alternative transit lines that 

connect residential area H with workplace W. The dashed lines represent the walk links for 

access to or egress from transit stations. Lines L1 and L2 are two existing lines, and Lines L3 

and L4 are two newly constructed lines. The numbers shown beside the lines in Figure 3 are 

the lengths of the corresponding lines. Suppose that the two existing lines L1 and L2 are 

being operated by Operator A. Two operators from outside of the market (Operators B and C) 

and Operator A inside the market (a total of three profit-driven operators) are bidding for the 

operating rights of the new lines L3 and L4.  

 

According to the discussion in the previous sections, the simultaneous optimization problem 

for the number of operators and the allocation of new lines is equivalent to the determination 

of the following decision matrix. 

3 3 33

4 4 44

        A B C

A B C

A B C

O O O

x x xL

x x xL

 
 
 

,  (19) 

where each element in the matrix is 0 or 1, and the sum of all the elements in each row is 1. 

 

Different bidders or operators can be characterized to some extent by their sizes or market 

shares (in terms of number of lines operated). Without loss of generality, it is assumed that 

Operator A is the largest company, followed by Operator B and then Operator C. In this 

example, the numbers of lines that are being operated by the three operators (excluding the 
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two new lines L3 and L4) are assumed to be 300, 150, and 15, respectively. Consequently, for 

a given value of   ( 0.0 1.0   ), the scale economies of Operators A, B, and C decrease in 

order of their sizes, that is, the scale economy of Operator A is largest, that of Operator C is 

smallest, and that of Operator B somewhere in between. 

 

Suppose that the average walking speed of passengers and the length for each of the walk 

links are 5 km/h and 0.1 km, respectively. The average operating speed of the vehicles and the 

vehicle capacity of each operator are 18 km/h and 120 passengers/veh, respectively. The fixed 

cost, 0 , per unit of transit line for each operator is $2,000/h. The variable operating cost,  , 

per vehicle-hour is $50/veh-hour. The coefficients of the disutility function in Equation (2) 

are: 0 5.0  , 1 10.0  , 2 10.0  , and 3 7.5   ($/h). The other model parameters are: 

3000D  , 0.5  , 1.0  , 0.5  , 0 0.02   and 1 2.0  . In the following analysis, 

unless specifically stated otherwise, these input data and the model parameter values are 

considered as the reference case. 

 

4.2 Analyses of results 

 

The proposed solution algorithm was coded in programming language C and run on a 

personal computer with an Intel Pentium 1.4-GHz CPU and 256 MB of random-access 

memory (RAM). The iterative process of the solution algorithm is as follows: for a given 

allocation scheme for the new line L3 (e.g. L3 is allocated to Operator A), the proposed 

algorithm sequentially checks the alternative allocation schemes for the new line L4, 

considering one input at a time (i.e. L4 is allocated to one alternative operator at a time). Then, 

the allocation scheme for L3 is updated (e.g. L3 is allocated to the next operator), and the 

alternative schemes for L4 are again sequentially checked one input at a time. The process is 

repeated until the value of objective function (17) cannot be further increased. The iterative 

process for the reference case takes about 52 seconds of CPU time. 

 

Tables 2 and 3 show the impacts of the introduction of the new transit lines L3 and L4 on the 

transit system when D  and   are fixed as 3000 pass/h and 0.5, respectively. Note that 

before the introduction of lines L3 and L4, the transit market is a monopolistic one in which 

there is only one operator (i.e. Operator A), which operates the two existing lines: L1 and L2. 

After the introduction of lines L3 and L4, Operators B and C join the market for bidding the 
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additional lines, thus leading to the oligopolistic competition between operators. As a result of 

the competition, the additional allocation leads to a sharp decrease in the fares of the existing 

transit services, as shown in Table 2. Specifically, the fares of lines L1 and L2 decrease from 

$9.9 to $6.3 and from $10.0 to $6.4, respectively, thus causing a slight decrease in their 

corresponding service frequencies. 

