
Efficient Key Integrity Verification for Quantum
Cryptography Using Combinatorial Group Testing

Junbin Fanga,b, Zoe L. Jianga, S. M. Yiua, Lucas C. K. Huia and Zichen Lic

aDepartment of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong SAR, China

bSchool for Information and Optoelectronic Science and Engineering,
South China Normal University, Guangzhou University Town, 510006 China

cDepartment of Information Security,
Beijing Electronic Science and Technology Institute, 100070 China

ABSTRACT

In quantum cryptography, the key can be directly distributed to the communicating parties through the commu-
nication channel. The security is guaranteed by the quantum properties of the channel. However, the transmitted
key may contain errors due to the noise of the channel. Key integrity verification is an indispensable step in
quantum cryptography and becomes an important problem in higher speed systems. Computing only one hash
value for the key string does not provide an effective solution as it may lead to dropping all the bits once the
hash values on both sides do not agree. In this paper, we introduce a new idea of using the technique of com-
binatorial group testing, which seems to be an unrelated topic, to design a scheme to identify the error bits to
avoid dropping all the bits. Our scheme can precisely locate the error bits if the number of error bits is within
the maximum set by the scheme while the overhead is insignificant based on our experiments (additional bits:
0.1% of the key; time for computing the hash values: 16ms; verification time: 22 ms). Also, even if the number
of error bits is higher than the maximum set by the scheme, only some correct bits may be misclassified as error
bits but not the vice versa. The results show that we can still keep the majority of the correct bits (e.g. the bits
discarded due to misclassification is only 5% of the whole string even if the number of error bits is 10 times of
the maximum).

Keywords: Quantum cryptography, key integrity, combinatorial group testing, shifted transversal design

1. INTRODUCTION

Quantum cryptography (QC) provides an absolutely secure manner for distributing secret keys between two
distinct parties.1,2 It is expected to work along with one-time-pad cipher3 to offer provably unbreakable en-
cryption. Although the security of QC can be guaranteed by the quantum properties of channel connecting two
parities, physical imperfections of channel may introduce noise into the messages passing through it, and thus
the shared secret keys may contain error bits. Therefore, after a key has been transmitted via quantum channel,
it is necessary for both remote parties, such as Alice and Bob, to reconcile the key bits of each other by public
discussion to make them identical.4

The first step of key reconciliation is interactive error correction5 and the few-percent error rate of quantum
keys will be corrected down to the standard 10−9 error rate, typical in classical communication. Since error
correction is always probabilistic unless all bits are revealed during the interactive process, there is a small
possibility that Alice and Bob believe that they share identical bit sets, but in fact, they do not. Thus, before
the error correction’s end result can be used for further processes, such as privacy amplification,6 it is essential to

Further author information: (Send correspondence to Zoe L. Jiang)
Junbin Fang: E-mail: junbinfang@gmail.com
S. M. Yiu, Lucas C. K. Hui: E-mail: {smyiu,hui}@cs.hku.hk
Zoe L. Jiang: E-mail: zoeljiang@gmail.com
Zichen Li: E-mail: lizc@besti.edu.cn

Quantum Information and Computation VIII, edited by Eric J. Donkor, Andrew R. Pirich, Howard E. Brandt,
Proc. of SPIE Vol. 7702, 77020F · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.853234

Proc. of SPIE Vol. 7702 77020F-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

verify the integrity of the key, i.e., to check whether Alice and Bob have identical copies of a set of error-corrected
bits in their local memories.

In the original BB84 protocol7 – the first practical QC protocol, both Alice and Bob compute a hash value
on the error-corrected bits of a key string individually and compare it publicly. If the hash values don’t match,
all the bits of the key string will be discarded. While this method is quit straightforward, it can only provide a
yes-or-no answer about the integrity of the whole string. Even if there is only one error bit existing in key string,
all the other correct bits have to be sacrificed. This method is suitable for previous QC systems, which operate
at a very low rate of key production, about several hundred bits per second (bps). In those systems, the length
of a key string to be verified at a time may be about several hundred bits.8 Since the bit error rate has been
downed to 10−9 by error correction, the event that such a key string of finite length cannot pass the integrity
verification will occur with a very low frequency (once per 106 times) and the bits that have to be discarded for
this rare event will be just a negligible fraction of all the key bits.

