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Abstract. Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete.  
In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is 
considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip 
behaviour.  However, there is very limited research on how to simulate the dowel action of discrete 
reinforcing bars.  Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in 
concrete is developed.  The model features the derivation of dowel stiffness matrix based on beam-on-elastic-
foundation theory and the direct assemblage of dowel stiffness into the concrete element stiffness matrices.  
The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness 
formulation.  Deep beams tested in the literature are analysed and it is found that the incorporation of dowel 
action model improves the accuracy of analysis.  
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INTRODUCTION 

Compared to the axial and flexural counterparts, the shear behaviour of concrete structures is less predictable due 
to the complexity of shear transfer mechanisms and the difficulties in numerical modelling, and yet it plays an 
important role in the overall structural behaviour of reinforced concrete members [1].  The dowel action of 
reinforcing bars is one of the component actions for shear transfer in a cracked concrete structure.  According to Park 
and Paulay [1], the shear resistance of a cracked concrete structure is constituted of: (1) direct transfer of shear force 
by uncracked concrete; (2) direct tensile forces in stirrups; (3) aggregate interlock at crack surface; and (4) dowel 
action of reinforcing bars crossing the crack.  Figure 1 shows the above internal forces pertaining to a cracked 
concrete beam.   

Being a major component of the shear transfer in a cracked concrete structure, the dowel action of reinforcing 
bars has been investigated experimentally by many researchers [2-7].  However, despite decades of research on the 
finite element analysis of reinforced concrete structures, there has been basically no explicit consideration of the 
dowel action in finite element analysis.  At the most, only a gross allowance with the dowel action lumped together 
with other components of shear transfer was incorporated [8].  It was only until more recently that the first author 
developed a dowel action model for application with smeared representation of reinforcing bars [9].  In this model, 
the dowel force and dowel deformation are expressed in smeared forms and the dowel stiffness matrix is assembled 
into the concrete element stiffness matrix.  It has been applied to analyse deep beams and coupling beams [10,11]. 

The modelling of dowel action for smeared reinforcement is only an interim measure so as to be compatible with 
the existing finite element programs using smeared representation of the reinforcing bars.  In the long run, for more 
realistic modelling of the bond-slip behaviour and dowel action of the reinforcing bars, discrete representation of the 
reinforcing bars should be adopted instead of smeared representation.  With discrete representation, the reinforcing 
bars are modelled by discrete one-dimensional steel elements.  To model the bond-slip behaviour of the reinforcing 
bars, the steel elements are connected to the concrete through bond elements.  The most commonly used bond 
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element is the 4-noded interface element developed by Goodman et al. [12].  Each such bond element is assumed to 
have an infinitesimally small thickness.  It has two pairs of duplicated nodes.  The two nodes in each pair of 
duplicated nodes have the same coordinates but different degrees of freedom.  Between them, one is connected to the 
steel reinforcement while the other is connected to the concrete.  The difference in displacement of the duplicated 
nodes in the direction of the steel-concrete interface is taken as the slip. 

Herein, a numerical method of incorporating the dowel stiffness of discrete reinforcing bar into the concrete 
element stiffness matrix is proposed. 

 

 
FIGURE 1.  Internal forces in cracked beam 

MODELLING OF CONCRETE, STEEL REINFORCEMENT AND BOND 

To account for the biaxial behaviour of the concrete, the biaxial stress-strain relation is described in terms of 
equivalent uniaxial strains, and the tensile and compressive strengths in the principal directions are determined using 
the biaxial strength envelope developed by Kupfer and Gerstle [13].  For any principal direction under tension, the 
stress-strain curve proposed by Guo and Zhang [14] is adopted.  For any principal direction under compression, the 
stress-strain curve proposed by Saenz [15] is adopted.  From the stress-strain curves, the secant stiffness values in the 
two principal directions Ec1 and Ec2 are evaluated and used to derive the constitutive matrix of concrete [ ]'cD  in the 
local coordinate system [16]: 
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where v1 and v2 are the Poisson’s ratios in two principal directions and G is the shear modulus.  Before cracking, the 
shear modulus is taken as the initial elastic shear modulus Go.  After cracking, the shear modulus is taken as γ Go, in 
which γ is the shear retention factor to account for the aggregate interlock effect.  

