SIAM J. COMPUT. © 1984 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, August 1984 008

EFFICIENT PARALLEL ALGORITHMS FOR A CLASS OF
GRAPH THEORETIC PROBLEMS*

YUNG H. TSINt# AND FRANCIS Y. CHIN*

Abstract. In this paper, we present efficient parallel algorithms for the following graph problems:
finding the lowest common ancestors for vertex pairs of a directed tree; finding all fundamental cycles, a
directed spanning forest, all bridges, all bridge-connected components, all separation vertices, all biconnec-
ted components, and testing the biconnectivity of an undirected graph. All these algorithms achieve the
O(lg? n) time bound, with the first two algorithms using n[n/lg n] processors and the remaining algo-
rithms using n[n/lg? n] processors. In all cases, our algorithms are better than the previously known
algorithms and in most cases reduce the number of processors used by a factor of n lg n. Moreover, our
algorithms are optimal with respect to the time-processor product for dense graphs, with the exception of
the first two algorithms.

The machine model we use is the PRAM which is a SIMD model allowing simultaneous reads but
not simultaneous writes to the same memory location.

Key words. parallel computation, analysis of algorithms, graph algorithms, directed spanning forests,
lowest common ancestors, fundamental cycles, bridges, bridge-connected components, separation vertices,
biconnected components, SIMD machines, PRAM

1. Introduction. The design of efficient parallel algorithms for graph problems
has been investigated by many people [2], [3], [4], [5], [7], [8], [12], [15], [16], [17].
In particular, Chin, Lam and Chen [3], [4] designed parallel algorithms for several
graph problems in which the processor-time products achieve the lower bounds for
the corresponding sequential algorithms for dense graphs. In this paper, we present
efficient parallel algorithms for other graph problems in which the processor-time
products differ from the lower bounds for their sequential counterparts for dense
graphs by at most a factor of Ig n."

We are interested in the following graph problems: finding the lowest common
ancestors for q(1=q =n”) vertex pairs of a directed tree; finding a complete set of
fundamental cycles, a directed spanning forest, all bridges, all bridge-connected
components, all biconnected components, all separation vertices and testing the
biconnectivity of an undirected graph. This class of problems has also been studied
by Savage [15] and Savage and Ja’Ja’ [16]. They designed parallel algorithms for these
problems and achieved an O(1g® n) time bound with the processor-time products being
O(n? lg2 n) for the directed spanning tree problem and being O (n % or O(nz(lg n)™),
where m = 3, for the remaining problems. In this paper, we present parallel algorithms
for the same class of problems. Our algorithm for the lowest common ancestors
problem takes O ([q/nK] - 1g n +n/K) time with nK (K > 0) processors. The algorithm
for the fundamental cycles problem takes O([|E|/nK] - 1gn +n/K +1g°n) time with
nK (K = 1) processors, where E is the edge set of the undirected graphs. The algorithms
for the remaining problems all take O(n/K +1g° n) time with nK (K = 1) processors.
In particular, an O(lg” n) time bound can be achieved with K = [n/Ign] for the first
two problems and with K = [n/1g” n] for the remaining problems. As the processor-
time products of our algorithms are at most O(nzlg n), for 1=K =[n/lgn], our
algorithms are better than the previously known results in all cases, and in most cases

* Received by the editors April 5, 1982 and in final revised form June 1, 1983. This research was
supported by the Natural Science and Engineering Research Council of Canada under grant NSERC-A4319.

‘+ Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1.

1 Present address: Department of Computer Science, Memorial University of Newfoundland, St. John’s,
Newfoundland, Canada A1C 587.

' Throughout this paper, we use Ig n to denote [loga n].

580

EFFICIENT PARALLEL ALGORITHMS 581

use less processors by a factor of n lgn. Except for the algorithms for the first two
problems, the processor-time products of our algorithms are O(n?), which is optimal
for dense graphs.

The computation model we use is the single-instruction stream multiple-data
stream (SIMD) model. We assume that all processors have access to a common
memory, and that simultaneous reads from the same location are allowed but simul-
taneous writes on the same location are prohibited. This model is called PRAM in [6].

In describing our parallel algorithms, we use the instruction introduced by Pre-
parata and Vuillemin [11]. Specifically, parallel operations are controlled by

for all i:P(i) pardo instructions dopar;
where P(i) is a predicate of i.

2. Definitions and notation. A graph G(V, E) consists of a finite nonempty set
V of vertices and a set E of pairs of vertices called edges. If the edges are unordered
pairs, then G is undirected ; otherwise G is directed. Without loss of generality, we
assume V ={1,2,- -, n} throughout this paper. If for every two vertices u, v in V,
there is a path in G joining u and v, then G is connected. Each connected maximal
subgraph of G is called a component of G. An adjacency matrix M of G is a nXn
Boolean matrix such that M[u, v]=1 if and only if (u, v) € E. A tree is a connected
undirected graph with no cycles in it. Let T(V', E') be a directed graph, T is said to
have a root r, if re V' and every vertex ve V' is reachable from r via a directed path.
If the underlying undirected graph of T is a tree, then T is a directed tree. If, moreover,
the underlying graph of T is a subgraph of a connected undirected graph G(V, E)
and V'=V, then T is a directed spanning tree in G. A directed forest is a graph whose
connected components are directed trees. If T is a directed forest such that each
directed tree in T is a directed spanning tree of a component of an undirected graph
G and vice versa, then T is called a directed spanning forest of G. If the edges of T
are all reversed, the resulting graph is called an inverted spanning forest of G. Inverted
spanning trees, inverted trees, inverted forests, etc. are defined similarly. Throughout
this paper, we denote the ‘“‘undirected” path from vertex a to vertex b in a (directed)
tree by [a*— b], and by [a*— b) if vertex b is to be excluded. If the path consists of
at least one edge, then the “#” is removed from the notation.