However, this scenario has been changed due to the fact that the rate of key production in QC system has
been increased to a few Mbps9,10 and the chunk size of a key string to be verified should be adjusted to relatively
long length, such as 100K∼1M bits, to fit the higher speed. Otherwise, comparing a great deal of hash values
will add undue communication burden. In this case the yes-or-no answer for key integrity verification may not
be good enough because such a longer length will raise the failure chance of integrity verification and increase
the number of discarded key bits. For example, consider the experimental QC system in Ref. 11, where real-time
video is encrypted by one-time-pad cipher. In this system, the rate of key production is 1 Mbps and the chunk
size of key string is 1 Mbits. Once the chunk fails the integrity verification the whole chunk of 1 Mbits will
be dropped. As a result the transmission of encrypted video will be interrupted or delayed for one second.
With the rate of key production increasing more and more,12 this problem will become more serious and the
original method for integrity verification will be too preliminary and no longer appropriate for the high-speed
QC system.13,14

To solve this problem, this paper proposes a new approach for key integrity verification by adapting the
concept of combinatorial group testing (CGT). Our approach is about going beyond the yes-or-no answer afforded
by the original method: given a n bits key string and any constant upper bound on the number of error bits,
we try to enable differentiating between correct bits and rare error bits in a key string so as to avoid the great
majority of correct bits discarded, at the same time keep the computation and information transmitted as little
as possible.

1.1 Combinatorial group testing

CGT seems to be unrelated to quantum cryptography, but it turns out to be a useful technique in solving the key
integrity problem. CGT was first proposed by Dorfman15 during World War II when blood samples of millions
of draftees were subject to identical analyses in order to detect a few thousand cases of syphilis. In the original
scheme, tester first chooses some blood samples to form a group, extracts a few drops from each of these chosen
samples and mixes the drops together, then the tester will test the mixed sample of the group instead of testing
the samples one by one. When the outcome of the test is negative, then all samples in the group are clean
(disease-free). Otherwise, it implies that this group contains at least one defective sample. From the outcomes
of remarkably few such group tests, it is possible to infer which of a large set of n samples are clean and which
are defective.

Here is a simple example. Assuming that a set C under test contains five samples: {1,2,3,4,5} and no
more than one sample in the set is defective, a pattern of group testing can be designed as the following 3 × 5

binary matrix represents. M =

⎡
⎣

0 0 0 1 1
0 1 1 0 0
1 0 1 0 1

⎤
⎦, where each column corresponds to a sample of C, each row

corresponds to a group test and each cell (i, j) is 1 if and only if sample j is included in the test group i. In
other words, in our example, for the test group 1, we mix samples 4 and 5 together. Therefore, with this testing
pattern, if the group tests on {1,3,5} (test group 3) and {2,3} (test group 2) show that one of the samples is
defective while the test on {4,5} (test group 1) indicates all samples in this test are clean, then we can conclude
that sample at column 3 is the defective one. One can check for other possibilities that these three test groups

Proc. of SPIE Vol. 7702 77020F-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

suffice to deduce the defective sample. In this case, only 3 group tests but not 5 individual tests are needed to
find out the defective sample. In such a way, the cost of identifying which of n blood samples are tainted can be
significantly decreased by applying tests to judiciously chosen subsets of the samples - given any upper bound
on the number of tainted samples, a logarithmic (in n) number of tests suffices.

Due to the high efficiency of CGT, in the 1960s, Sobel et al.16 revived the interest in it by giving many
industrial applications in detecting chemical leakage and electrical blocking. At present, the applications of
CGT are not limited to testing but extended to a vast variety of fields17,18 including DNA library screening,
communication, coding theory.