The elastic, plastic and strain hardening behaviour of the steel reinforcement is modelled by an appropriate stress-
strain curve, based on which the secant stiffness of the steel reinforcement Es is evaluated and the constitutive matrix 
of steel [ ]'sD  in the local coordinate system is derived as: 
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For the bond between the steel reinforcement and concrete, the bond stress-slip relation recommended by Model 
Code 1990 [17] is employed.  The secant bond stiffness is evaluated as the bond stress to bond slip ratio and the 
stiffness matrix of bond element in the local coordinate system is derived with the area of interface taken as the 
length of bond element times the total perimeter of steel reinforcement.  

From the above derived stiffness matrices in the local coordinate system, the corresponding stiffness matrices in 
the global coordinate system are obtained by coordinate transformation. 
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DOWEL FORCE-DISPLACEMENT RELATIONSHIP 

Let the dowel force be denoted by Vd (kN) and the dowel displacement be denoted by Δd (mm).  The relationship 
between Vd and Δd has been derived from experimental results [2,3,6].  Herein, the linearly elastic-perfectly plastic 
dowel force-displacement relation derived by He and Kwan [9] is adopted.  Mathematically, it is given by: 
 Vd = kd0 Δd for Δd ≤ Δdo (3a) 
 Vd = Vdo for Δd > Δdo (3b) 
where kd0 is the initial dowel stiffness, Vdo is the peak dowel force (or dowel strength), and Δdo is the dowel 
displacement at peak dowel force, Δdo = Vdo/kd0.   

 
 
 
 
 
 
 
 
 
 
 
 

(a)  Contraflexural deformation of dowel bar  
against elastic foundation 

(b)  Modelling of elastic foundation  
by Winkler springs 

FIGURE 2.  Visualisation of dowel action as beam on elastic foundation 
 
The dowel stiffness kd (kN/mm) is established based on the beam-on-elastic-foundation theory with the 

reinforcing bar treated as a beam to deal with the interaction between the reinforcing bar and the surrounding 
concrete.  According to the beam-on-elastic-foundation theory, the foundation may be treated as a bed of Winkler 
springs so that the reaction force from the foundation at any point may be assumed to be proportional to the 
deflection of the beam at that point.  Cutting the reinforcing bar subjected to dowel action at the point of 
contraflexure, the bar may be treated as a semi-infinite beam resting on the foundation subjected to concentrated load 
at one end, as shown in Figure 2.  From the analytical solutions of the beam-on-elastic-foundation problem [18], the 
relationship between the deflection of dowel bar at any point x̂Δ  and the concentrated dowel force can be derived as 
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where x̂  is the distance of the point being considered from the dowel force, Es0 is the initial elastic modulus of steel, 
Is is the moment of inertia of the bar (for a reinforcing bar with diameter sφ , sI  is equal to 644

sπφ ), fλ  is a 
parameter (mm-1) representing the relative stiffness of the foundation (i.e. the surrounding concrete), as given by: 

 4
04 ss

sf
f IE

k φ
λ =  (5) 

In Equation (5), kf (MPa/mm) is the foundation modulus of the surrounding concrete.  The following data-fitting 
expression for kf proposed by Soroushian et al. [19] is used: 
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where cf is a coefficient ranging from 0.6 for a clear bar spacing of 25 mm to 1.0 for larger bar spacing, and fc is the 
uniaxial compressive strength of concrete.  

Equations (4) and (5) represent classical solution for the problem of beam-on-elastic-foundation, where flexural 
but not shear deformation of the beam is considered.  For the case of steel bars embedded in concrete, shear 
deformation of bars is sufficiently small to be neglected.  Substitute 0ˆ =x  into Equation (4), the relationship between 
the dowel force and the dowel displacement under elastic condition is obtained as 
 dfssd IEV Δ= 3

0 λ  (7) 
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from which the initial dowel stiffness may be derived as 
 3

00 fssd IEk λ=  (8) 
The peak dowel force Vdo is evaluated using the expression by Vintzeleou and Tassios [4]: 

 ycsdo ffV ⋅= 23.1 φ  (9) 

where fy is the yield strength of dowel bar.  
With Equations (3), (8) and (9), the dowel force-displacement relationship is well-defined.  To formulate the 

dowel stiffness matrices, the secant dowel stiffness kd is evaluated as per Equation (8) if the dowel action is linearly 
elastic, and is evaluated as Vdo/Δd if the dowel action becomes plastic.  

MODELLING OF DOWEL ACTION 

Herein, it is proposed to incorporate the dowel stiffness of the steel bar elements into the adjoining concrete 
elements so that the steel elements do not need to have rotational degrees of freedom.  This is done by identifying the 
concrete elements adjoining the steel element (for each steel element, there shall be two adjoining concrete elements), 
and then superimposing the dowel stiffness matrix [ ]diK  (i = 1, 2) onto the stiffness matrices of these concrete 
elements.  The dowel stiffness matrix is devised based on the energy principle, as depicted hereunder. 