An inverted tree T is called an ordered tree if the sons of every vertex in T are
ordered. If v is the ith son of a vertex in T, then the rank of v is i.

Let T(V',E') be a directed tree, and u, v e V', the lowest common ancestor
(LCA (u,v)) of u and v in T is the vertex w € V' such that w is a common ancestor
of u and v, and any other common ancestor of « and v in T is also an ancestor of w
in T. If T is a spanning tree of a connected, undirected graph G, let (1, v) be an edge
in G—T, then the cycle in G consisting of the paths [u *»> LCA (u,v)],
[LCA (u, v) *> v] and the edge (v, u) is a fundamental cycle in G. Let e€E, e is a
bridge in G if and only if e is not on any cycle in G. Let B be the set of bridges in
G, every connected component of the graph G'(V,E —B) is a bridge-connected
component of G. Let a € V, if there exist u, v € V such that u, v, a are all distinct and
such that every path connecting u and v in G passes through a, then a is called a
separation vertex of G. A graph is biconnected if it contains no separation vertex.
Every maximal biconnected subgraph of G is called a biconnected component of G.
To test the biconnectivity of G, is to test if G is biconnected.

3. Two useful lemmas. In this paper, we will frequently use the following two
lemmas in analyzing the time and processor complexities.

582 YUNG H. TSIN AND FRANCIS Y. CHIN

LEMMA 3.1. Given n elements {ay, a1, ", an-1}, let f be a function to be applied
to every element. If computing f(a;) takes t time units and K (=1) processors are provided,
then f(a;), 0=i =n—1, can be computed in ([n/K] * t) parallel time units.

Lemma 3.2[3],[4]. Given nelements{aqy, a,," -, a,_} and K processors, A(n) =
Ap*ay*a*---*a,_, can be computed in T parallel time units where * is any
associative binary operator and

Tz{f”/’ﬂ—lﬂgK if |n/2] > K,
lgn if [n/2] =K.

4. Finding all paths from the vertices to the roots in an inverted forest. In this
section, we present a method for constructing an array, denoted by F*, in which each
row contains a path from a vertex to a root in an inverted forest. The array will be
very useful in the design of parallel algorithms presented in the following sections.

Let T(V', E') be an inverted forest with |V’| = n, without loss of generality, we
assume V'={1,2,- -, n}. Let{T;} be the set of all inverted trees in T and {r;} be the
set of all their roots.

DEFINITION. F:V'— V'is a function such that

F (i) = the father of the vertex i in T for i¢{r;},
F(ry=r Vreir}.

The function F can be represented by a directed graph F which can be constructed
from T by adding a self-loop at each root r; in T.

From the function F, we define F*, k =0, as follows:

DEFINITION. F*: V'> V' k =0, is a function such that

F’(i)=i VieV',
F*(i)=F(F*(i)) VieV', k>0.

If i is a vertex in T}, F*(i) is the kth ancestor of i in T} or »;.
DEFINITION. For eachie V', if i is in T}, for some j, then

depth (i) =min {k|F*(i)=r,and 0=k =n -1}

The concepts F*(i), k =0 and depth (i), 1 =i = n, were first introduced by Savage
in [15]. She showed that given the function F of a directed forest T (T could be a
directed forest or an inverted forest), F*(i), 0=k=n—1, and depth (i), 1=i=n, can
be computed in O(Ig n) time with n* processors and n[n/lg n] processors respectively.
In the following, we will show in Theorem 4.1 that F*(i),0=sk=n—1,1=i=n, can
indeed be computed in O(lg n) time with n[n/Ig n] processors or in O(lg” n) time
with n[n/lg? n] processors, and then depth (i) can be computed in O(lg n) additional
time with n processors.

THEOREM 4.2. (i) Given the function F of a directed or an inverted forest T, F k),
ieV' 0=k =n-1canbecomputedin O(n/K +lgn) time with nK (K > 0) processors.

(ii) Given F*(i), 0=k=n—-1, 1=i=n, and nK(K >0) processors, depth (i),
1=i=n can be computed in O(lg (n/K)) time if K=1 or in O([1/K]lgn) time if
0<K <1.