The key issue of CGT algorithm is how to design the testing groups, i.e., how to choose subsets of a set into
groups, so as to minimize the total number of tests with guaranteed ability of locating the defective samples.
A CGT algorithm can be non-adaptive or adaptive.19 In non-adaptive CGT, all the subsets to be tested must
be decided before any subset is tested. In adaptive CGT, by contrast, the next subset to be tested has to
be chosen based on the outcomes of the previous tests. Although adaptive designs can require fewer tests, we
are interested here in non-adaptive CGT because it allows parallelization and need not multi communication
round-trips between Alice and Bob.

There are several known methods for non-adaptive CGT design, e.g. set packing designs,20 direct construc-
tions.21 In Ref. 22, Ngo et al. have made a survey on CGT algorithms and also have given a taxonomy of
non-adaptive CGT designs. In 2006, an efficient non-adaptive combinatorial group construction, the Shifted
Transversal Design (STD) was proposed by Thierry-Mieg,23 which is highly flexible and can be tailored to
function robustly. It will be used in our application.

1.2 Our Contributions

In this paper, CGT algorithm is used to solve the key integrity problem in QC system such that the integrity
of the correct bits in key string can be efficiently verified and the rare error bits can be accurately identified.
It is necessary to claim that the paper does not focus on developing novel CGT algorithm theoretically, but on
singling out the most appropriate CGT algorithm and adapting it to help solving the problem. The following
shows the details of our contributions.

• We propose a new idea by adapting CGT algorithm for verifying the integrity of key bits in QC system.
Our design is based on STD construction which is the most efficient approach for designing test groups in
a non-adaptive CGT algorithm up to now. Thus, the cost for key integrity verification can be as little as
possible.

• The implemented scheme provides a guaranteed ability of identifying all bits accurately and detecting the
error bits provided that the number of such error bits is no more than the threshold we set in the design.
Even if the number of error bits excesses the threshold, this scheme can still verify a great majority of
correct bits.

• By comparing the performance of the scheme with the original method, it shows that the scheme is more
efficient than the original method. The significant improvement is that the scheme can save the correct
bits when rare error bits exist in a key string while the original method has to sacrifice all the bits in this
situation.

1.3 Outline

The organization of the rest of the paper is as follows. In Sec. 2, we will explain our idea of adapting CGT to
solve the key integrity problem and review the CGT construction by STD, especially the parameter design. Our
experimental results are shown and explained in Sec. 3. Sec. 4 concludes the paper.

2. KEY INTEGRITY VERIFICATION USING CGT APPROACH

In this section, we first introduce the idea of adapting CGT into key integrity verification. Then by reviewing
the selected construction - STD, some specific concerns in terms of integrity verification are also considered.

Proc. of SPIE Vol. 7702 77020F-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

2.1 Adapting CGT to solve the key integrity problem

CGT originated from a very simple requirement of cost saving,15 so it is mainly applied to situations where it is
very expensive to test every single item individually of a large number of items and it is necessary to pinpoint
the defective items precisely. The basic idea of CGT is to combine the members of a set under test into groups
and run tests on the groups rather than on individual entries. When CGT is introduced into our application
to deal with the key integrity problem, an analogy should be made first. Assuming that a correct bit in a key
string is a clean item and an error (or mismatched) bit is a defective one, grouping a subset of a n-bits key string
to form a chain of bits and computing a cryptographic hash for this chain can be analogous to a mix of blood
drops from a subset of n blood samples respectively. In our approach, Alice first computes such a hash value for
a chain of Alice’s key bits and sends it to Bob. Bob also computes a hash value for the corresponding chain of
Bob’s key bits independently. When Bob receives the hash value, he compares the hash value from Alice with
the one from himself. The comparing process is analogous to applying a blood test to the mix of blood drops.
A mismatch between the hash value computed from Alice and that from Bob indicates that there is at least one
error bit in the chain of bits corresponding to that hash value. From the results of all the comparisons, Alice (or
Bob) can precisely identify each bit as correct or error according to the decoding algorithm of CGT. Once Alice
(or Bob) makes out the position of an error bit clearly, she (or he) can simply eliminate that bit or reverse it to
correct the error.