The work done dU  to cause the dowel deformation may be represented as: 
 ( )dddd kU Δ⋅Δ= 5.0  (10) 

The energy associated with the work done is distributed over the two concrete elements adjoining each steel 
element on a pro-rata area basis.  Let diα  (i = 1, 2) be the distribution coefficient such that for the two concrete 
elements whose areas are 1A  and 2A , ( )2111 AAAd +=α  and ( )2122 AAAd +=α .  The strain energy diU  (i = 1, 2) 
imparted in each concrete element is expressed as: 
 ( )ddddidi kU Δ⋅Δ⋅= α5.0  (11) 
Denoting the strain matrix of the adjoining concrete element by [ ]iB  (i = 1, 2), the dowel stiffness matrix is given by: 

 [ ] [ ] [ ] ( )[ ][ ]isddi
TT

idi BTkTBK ΔΔ ⋅⋅= 2α  (12) 
where s  is the length of steel bar element and [ ]ΔT  is the transformation matrix of dowel displacement, defined by: 
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with c and s denoting respectively the cosine and sine of the angle between axial direction of reinforcement and 
global x-direction. 

It should be noted from Equation (12) that the concrete element shape function has been integrated into the dowel 
stiffness matrix.  Hence, the dowel stiffness of reinforcing bars can be directly assembled into the concrete element 
stiffness matrix. 

APPLICATIONS TO THE ANALYSIS OF DEEP BEAMS 

The reinforced concrete deep beams analysed include the Specimens NNN-1 and NHN-1 tested by Xie et al. [20].  
These two deep beams have been analysed by He [10] based on the smeared reinforcement and smeared crack 
approaches.  A sketch of the beams is depicted in Figure 3.  The deep beam specimens belonged to the same test 
series and they have similar configurations.  

The two deep beam specimens have uniform cross-section of 127.0 mm breadth by 254.0 mm depth and the 
effective depth is 215.9 mm.  They are subjected to single point loads at mid-span position.  The shear span to 
effective depth ratio is fixed at 1.0.  NNN-1 is cast of normal-strength concrete (fc = 44.6 MPa); whereas NHN-1 is 
cast of high-strength concrete (fc = 98.6 MPa).  The beams are singly reinforced with tension steel ratio of 1.8%.  
Yield stress of reinforcement is 420.6 MPa.  The elastic modulus, strain at start of strain hardening, ultimate tensile 
strength and ultimate strain of reinforcing steel are taken as 200 GPa, 1%, 740 MPa and 12%, respectively.  
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FIGURE 3.  Geometric dimensions of deep beam specimens 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  Specimen NNN-1 (b)  Specimen NHN-1 
FIGURE 4.  Load-deflection curves of deep beam specimens (D.A. denotes dowel action) 

 
Based on the proposed numerical model for dowel action of discrete bars, the deep beams are analysed with 

dowel action accounted for.  The load-deflection curves of deep beam Specimens NNN-1 and NHN-1 are presented 
in Figure 4.  In the same figure, the analytical curves by He [10] are presented.   

The deep beams are re-analysed with the exclusion of dowel action, and the resulting load-deflection curves are 
depicted in Figure 4.  It can be observed that when the dowel action is neglected, the computed peak load is slightly 
lower, and the shear ductility of beams is impaired.  Moreover, the deviations from the experimental curves are 
aggravated.  It can be concluded that in the numerical analysis of shear critical beams, the incorporation of dowel 
action in the structural modelling is certainly desirable. 

CONCLUSIONS 

In the finite element analysis of concrete structures, discrete representation of reinforcing bars is a more realistic 
way to reflect the interaction between concrete and reinforcement as compared to smeared representation.  A new 
strategy for modelling the dowel action of discrete reinforcing bars has been devised in this study.  Based on the 
energy principle and the beam-on-elastic-foundation theory, the dowel stiffness matrix and the dowel force-
displacement relationship have been formulated.  Since the dowel stiffness can be incorporated directly into the 
concrete elements, no special type of finite element for dowel action is required.  The proposed dowel action model 
has been applied to analyse reinforced concrete deep beams.  Numerical results have verified that the proposed dowel 
action model could improve prediction of the full range load-deflection behaviour of shear critical concrete members.  
The results have also correctly reflected the enhancement in shear ductility of deep beams by incorporation of dowel 
action, which constitutes one of the major components of shear resistance in post-peak regime. 
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