 

Table 2 also shows that the new line L3 (10 km length) is allocated to Operator B (a 

medium-scale company), and the new line L4 (15 km length) is allocated to Operator C (a 

small-scale company). That is, short-haul lines are allocated to larger companies, whereas 

long-haul lines are allocated to smaller companies. This means that the optimal allocation 

scheme of the additional lines depends on the company sizes of bidders. An investigation of 

this impact would make an interesting and important research topic, but is outside the scope 

of this paper and thus left to a future study. In addition, the fares (or frequencies) of lines L1 

and L2 are higher (or lower) than those of lines L3 and L4, respectively. This is because 

among the three bidders, Operator A has the largest market share (almost 50%) to an extent 

that gives it significant market power in setting fares. 

 

Table 3 shows the effects of the addition of the new lines L3 and L4 on the transit system 

performance, in terms of the total resultant market demand, total system profit and the social 

welfare of the system. It can be seen in Table 3 that after the introduction of lines L3 and L4, 

all these performances concerned dramatically increase. Specifically, the resultant market 

demand increases to 2,076 from 998 (pass/h), the total system profit increases to 10,116 from 

8,918 ($/h), and the social welfare increases to 30,857 from 18,895 ($/h). 

 

Table 4 shows the impacts of the scale economies of transit operations and the market demand 

levels. Two different values are specified for the scale economy parameter   and the 

potential market demand level D . The two values of the parameter   are 0.5 and 1.0, 

respectively. 1.0   is actually associated with a case that does not consider the effects of 

the scale economies. The two potential market demand levels are 3,000 and 6,000 pass/h, 

respectively. It can be seen in Table 4 that when 1.0   at the low potential demand level 

(i.e., 3,000 pass/h), the two new lines L3 and L4 are simultaneously allocated to Operator B, 

and Operator C, which is a small-scale company, has no incentive to join the market, thus 

leaving just two operators (i.e. Operators A and B). This is because if the effects of the scale 
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economies are ignored at such a low demand level, then the profit of Operator C decreases 

from the additional line services due to the overestimated operating cost. However, when the 

effects of the scale economies are considered (i.e., 0.5  ), then Operator C can achieve a 

positive profit increase by serving an extra line. This indicates that ignoring the effects of the 

scale economies can lead an authority to make a biased decision. 

 

Table 4 also shows that when the potential demand level is doubled (i.e., D  increases from 

3,000 to 6,000 pass/h), Operator C has the incentive of positive profit to join the market, 

regardless of whether the effects of scale economies are considered or not. This means that 

the market demand levels have an important impact on the optimal number of operators and 

the allocation of new lines as well. In particular, when 1.0  , allocating either one of the 

new lines L3 and L4 to Operator B and the other to Operator C yields the same system 

performance, both in terms of the total resultant market demand, total system profit and social 

welfare. This is because when 1.0  , the operating costs of Operator B and C are linear 

with regard to the number of lines that they operate and the service frequencies that they set. 

However, when 0.5  , the short-haul line L3 is allocated to the larger company (Operator 

B) and the long-haul line L4 is allocated to the smaller company (Operator C). Table 4 also 

shows that for a given potential demand level, the total system profit and the social welfare 

when 1.0   is smaller than when 0.5  . This is because ignoring the effects of scale 

economies leads to the overestimation of the transit operating costs and thus the 

underestimation of the benefits or profits of transit operations and the social welfare of the 

transit system. 

 

5 Conclusion and future studies 

 

This paper has proposed a new model for simultaneous optimization of the number of 

operators and the allocation of new transit lines in an oligopolistic transit market. The 

proposed model addressed the interaction among the transit authority, transit operators, and 

transit passengers and also explicitly incorporated the impacts of the scale economics of the 

transit operations. On the basis of a multi-level hierarchical system framework, the proposed 

model was formulated as a 0-1 integer programming problem which can be solved by an 

implicit enumeration algorithm. The proposed model provides a useful tool for modeling 

competitive transit services and evaluating transit policies at the strategic level. 
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A numerical example was used to illustrate the application of the proposed model and solution 

algorithm and to assess the impacts of the additional allocation of new transit lines, the scale 

economies and the market demand levels. Some new insights and important findings have 

been obtained, as follows. (1) The introduction of new transit lines significantly influences the 

equilibrium fares and frequencies of the existing transit services and the transit system 

performances, in terms of the total resultant market demand, total system profit and social 

welfare. For example, after the introduction of new lines, both the fares and frequencies of the 

existing transit services are reduced. (2) The optimal allocation scheme of new transit lines is 

related to the company sizes of bidders or operators. (3) Both the scale economies and the 

market demand level have significant impacts on the optimal number of operators and the 

allocation schemes of new lines. In particular, ignoring the effects of scale economies would 

underestimate the benefits of transit operations and the social welfare of the system. Hence, 

the transit authority may make a biased decision in allocating new transit lines to competitive 

bidders. 