Applying CGT in key integrity problem has the following advantages. Firstly, CGT can accurately distinguish
between correct bits and error bits in a key string if the number of error bits is within the guaranteed bound of
the CGT design, while the original yes-or-no method of verification can only give a coarse answer for the whole
key string. Thus, by keeping the correct bits unchanged and reversing the indicated error bits, our CGT approach
can preserve all bits of the key string, which could be discarded totally in the original scheme of key integrity
verification with answer NO. Secondly, even if the actual number of error bits excesses the number guaranteed
by the CGT design, our approach can still identify the great majority of correct bits by the decoding algorithm
of CGT. The experimental results in Sec. 3 will show this point. Thirdly, since the number of compared hash
values equals the number of group tests, the communication burden required for transmitting the hash values
will be as little as possible by applying CGT.

2.2 CGT Construction by Shifted Transversal Design (STD)

Described more mathematically, CGT is an especially efficient algorithm aiming at the problem of identifying
relatively rare events from a large collection of items by applying basic yes-or-no tests. Thus, a CGT construction
with n items and t groups is usually represented by a t × n binary matrix where each cell (i, j) has a 1-entry
if and only if item j is contained in test i, shown in Fig. 1. Therefore, design the pattern of group testing can
be transferred to the problem of constructing a testing matrix with minimized t. In our scheme, STD, a novel
construction for CGT proposed in 2006, is used to provide higher efficiency than other existing non-adaptive
designs.

1 32 j

1

2

3

i

t

n

1

Figure 1. An illustration of a t × n matrix

The following subsections review the technical material on how to design the testing groups (that is, how to
group the key bits into chains) and choose design parameters.

Proc. of SPIE Vol. 7702 77020F-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

2.2.1 Construction algorithm of STD

STD-based construction starts with the specification of the number of total items (n) and the maximum number
of expected defective items (d). These input parameters (n, d) are used to choose the design parameters of STD
construction q and k, where q must be a prime number. More precisely, STD is a layered construction with k
layers, each of size q × n. After the design parameters are selected, the construction algorithm will produce a
t × n, 0 − 1 matrix M = STD(n; q; k), where t(= q × k) rows represent the group tests to be performed and n
columns represent the items (bits) to be tested. Since each item appears only once in each layer, each of the n
columns has k 1’s in it and each row has usually �n/q� 1’s in it. While a detailed description and proof of the
construction is available in the original STD paper,23 we present how the algorithm works here.

Given the design parameters q and k, the matrix M = STD(n; q; k) can be constructed as follows. The STD
has a layered construction consisting of k layers of q × n boolean matrices. For all j ∈ {0, · · · , k − 1}, let Mj be
a q × n boolean matrix representing layer L(j), with columns Cj,0, · · · , Cj,n−1.

Let the circular shift operator, σq, be defined as for all (x1, · · · , xq) ∈ {0, 1}q, σq [x1 x2 · · · xq]
T = [xq x1 · · ·

xq−1]T and C0,0 = [1 0 · · · 0]T . Note that σq is a cyclic function and when applied q times maps {0, 1}q onto
itself, σs

q [x1 x2 · · · xq]
T = [x1 x2 · · · xq]

T , s = q. To design a layer L(j), for all i ∈ {0, · · · , n − 1}, construct

Cj,i = σ
s(i,j)
q C0,0 where if j < q : s(i, j) =

Γ∑
c=0

jc �i/qc�, if j = q : s(i, j) =
⌊
i/qΓ

⌋
. The layers L(j) are put

together to form M by STD(n; q; k) =
⋃
j=0

L(j).

2.2.2 Choosing design parameters of STD

The detailed procedures of mapping the experimental parameters n and d to the design parameters q and k are
listed below.