Proof. To compute F*, for all 0=k =n — 1, we proceed in two steps:

1. fori: 1=i=n pardo F°(i) :=i; F'(i) := F(i) dopar;
2. fort'=0tolg(n—-1)—1do
fors:1=s=2,i:1=i=n pardo
F»"(i) = F*(F'(i)
dopar;

EFFICIENT PARALLEL ALGORITHMS 583
If nK processors are given, it is clear that step 1 can be computed in O([1/K]) time
(Lemma 3.1). Step 2 can be computed in

lg(n—-1)-1 (n—1)—

L (2/KD=lgK+ Y (12/KD)

t=0 t=lg
Ig(n—-1)-1
<lgK+1/K ¥ 2'+lg(n-1)-1gK
t=1g K

= O(n/K +lgn) parallel time units.

Once F“(i), 1=i=n, 0=k =n -1, are computed, depth (i), 1 =i =n, can be found
by performing a binary search on the ordered sequence F°(i), F'(i), -+, F"7'(i), for
each i, searching for the left-most occurrence of r; using F nl()(=r;) as the key. This
takes a total of [1/K] Ign time units if 0 <K < 1. For K =1, the search is performed
in the following way: divide the sequence into [n/K'| segments, assign one processor
to each segment and perform simultaneously a binary search on each segment. After
this step, every processor compares the element it finds with the preceding and
succeeding elements in the sequence. There is exactly one processor which does not
have all the three elements distinct or identical and this processor locates the left-most
occurrence of r;. This takes a total of g [rn/K | +3 parallel time units. [

The actual computations of F*(i),1=i=n,0=k=n-1,and depth (i), 1=i=n,
are performed in an array F* in which F*[i, k] contains F* (i). After the computations
are finished, each row of F" is right shifted so that all the ;s except the left-most one
are eliminated. As a consequence, the right-most column of the array contains only
the roots from {r;}. Furthermore, for each vertex i, all occurrences of i appear only
in column (n—1)—depth (i). For each row i, a number, n+i, acting as an undefined
value, is inserted into the first (n —1) —depth (i) entries. These adjustments are done
for convenience and not out of necessity and they take O(n/K) time with nK (K >0)
processors (Lemma 3.1). The adjusted array, F', of a directed tree is depicted in Fig.
4.1. Note that the ith row in F* contains the path from vertex i to a root in 7.

5. Finding a directed spanning forest in an undirected graph. In this section, we
present an efficient parallel algorithm for finding a directed spanning forest in an
undirected graph G(V, E). In view of the fact that it is the inverted spanning forest
of G which is useful in the design of other parallel algorithms in the following sections,
the algorithm presented below actually constructs an inverted spanning forest.
Nevertheless, converting an inverted spanning forest into a directed spanning forest
is straightforward. This algorithm will serve as the backbone of the other algorithms
presented in the following sections.

This algorithm is based on the algorithm for finding an undirected spanning forest
presented in [3] and the array F* presented in the last section. The latter is used to
assign a direction to each edge in the undirected spanning forest generated by the
former.”

We first give a general description for the strategy used in our algorithm. In the
course of running the algorithm for finding an undirected spanning forest [3], a number
of 1-tree-loop’s [7]* are generated. Each of the 1-tree-loop’s is a directed graph whose
vertices are supervertices generated during the previous iteration (a supervertex is a

2 We assume the reader is familiar with the undirected spanning forest algorithm. For those who are
not, we refer them to reference [3].

* A 1-tree-loop is a directed graph in which every vertex has outdegree 1 and in which there is exactly
one cycle and the length of the cycle is 2.

584 YUNG H. TSIN AND FRANCIS Y. CHIN

01 2 3 45 6 7 8 91011121314

16]16]|16/16]|16[16/16[16|16[16/16] 1]/11[{13]12
17171 7(17({17(17[17|17[17[17|17] 2| 3[14]12
18/18]18/18/18/18/18|18/18|18/18|18 1412
19{19]19(19(19(19(19]|19{19]19[19| 4 1412
20]20{20{20/20(20|20{20]|20(20| 20| 5 15[12
21)21121121]21]21]21]21]21[21[{21] 6 15[12
22(22|22(22]22(22|22(22|22|22| 22|22 15[12
23[23123{23)|23]23|23|23|23|23|23[23| 8[13[12
24124|24124124124|24|24|24(24(|24| 9|11[13[12
10{25[25[25|25(25(25|25|25|25|25|25[10(11]|13]12
11]26|26)26|26|26|26|26{26]|26|26]/26{26|11|13]|12
12(27]|27127|27(27|27|27|27|27|27|27|27|27|27 |12
13]28/28|28|28(28|28|28|28|28|28]28|28|28|13|12
14(29]29]29|29(29|29/29(29/29|29/29(29(29|14|12
15|30)30]|30{30{30]30]30]30{30(30/30|30|30|15]12

~N N~

N OHAWN =

©

FIG. 4.1. A directed tree and its array F*. Note that since n =15, any number greater than 15 serves
as an undefined value in the array.