 

It should be pointed out that, although the numerical results that are presented in this paper are 

sensible, case studies on large and realistic transit networks are necessary to further justify the 

findings of this paper and the performance of the proposed model. Other relevant issues that 

we are currently investigating include a consideration of collusive behavior between different 

operators (Williams and Martin, 1993; Ibeas et al., 2006), the explicit incorporation of the 

effects of transit service unreliability (Bell et al., 2002; Li et al., 2008) and passenger 

heterogeneity (Yang et al., 2001), the optimization of transit fleet size (Ceder, 2005), and the 

development of efficient solution algorithms for solving the simultaneous optimization 

problem in large-scale transit networks. 
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Table 1 Summary of three interrelated sub-models and associated solution algorithms 

Transit authority sub-model (Proposition 3) 

Output: allocation of lines (x) 

Input: service fare (P), frequency (f), and passenger demand on each line (D) 

Solution algorithm: see Section 3.3 

Transit operator optimal fare and frequency sub-model (Proposition 2) 

Output: transit service fare (P) and frequency (f) 

Input: allocation of lines (x), and passenger demand on each line (D) 

Solution algorithm: see Section 3.2 

Transit passenger travel choice sub-model (Proposition 1) 

Output: passenger demand on each line (D) 

Input: allocation of lines (x), service fare (P) and frequency (f) 

Solution algorithm: see Section 3.1 and Huang and Li (2007) 

 

 

Table 2 Optimal allocation schemes of lines, fares and frequencies before and after 

introduction of new lines 

 Operator 
Optimal allocation 

scheme of lines 
Fare  
($) 

Frequency 
(veh/h) 

Before the introduction 
of new transit lines 
(monopoly market) 

A 
L1 9.9 7.6 

L2 10.0 5.3 

After the introduction 
of new transit lines 
(oligopoly market) 

A 
L1 6.3 7.3 
L2 6.4 5.1 

B L3 5.8 7.8 
C L4 5.6 5.6 

 

 

Table 3 Resultant system performances before and after introduction of new lines 

 
Resultant market 
demand (pass/h) 

Profit  
($/h) 

Social welfare 
($/h) 

Before the introduction 
of new transit lines 
(monopoly market) 

998 8,918 18,895 

After the introduction 
of new transit lines 
(oligopoly market) 

A: 959 
B: 637 
C: 480 

Total: 2,076 

A: 5,170 
B: 3,179 
C: 1,767 

Total: 10,116 

30,857 
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Table 4 Effects of scale economies and market demand levels on transit system 

Potential 
demand 

level 
(pass/h) 

Optimal number of 
operators 

Resultant 
market demand 

(pass/h) 

Total profit 
($/h) 

Social welfare 
($/h) 

=1.0 =0.5  =1.0 =0.5 =1.0 =0.5 =1.0 =0.5 

3,000D   

2 
A: L1, L2 
B: L3, L4 
 

3 
A: L1, L2 
B: L3 
C: L4 

1,971 2,076 6,522 10,116 22,973 30,857 

6,000D 
 

3 
A: L1, L2 
B: L3 (or L4) 
C: L4 (or L3) 

3 
A: L1, L2 
B: L3 
C: L4 

4,222 4,222 15,564 22,678 57,710 64,899 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 The hierarchical structure of three types of players in the transit market 
 

           
 
 
 
 
 
 
 
 
 
 

Transit authority 
(Decision variables: number of 

operators and allocation of lines) 

Transit operators 
(Decision variables:  

fares and frequencies) 

Transit passengers 
(Decision variable:  

transit service choice) 
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Fig. 2 Change in the fixed cost of operator k with the number of lines operated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 The example transit network 
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