(1) Choose a prime number q, with q < n. Start with the smallest prime, 2.

(2) Find the compression power, Γ(q, n) = min{γ|qγ+1 ≥ n}, therefore Γ = �log n/ log q� − 1. Set k = dΓ + 1.

(3) Check if this choice of q and k satisfies the guarantee requirements of identifying d defective elements, using
the inequality, k ≤ q + 1.

(4) If the inequality is satisfied, continue to step (5), else choose the next prime in step (1) and repeat steps (2)
and (3).

(5) For each q, find its corresponding compression power Γ that satisfies q ≥ n1/(Γ+1), and calculate the number
of tests (t) needed by each (q, k) pair from t = q × k.

(6) Choose the q and k pair to produce the desirable number of tests.

In general group testing problem, the most desirable number of tests should be the least one in numbers
produced by all possible combinations of q and k, since the aim of group testing concept is to minimize the
number of tests required to identify all the defective items. Nevertheless, as for key integrity problem, a special
consideration on the numbers should be taken since the problem has a different setting: we need to consider
minimizing the number of hash values as well as minimizing the time to compute all hash values. In the traditional
application of blood testing case, a test of a group of one hundred individuals has the same (computational) costs
as a group of ten individuals. But in hash value computation, the cost of computing a hash value of one hundred
bits will be more than that of ten bits. In Sec. 3, two sets of design parameters of STD will be demonstrated
with experimental results for comparison.

Proc. of SPIE Vol. 7702 77020F-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

2.3 Decoding algorithm of CGT

This subsection shows how to interpret the outcomes of tests. That is, after comparing the hash value from Alice
with the one from Bob for each group (chain of bits), how can we identify which bit is correct and which bit is
error depending on all results of comparisons.

With the designed testing pattern, M , all the bits under test can be tagged by CGT according to the following
decoding algorithm: all the bits present in at least one clean group (the test result shows that the hash value
matches for the group of bits) are tagged correct; any bit present in at least one defective group (in which the hash
value of the group do not match) where all other bits have been tagged correct, is tagged error. STD guarantees
that the design will be able to correctly identify up to d error bits as it uses a combinatorial procedure to ensure
that no two bits are mixed together more than a minimum number of times (here is 1), to prevent ambiguous
decoding results. Also, the number of bits mixed in each test is roughly the same, ensuring the computation
required for each chain is similar.

It is worthy to remark that if there actually exist d′ error bits and d′ > d, some bits may not be tagged at all
while all the other bits can still be tagged inerrably by the above algorithm. Since the untagged bits may include
both correct bits and error bits, once the decoding algorithm of STD detects such a situation (the existence of d′

is discovered by the failure of tagging some bits), some further operations need to be taken, such as discarding
those bits or retesting them if completeness is sought. Fortunately, with STD’s well-chosen testing groups, the
number of untagged bits should be a small percent of total unless the number of error bits is much larger than
expected maximum d. Furthermore, it has been shown24 recently that STD is also capable of detecting much
larger number of defective items than that it guarantees, with a more sophisticated decoding algorithm. In one
word, using CGT and STD, we will not mistake any error bit as correct.

3. EXPERIMENTAL RESULTS

A series of experiments have been performed to test the performance of key integrity verification using CGT
approach and compare it with that using original method in terms of (1) the number of bits can be verified in a
fixed-length chunk of key string which contains error bit, (2) the number of hash values needed for verification
and (3) the time required to compute the hash values and decode the results of tests. We developed a software
tool applying CGT and STD to generate hash information for key integrity and to verify the integrity of key bits
depending on the hash information from both parties. We measure the cost of the actual communication required
for transmitting the hash values for integrity verifying, the actual running time for computations to generate the
values and the additional time for decoding the results of comparing the values with those from other party. The
experimental computer running our software is a desktop PC configured with an Intel R© CoreTM 2 CPU (E6750
at 2.66GHz) and 1.97 GB RAM.