vertex in G or a 1-tree-loop). The edges of these 1-tree-loop’s will be included in
the undirected spanning forest and all these edges are directed edges, whose directions
are ignored by the algorithm in [3]. If the only loop in a 1-tree-loop is destroyed by
eliminating the out-going edge from the smallest-numbered-vertex, the resulting graph
is an inverted tree. As a result, when the loops of all the 1-tree-loop’s are destroyed
in this way, the resulting graph (built by embedding the modified (acyclic) 1-tree-loop’s
created during one iteration into the modified (acyclic) 1-tree-loop’s created during
the following iteration) may well be an inverted spanning forest. Unfortunately, this
is not the case in general, because some vertices may end up with two fathers. This
situation is depicted in Fig. 5.1, where a directed edge (a, b) is selected during iteration
j +1 to connect two supervertices S; and S, created during iteration j. The two graphs
resulting from the two supervertices are inverted trees. However, since a is not the
root ry of Sy, a will have two fathers after S; and S, have been included into a single
supervertex. Therefore, the graph S, U S, is not an inverted tree, by definition, unless
the directions of all the edges on the path from a to r, are reversed. The same situation
occurs in S, U S; when the directed edge (¢, d) is selected to connect S, and S5. To
overcome this difficulty, we have to reverse the directions of all edges on the path
from a to r, and those on the path from ¢ to r,. The array F*, described in § 4,
contains the path from any vertex to a root in an inverted forest T; hence we can
generate the array F' covering both S, and S,. By retrieving the ath row and the cth
row of F', we can identify the set of all edges whose directions are to be reversed in
S and S, respectively.

EFFICIENT PARALLEL ALGORITHMS 585

The direction of every edge
on this path is to be reversed

Fi1G. 5.1.

Our algorithm runs in two stages.

ALGORITHM DSF.

Stage 1 (* The first stage is basically a modified version of the algorithm for
finding an undirected spanning forest. We refer the reader to reference [3] for
the details.x)
Execute the algorithm for finding an undirected spanning tree; during each
iteration j, 1 =j =lg n, record the following information:
a. Convert the forest of all 1-tree-loops generated during this iteration into a
forest of inverted trees by eliminating the edge from the smallest-numbered-
vertex of each 1-tree-loop and store the forest in a vector Fj. (+ Note: This
vector acts as the function F defined in § 4.%)
b. Record the “actual” edges in G establishing the connection specified in F;.
(* Note: The edges recorded in F; are pseudo edges which connect ‘‘superver-
tices”. They do not exist in G. However, for each pseudo edge, there exists a
corresponding actual edge in G.*)
c. The vector D[1.. n] generated during this iteration is stored as D;. (* Note:
Dj[v] is the supervertex containing vertex v when iteration j is completed.*)
Stage 2
1. Generate F}’s from Fj, 1 =j <Ign.
2. (* Adjust the directions of the edges, starting from those recorded during
iteration lg n, gradually down to those recorded during interation 1. *)

586 YUNG H. TSIN AND FRANCIS Y. CHIN

R'={ve V|Dy.[v]=0};
(* Note: In the following for loop, R’ contains the tails of those actual edges in
G which connect two supervertices in the inverted trees generated during iteration
i, where j <i =lgn. It includes all those vertices which have two or more fathers
in the directed graph formed upon the inverted trees. *)
forj :=1gn downto 1 do
begin
i) Foreveryr'eR/,
reverse the direction of every “pseudo’ edge lying on the path from the
supervertex D;[r'] to the root of the inverted tree, in F;, containing D;[r'];
ii) Output all the‘‘actual edges”in G corresponding to the pseudo edges in F;;
iii) R'=R'U{ve V]v is the tail of an ‘“‘actual” edge output in step ii)}
end;

A complete example is given in Fig. 5.2 and a detailed implementation using the
method described above is given in the Appendix.

FIG. 5.2(ii). A potential inverted spanning tree of G. — a directed edge selected during the first iteration ;
——> a directed edge selected during the second iteration; —>—— a directed edge selected during the third
iteration.

EFFICIENT PARALLEL ALGORITHMS 587

F1G 5.2(iii). An inverted spanning tree of G.

THEOREM 5.1. Algorithm DSF correctly generates an inverted spanning forest for

an undirected graph.

Proof. (Backward induction.) In stage 1, an inverted forest F; is correctly generated
during each iteration j, 1=j=Ig n[3]. In stage 2, supposing that after processing F;
J=i=lgn, an inverted forest F; is created. Clearly, F; and F; must have the same
vertex set V. When processing F;_j, it should be clear that there exists a one-to-one
correspondence between the vertices in V; and the inverted trees in F;_;. This implies
that no two instances of r’ in R’ will belong to the same inverted tree in F;_;. As a
result, after step i, each inverted tree in F;_; is effectively modified so as to root at
the supervertex D;_,[r']. These modified inverted trees are then embedded into the
inverted forest F} in step 2ii), the resulting directed graph F;_, is clearly an inverted
forest. But Fj, ,=F), , is an inverted forest initially, therefore, by induction, F'; must
be an inverted forest and hence an inverted spanning forest for G. a

THEOREM 5.2. Finding an inverted spanning forest takes O(n/K +1g° n) time with
nK (K =1) processors.