Security consideration. On one hand, the constructed matrix should be kept private only between two
communicating parties. Otherwise, once the eavesdropper steal the matrix, he may have chance to get into some
key information with the help of both hash values in public channel and the matrix. Simply swapping columns
or rows can make the matrix different. On the other hand, it is preferred by QC to expose as little information
as possible during the public-discussion phase. Therefore, in our experiment, only 16 bits of a hash value is
enough to be transmitted from one party to the other so as to do the comparison, which enhance the security of
the system, as well as transmission efficiency.

3.1 Experimental parameters and testing matrices for CGT

Following the procedures described in STD algorithm, we set the parameters n and d as 106 and 1 respectively.
Choosing these parameters means that each chunk of key strings to be verified contains 106 bits, and the number
of error bits contained in each chunk is expected at most 1, i.e., the maximum probability for a chunk which
contains error bit is 10−6. Note that this probability is far more overestimated than the common one, 10−9,
which is used typically in quantum communication systems.25

As described in Sec. 2.2.1, with same input experimental parameters, different sets of design parameters can
be chosen for STD to accommodate to various applications. Since the performance of CGT algorithm depends
on the matrices (how the bits grouped into chains), it is essential to study the effect of different parameters

Proc. of SPIE Vol. 7702 77020F-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

and the corresponding matrices in our application. Thus, we choose two sets of STD parameters to construct
matrices for some practical considerations. Using the chosen parameters, the software tool can handily construct
a CGT matrix with STD. The selected design parameters and the corresponding testing matrices are:

Ma = STD(106; 11; 6) : n = 106; qa = 11; ka = 6; t = 66;

Mb = STD(106; 101; 3) : n = 106; qb = 101; kb = 3; t = 303;

Once the testing matrix of CGT is prepared, it can be applied to each chunk of key string to compute hash
values. The cost of transmissions and computations can also be deduced from the matrix. The number of hash
values to be computed and transmitted per n bits will be q × k for CGT with matrix M = STD(n; q; k). Each
of such hash values will be computed from a chain of

⌈
n
q

⌉
bits and all q × k hash values will be computed from

k × n bits because every bit exists once and only once in each layer.

For Ma, the constructed matrix has only 66 rows and requires the minimum transmissions of only 66 hash
values for every 106 bits. The shortcoming of Ma is that it has 6 layers and has to generate the 66 hash values
from 6 × 106 bits (each bit needs to be computed 6 times), such that the computational time will increase.
On the contrary, Mb has fewer number of layers and requires much fewer computations (each bit needs to be
computed only twice) and so as the computational time, while it requires more transmissions of hash values (303
hash values per 106 bits). Besides, since Mb is more sparse – each row in Mb contains only 9, 901 1-entries while
each row in Ma contains 90, 910, it can enhance the accuracy of identifying the correct bits when the number of
error bits excesses the threshold set in advance, which will be shown in our experimental results. The problem
of Mb is that for a security concern exposing more information about the quantum key on public channel may
shorten the final key length. Therefore, there is a tradeoff of computation versus transmission which could be
considered in specific scenarios.

3.2 Results and discussion

In our first experiment, 100 random key strings, each of which contains 106 bits, are prepared. For every key
string, we purposely modify 1 bit in advance as an error bit. Our goal is to test whether CGT approach with
our selected parameters Ma and Mb can precisely identify the error bit. Besides, the experiment also consider
the computation time Tc, verifying/decoding time Tv and the number of bits of hash values to be transmitted
Nh. As a comparison, results for original scheme (computing one hash) are also given. Please refer to Table 1.