Proof. Stage 1 takes O(n/K +lg2 n) time with nK (K = 1) processors [3]. Since
the total number of edges in the inverted forest is at most

lIgn R
Y [n/27 <2n,
j=1
the creation of F;, 1= j=Ig n, in step 1 of stage 2 can be done in O(n/K +Ig n) time
with nK (K = 1) processors. Steps 2ii) and iii) each takes O(1) time for each iteration.

588 YUNG H. TSIN AND FRANCIS Y. CHIN

Since the size of F}, 1=j=lgn, is [n/27"]x [n/2'7'], step 2i) requires

en i—192 len j~192
Y (/271 /nK1< ¥ [n/27717/nK +1gn
j=1 j=1
=0(n/K +lgn) time for Ign iterations.

Hence the theorem. 0O
Note that the processor-time product is O(n?), when 1=K =[n/lg’ n], the
algorithm is thus optimal for dense graphs.

6. Finding the lowest common ancestors of q vertex pairs in a directed tree. Let
T(V',E') be a directed tree and V'={1, 2, - -, n}. We shall make use of the array
F" to design a parallel algorithm for finding the lowest common ancestors of g vertex
pairs in T. Let a and b be a vertex pair, if ¢ is their lowest common ancestor, then
row a and row b of F* will have identical contents between column (n — 1) —depth [c]
and column n — 1, inclusive, and will have different contents in the other columns. As
a result, to determine ¢, we can perform a binary search on row a and row b
simultaneously in the following way: if the two entries being examined in row a and
row b (in the same column, of course) are different, the search is continued on the
right-half, otherwise it is continued on the left-half. It takes Ig #n + 1 time units to find
¢ with one processor. In general, we have:

THEOREM 6.1. Given q vertex pairs, 1=q=n’, finding the lowest common
ancestors for these vertex pairs takes O([q/nK]| -1gn +n/K) time if nK (K >0) pro-
cessors are available.

Proof. Finding the lowest common ancestors of the g vertex pairs takes
[q/nK] - Ign time units, if nK =q =n” (Lemma 3.1) or Ign +1 time units, if nK >q.
Constructing the array F' takes O (n/K +1gn) time, thus finding the lowest common
ancestors of q(1=q =n?) vertex pairs, takes O([q/nK] -lgn +n/K) time with nK
(K >0) processors. [

In particular, when K = n and [n/lg n1], this algorithm takes O(lg n) and O(lg* n)
time, respectively.

7. Finding all fundamental cycles of a connected, undirected graph. Without loss
of generality, we assume that the undirected graph G(V, E) is connected from this
section onwards.

It is known that a set of fundamental cycles of a connected, undirected graph
G(V, E) can be determined from a spanning tree T(V, E') of G [14]. Specifically, if
(a, b) is an edge in G— T, then (a, b) together with the paths [b*-> LCA (a, b)] and
[LCA (a, b) *~ a] form a fundamental cycle.

Based on the above observation, we can find a set of fundamental cycles of G
as follows: First, an inverted spanning tree 7 of G is found, using the algorithm
presented in § 5, which takes O(n/K +1g2 n) time with nK(K =1) processors.
The lowest common ancestor algorithm is then called to determine the lowest common
ancestor for every pair of vertices (a, b) in G— T. The algorithm returns the ordered
pair (LCA*, F") and the vector depth, where LCA™[a, b] contains the lowest common
ancestor of (a, b). A vector P* is then created such that P*[v] contains the value
(n—1)—depth [v], which is the column number of ‘v in F*. Hence, for each (a, b) in
G — T, the path from column P*[a] to column P*[LCA*[a, b]] in row a and the path
from column P*[b] to column P*[LCA™[a, b]] in row b of F* and the edge (a, b)
determine a fundamental cycle in G.

EFFICIENT PARALLEL ALGORITHMS 589

The correctness of the algorithm is easily verified. Since the number of vertex
pairs g = |E — E'|, the algorithm obviously takes O([|E|/nK | - Ign +n/K +1g° n) time
with nK (K = 1) processors. In particular, the O(lg2 n) time bound is achieved with
K =n/lgn. Note that the output of the algorithm is stored in an O(n?*) compact data
structure, which consists of the triple (P*, LCA*,F").

8. Finding the HLCA (u)’s. The algorithms we present in the following sections
rely heavily on the function, HLCA(u), Vu € V, (note: The prefix H stands for highest),
which is defined as follows.

DerINITION. Let G(V, E) be an undirected graph, T(V, E’) be its inverted
spanning tree and u € V. HLCA (u) = LCA (u, v), where (u, v) e E— E'U{(u, u)} and
depth (LCA (u, v)) =depth (LCA (u, v')), V(i, v') € E—E'"U{(u, u)}.

Figure 8.1 gives an illustration of HLCA (u). The solid lines and circles represent
the edges and vertices of an inverted spanning tree of an undirected graph. The dotted
lines represent the edges in the graph G —T emanating from a particular vertex u.
To compute HLCA (u), Vu € V, we may first use the lowest common ancestor algorithm
to find LCA (u, v), V(u,v)e E—E'U{(u, u)} and then apply Lemma 3.2 to find
HLCA (u), Yue V. However, in doing so, we will require O([|E—E’'|/nK]-lgn+
n/K) time if nK (K >0) processors are available. In this section, we show a way of
finding HLCA (1), Vu e V in O(n/K +1gn 1glgn) time with nK (K = 1) processors.
This method allows us to design optimal parallel algorithms for the graph theoretic
problems discussed in the following sections.