Table 1. Time and transmission needed for CGT scheme with Ma, Mb and for original method

Tc(ms) Tv(ms) Nh(bits)

CGT(Ma) 16.0 23.0 66 × 16

CGT(Mb) 8.3 20.0 303 × 16

Original method 2.5 × 1 × 64

As we expected, CGT approach with either Ma or Mb can precisely identify the purposely modified bit in
each key string and conclude that the other bits are correct. However, the original method can only give an
answer No about the integrity of the key string and fail to verify the other correct bits in the string. The better
thing is that in this example, we can further correct the error bit. From the efficiency of transmission point of
view, using Ma in our approach yields 66 × 16 = 1056 hash bits to be transmitted, which is only about 0.1%
of the total key bits and is better than using Mb. Concerning the efficiency of computation, using Mb requires
less computational time, 8.3ms, and less verifying time, 20ms, than using Ma. Both of the two constructions
are practical regarding the time consuming. And different applications should adopt different constructions to
achieve better performance.

The second experiment performed is to test the robustness of CGT approach when the actual number of error
bits, d′, excesses the guaranteed d (here d is set to 1). 100 groups of key strings, each of which contains 100 key

Proc. of SPIE Vol. 7702 77020F-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

strings, are prepared. Same as the first experiment, each string has 106 bits. The difference is that a number
of randomized bits d′, not limited to 1, are modified purposely as error bits. The average numbers of untagged
bits including all error bits, Nf , using Ma and Mb are shown in Table 2. For example, if there are 2 bits are
purposely modified as error bits, b1 and b2 respectively, using Ma will identify (106 − 28) correct bits while leave
28 bits untagged which includes b1 and b2. However, there are 26 correct bits which are wrongly identified and
will be sacrificed. With d′ increasing from 1 to 10, Nf increases from 0 to 52187 (about 5% of the key) using
Ma. Note that the increment of Nf with Mb is much slower than that with Ma because Mb is more sparse. Even
d′ is ten times of d, the number of sacrificed bits is about 0.09% of total bits.

Table 2. Robustness test for CGT scheme

d′ 1 2 3 4 5 6 7 8 9 10

nf (Ma) 0 28 240 1020 2762 6745 13463 23656 39056 52187

nf (Mb) 0 8 25 61 113 196 303 450 623 866

4. CONCLUSIONS

The key integrity verification becomes a more and more important problem in quantum cryptography system
with the increasing rate of key production. This paper relates the problem to a seemingly unrelated technique,
called combinatorial group testing. We develop a scheme to verify the integrity of key bits efficiently by locating
the correct bits and error bits in the key string precisely so as to avoid getting rid of all the key bits in the original
method due to extremely rare error bit in key string. The experimental results show the good performance in
both efficiency and robustness. Future work includes designing more efficient algorithm to construct matrix with
larger n to meet future requirement, as well as optimizing the parameters of CGT.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by the General Research Fund from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No. RGC GRF HKU 713009E), and
a HKU Seed Funding Programme for Basic Research Grant No. 200811159155.

REFERENCES
[1] Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., and Smolin, J., “Experimental quantum cryptogra-

phy,” Journal Of Cryptology 5(1), 3–28 (1992).
[2] Zbinden, H., Bechmann-Pasquinucci, H., Gisin, N., and Ribordy, G., “Quantum cryptography,” Applied

Physics B-lasers And Optics 67, 743–748 (1998).
[3] Vernam, G., “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J.

Am. Inst. Electr. Eng. 45, 109–115 (1926).
[4] Brassard, G. and Salvail, L., “Secret-key reconciliation by public discussion,” in [Advances in Cryptology

EUROCRYPT 93], 410–423 (1994).
[5] Elliott, C., “Quantum cryptography,” IEEE security & privacy 2(4), 57–61 (2004).
[6] Bennett, C. H., Brassard, G., Crepeau, C., and Maurer, U. M., “Generalized privacy amplification,” IEEE

Transactions on Information Theory 41(6), 1915–1923 (1995).
[7] Bennet, C. H. and Brassard, G., “Quantum cryptography: Public key distribution and coin tossing,” in

[IEEE International Conference on Computers, Systems and Signal Processing], 175–179 (1984).
[8] Nakassis, A., Bienfang, J. C., and Williams, C. J., “Expeditious reconciliation for practical quantum key

distribution,” in [Quantum Information and Computation II], 5436, 28–35, SPIE, Orlando, FL, USA (2004).
[9] Mink, A., Ma, L., Nakassis, T., Xu, H., Slattery, O., Hershman, B., and Tang, X., “A quantum network

manager that supports a one-time pad stream,” in [Quantum, Nano and Micro Technologies, 2008 Second
International Conference on], 16–21 (2008).