The method is based on the preorder numbering [9] of the vertices in an ordered
spanning tree T(V, E’) of G. We denote the preorder number of a vertex v by pre (v).

590 YUNG H. TSIN AND FRANCIS Y. CHIN

DEFINITION. Let u, ve V, u=<v iff u is an ancestor of v, u <v iff u is a proper
ancestor of v.

LEMMA 8.1. Letu,ve V,v=<uiff pre (v)=pre (u)<pre (v)+nd(v), where nd(v)
is the number of descendants of v.

Proof. Immediate from the definition of preorder traversal. [

LeEmMMA 8.2. Let (u,v), (u,w)e E—-E’;

(i) if pre (v) <pre (w)<pre (u),

then depth (LCA (u, v)) =depth (LCA (u, w));

(ii) if pre (v)>pre (w)>pre (u),

then depth (LCA (u, v)) =depth (LCA (u, w)).

Proof. (i) By Lemma 8.1, pre(LCA(u,v))<pre(v) and pre(u)<
pre (LCA (u, v))+ nd (LCA (u, v)). Therefore pre (LCA (u, v)) <pre (w) <
pre (LCA (u, v))+nd (LCA (u,v)). By Lemma 8.1, LCA (u,v)=<w. Hence,
depth (LCA (u, v)) =depth (LCA (u, w)). Part (ii) can be proved similarly. O

Lemma 8.2 points out that we can reduce the problem of finding HLCA (u) to
that of finding the lowest common ancestor of two particular vertices in {vl(u, v)eE -
E'}U{u}.

DErINITION. Let ue V, W={v|(u, v)e E—E'}U{u}.

pmax (u)=v, where ve W and pre (v)=pre (w), Vwe W;

pmin (u)=v, where v e W and pre (v)=pre (w), Vwe W.

COROLLARY 8.3. HLCA (u) = (min <){LCA (4, pmin (1)), LCA(u, pmax (u))}.

Proof. Immediate from Lemma 8.2. 0

CoroLLARY 8.4. HLCA (u) =LCA (pmin (u), pmax (u)).

Proof. From Corollary 8.3, HLCA (u)<pmin (1) and HLCA (u) <pmax (u).
Thus, HLCA (u)<LCA (pmin (u), pmax (u)). By definition, pre (pmin (u))=
pre (u) = pre (pmax (u)). This implies pre (LCA (pmin (u), pmax (u)))=pre (u) <
pre (LCA (pmin (u), pmax (u))) +nd (LCA (pmin (u), pmax (u))). By Lemma 8.1,
LCA (pmin (u), pmax (u))<u. Therefore LCA (pmin (u), pmax (u))=<
LCA (u, pmin (u)) and LCA (pmin (u), pmax (u)) <LCA (u, pmax (u)). By Corollary
8.3, LCA (pmin (u), pmax (u)) <HLCA (u). 0O

LEMMA 8.5. Let T(V, E') be a directed tree whose vertices have been labelled in
preorder. Then finding HLCA (u), Yu €'V, can be done in O(n/K +lgn) time with
nK (K =1) processors.

Proof. To compute pmax (u) and pmin (1), Vu € V, we need O(n/K +1g K) time
with nK (K =1) processors (Lemma 3.2), and to find HLCA (u), Vu € V, we need to
find the lowest common ancestors of the n (pmin (1), pmax (u)) pairs. This takes
O(n/K +1gn) time with nK (K >0) processors (Theorem 6.1). 0O

Figure 8.1. gives an illustration of the above lemmas and corollaries. The numbers
in the circles are the preorder numbers of the vertices. For instance, the preorder
number of u is 21. For convenience sake, we name each vertex by its preorder number.
It can be easily checked that depth (LCA (u, 12))<min (depth (LCA (u, 18)),
depth (LCA (u, 16))), and that depth (LCA (u, 28)) <depth (LCA (u, 24)). Further-
more, pmin (u) =12, pmax («) = 28, and LCA (12, 28) = 3, which is clearly HLCA (u).

The crucial step in computing HLCA (u), Vu € V, is to determine the preorder
numbers efficiently. The usual way of numbering the vertices of a tree in preorder is
to traverse the tree. However, this will result in an O(n) time algorithm, which is
undesirable. In the following lemma, we show that we can carry out preorder number-
ing in parallel without traversing the tree.

EFFICIENT PARALLEL ALGORITHMS 591
LEMMA 8.6. Let T(V, E') be an ordered tree [9]. For each v eV,

pre ()= Y% Y nd (w)+na (v)
ue ANC(v) we EBRO(u)

= Y. nds (F(u), rank (1) —1)+1+depth (v),
ue ANC(v)—{r}
where

ANC (v) is the set of all ancestors of v;

EBRO(u) is the set of all elder brothers of u;

nd (w) is the number of descendants of w;

na (v) is the number of ancestors of v.

nds (v, j) is the total number of descendants of the first j sons of v; and

rank (v)is the rank of v, i.e., the position of v among all its brothers.

Proof. Trivial. 0

Let us consider the inverted spanning tree given in Fig. 8.1. again. Consider the
vertex u, pre (u) =21, the ancestors of u are the vertices 21, 17, 15, 7, 3 and 1. The
number of descendants of the elder brothers of each of these vertices except the root
are 3, 1, 7, 3 and 1, respectively. These numbers sum up to 15. The number of
ancestors of u is 6, this gives rise to a total sum of 21, which is the preorder number
of u.

Using Lemma 8.6, we want to show that the preorder numbers pre (v), Vo e V
can be determined in O (n/K +1g n lglg n) time with nK (K = 1) processors. Assuming
that an inverted tree T represented by an array T[1...2,1...n] such that
{(T[1,], T[2,i])[1=i=n}=E’ is given (we assume T[2, r]=0 for the root r).

ALGORITHM Preorder.

1. Compute the array F* and the vector depth for T.

2. Order the sons of every vertex in T, i.e., compute rank (v), Vo e V.

3. Find nds (v, j), Yoe V, 1 =j=n(v), where n(v) is the number of sons of v.
4. Compute pre (v), Vv e V.

LemmMma 8.7. Algorithm Preorder takes O(n/K +1gnlglg n) time with nK (K =1)
Drocessors.

Proof. Step 1 can be done in O(n/K +1g n) time (Theorem 4.2). In step 2, the
ordered pairs {(T[2, i], T[1, i])|]1 =i =n} are sorted. This can be done in O(lg n 1glg n)
time with n processor [1]. (* In fact, for K =1g n, we can sort n elements in O(Ign)
time [1]. However, the O(lg n 1g Ig n) time suffices for our purposes here *). Assuming
that the sorted T is stored in T'[1...2,1...n], then T' is divided into segments
such that in each segment, the first row contains the same vertex v in every entry,
and the second row contains the set of all sons of v in 7. The relative position of
vertex i in the second row of the segment in which i resides, is the rank of i, i.e., rank (7).

In step 3, nd (v), Vv e V, are first computed by scanning the ((n— 1) —depth (v))th
column of F" and counting the number of occurrences of v. By Lemma 3.2, this takes
O(n/K +1g K) time. After this, nds (v, j), Vve V, 1=j=n(v), are computed using
the following formula

nds (v, j)= Y nd(s), 1=j=n(v).
1=isj

It has been shown in [10], that the partialsums ¥, _, <, a;, 1 =j =n, can be computed
in O(lgn) time if n processors are given. Since for each vertex v, v has n(v) sons,

592 YUNG H. TSIN AND FRANCIS Y. CHIN

the time needed to compute nds (v, j), 1 =j=n(v), is O(lg (n(v))) if n(v) processors
are assigned to v. (This is possible if we make use of the sorted array T'). As a result,
all these partial sums, nds (v, j), 1=j=n(v), Vve V, can be computed in parallel in
max,.v {O(g (n(v)))}=O(lg n) time with } _,, n(v) =n —1 processors.

Finally, in step 4, pre (v), Vv € V is computed using the formula given in Lemma
8.6. We assume nds (v,0) =0, Vve V. Note that ANC (v) is available in the vth row
of F* starting from column (n—1)—depth (v) to column (n—1), and na (v) equals
depth (v)+1. By Lemma 3.2, this takes O(n/K +lg K) time.

Summing up, pre (v), Vv € V can be determined in O(n/K +1gn lglgn) time
with nK (K = 1) processors [

THEOREM 8.8. Computing HLCA (u), YueV can be done in O(n/K+
Ign lglgn) time with nK (K = 1) processors.

Proof. Lemmas 8.5,8.7. 0O

9. Finding all bridges in a connected, undirected graph. In this section, we present
an optimal parallel algorithm for finding all bridges in a connected, undirected graph.
The correctness of the algorithm is based on the following theorems.

LEMMA 9.1. Let G(V, E) be a connected, undirected graph. If e € E is a bridge of
G, then e is contained in every inverted spanning tree of G.

Proof. Trivial. O

Due to this lemma, the number of edges to be examined is greatly reduced from
O(n® to O(n).

LEMMA 9.2. e is not a bridge if and only if e is on a fundamental cycle.

Proof. Trivial. 0O

THEOREM 9.3. Let T(V, E') be an inverted spanning tree of a connected, undirected
graph G, and e = (a, b) € E'. Then (a, b) is a bridge of G if and only if for each descendant
i of a, there does not exist (i, j) in G— T such that depth (LCA [, j]) <depth (a).

Proof. Let e =(a, b)e E’ be a bridge in G. If there exists (i, j) in G — T such that
i i3 a descendant of a in T and depth (LCA [i, j]) <depth (a), then the path [i >
j*> LCA[i jl*> b—>a x> i]is a cycle containing e. This leads to a contradiction by
Lemma 9.2.