Proc. of SPIE Vol. 7702 77020F-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

[10] Tang, X., Ma, L., Mink, A., Nakassis, A., Xu, H., Hershman, B., Bienfang, J., Su, D., Boisvert, R. F.,
Clark, C., and Williams, C., “Quantum key distribution system operating at sifted-key rate over 4 mbit/s,”
in [Quantum Information and Computation IV], 6244, 62440P–8, SPIE, Orlando (Kissimmee), FL, USA
(2006).

[11] Mink, A., Tang, X., Ma, L., Nakassis, T., Hershman, B., Bienfang, J. C., Su, D., Boisvert, R., Clark, C. W.,
and Williams, C. J., “High speed quantum key distribution system supports one-time pad encryption of real-
time video,” in [Quantum Information and Computation IV], 6244, 62440M–7, SPIE, Orlando (Kissimmee),
FL, USA (2006).

[12] Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W., and Shields, A. J., “Gigahertz decoy quantum key
distribution with 1 mbit/s secure key rate,” Opt. Express 16(23), 18790–18979 (2008).

[13] Mink, A., Bienfang, J. C., Carpenter, R., Ma, L., Hershman, B., Restelli, A., and Tang, X., “Programmable
instrumentation and gigahertz signaling for single-photon quantum communication systems,” New Journal
of Physics 11(4), 045016 (2009).

[14] Ma, L., Nam, S., Xu, H., Baek, B., Chang, T., Slattery, O., Mink, A., and Tang, X., “1310 nm differential-
phase-shift qkd system using superconducting single-photon detectors,” New Journal of Physics 11(4),
045020 (9pp) (2009).

[15] Dorfman, R., “The detection of defective members of large populations,” Annals of Mathematical Statis-
tics 14, 436–440 (1943).

[16] Sobel, M. and Groll, P. A., “Group testing to eliminate efficiently all defectives in a. binomial sample,” The
Bell Systems Technical Journal 38, 1179–1253 (1959).

[17] Charles, J. C. and Paul, C. v. O., “Applications of combinatorial designs in computer science,” ACM
Comput. Surv. 21(2), 223–250 (1989). 66446.

[18] Fang, J., Jiang, Z. L., Yiu, S. M., and Hui, L. C. K., “Hard disk integrity check by hashing with combinatorial
group testing,” in [The 2nd International Conference on Computer Science and its Applications (CSA
2009)], 1, 569–574 (2009).

[19] Du, D.-Z. and Hwang, F. K., [Combinatorial Group Testing and Its Applications], World Scientific, Singa-
pore, 2nd ed. (2000).

[20] Balding, D. J. and Torney, D. C., “Optimal pooling designs with error detection,” Journal of Combinatorial
Theory, Series A 74(1), 131–140 (1996).

[21] Macula, A. J., “A simple construction of d-disjunct matrices with certain constant weights,” Discrete
Math. 162(1-3), 311–312 (1996).

[22] Ngo, H. Q. and Du, D.-Z., “A survey on combinatorial group testing algorithms with applications to
dna library screening,” in [Discrete Mathematical Problems with Medical Applications DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science], 55, 171–182, American Mathematical Society,
Providence, RI (2000).

[23] Thierry-Mieg, N., “A new pooling strategy for high-throughput screening: the shifted transversal design,”
Bmc Bioinformatics 7, 13 (2006).

[24] Thierry-Mieg, N. and Bailly, G., “Interpool: interpreting smart-pooling results,” Bioinformatics 24(5),
696–703 (2008).

[25] Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195
(Mar 2002).

Proc. of SPIE Vol. 7702 77020F-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/22/2013 Terms of Use: http://spiedl.org/terms