Conversely, if e is not a bridge, then by Lemma 9.2, e is on a fundamental cycle
G, i.e., there exists (i, j) in G—T such that

C:[i»>j*>LCA[,j]*>i]

e # (i, j) because e is not in G — T. As a result, e is either on the path [j>LCA[i, j]] or
on the path [LCA[ijl»i], implying depth (j)=depth (a)>depth(b)=
depth (LCA [j, j]) or depth (i) =depth (a) > depth (b) = depth (LCA [i, j1). Hence in
either case there exists (i,j) in G—T such that i is a descendent of a and
depth (LCA [, j]) <depth (a). O

ALGORITHM Bridges

1. Construct an inverted spanning tree T'(V, E') for G(V, E).
2. Compute HLCA (u), Vu e V.

3. Compute a(u), Vu € V, where

a(u) =min {depth (HLCA (w))|u < w}.

4. For each (u, F(u)) € E', check if depth (u) = a(u). (*(u, F(u)) is a bridge ift
depth (u) = a(u)*)

The correctness of the algorithm is supported by Theorem 9.3.

EFFICIENT PARALLEL ALGORITHMS 593

THEOREM 9.4. Algorithm Bridges runs in O(n/K +lg2 n) time with nK(K =1)
processors.

Proof. With nK (K = 1) processors, step 1 takes O(n/K +1g®> n) time (Theorem
5.2). Step 2 takes O(n/K +1gnlglgn) time (Theorem 8.8). Steps 3 and 4 take
O(n/K +1g K) time (Lemma 3.1 and 3.2). Hence, Algorithm Bridges runs in O (n/K +
1g° n) time with nK (K = 1) processors. [

10. The bridge-connected components of a connected, undirected graph. Once
the bridges of a connected, undirected graph are determined, its bridge-connected
components can be determined. Specifically, we eliminate all the bridges in G and
then use Algorithm MOD.CONNECT [3], [4] to find the connected components of
the resulting graph. Each of the connected components thus found is a bridge-
connected component of G.

The algorithm obviously runs in O(n/K +lg2 n) time with nK (K = 1) processors.

11. Finding all biconnected components in a connected, undirected graph. In
this section, we present an optimal parallel algorithm for finding all biconnected
components of a connected, undirected graph G(V, E). Since a biconnected com-
ponent can be completely determined by its vertex set, it suffices to find the vertex
sets of all the biconnected components of G.

DEerFINITION. Let T(V, E’) be an inverted spanning tree of G(V,E). Let
e;=(a,F(a)), e,=(b, F(b))e E'. e;Ae, iff

(i) e, is on [a *> HLCA (a)] or e, is on [b *-> HCLA (b)]; or

(ii)) (a,b)e E~E' and neither a<b nor b=<ain T.

ALGORITHM Biconnect.

1. Find an inverted spanning tree T(V, E') of G(V, E).

2. Compute HLCA (v) Vv e V.

3. Construct an undirected graph G"(E’, E") such that (e;, ;) € E" iff e;Ae,.

4. Find the connected components {B;} of G". (* Note: Every connected com-
ponent of G” uniquely determines the vertex set of a biconnected component
in G and vice versa. *)

LemMA 11.1. (i) For each edge (a, b) € E there exists a unique biconnected com -
ponent in G containing the edge.

(il) All edges in the same cycle in G belong to the same biconnected component in
G.

From the definition, if e;Ae, then e; and e, belong to the same fundamental cycle.
It is easily shown that if e;Ae, and e,Ae;, then e; and e; belong to the same cycle in G.
This is easily generalized to:

LEMMA 11.2. IfeqAes, exAes, - -, e1—1Ae,, then there exists a cycle in G containing
both e and e,.

THEOREM 11.3. e and e’ belong to the same connected component in G" if and
only if e and e' belong to the same biconnected component in G.

Proof. Let e and e’ belong to the same connected component in G". Then there
exists a path: e, e1, - -,¢e, ¢’ in G". This implies that eAeq, e;Aes,, - - -, e/Ae’. By
Lemma 11.2, e, e’ belong to the same cycle in G. By Lemma 11.1 (ii), e and ¢’ belong
to the same biconnected component in G.

Let e and e’ belong to the same biconnected component in G. Then there exists a
simple cycle C containing e and e’ in G. Let € be the set of fundamental cycles such
that C =U, € (U, stands for the mod-two sum). It is easily shown that there exists a
subset {Ci};<i=; of € such that ec C,, e’ € C; and ¢; is a common edge of C; and C;, 4,

594 YUNG H. TSIN AND FRANCIS Y. CHIN

1=i<l Let (a; b;) be the edge in G— T determining C,, 1=i=1. Let e(a;), e(b;) be
the edges in T such that e(a;) = (a;, F(a;)) and e(b;) = (b, F(b;)); then in each C;, we
have: (i) e(a;)Ae(b;) and (e;_,Ae(a;) or e;_1Ae(b;)) and (e;Ae(a;) or e;Ae(b;)); or (ii)
e;i_1A e(a;) and e;Ae(a;); or (iii) e;—;Ae(b;) and e;Ae(b;). In any of the above cases, there
is a path from e;_; to ¢; in G”. In particular, there is a path from e to e, and a path from
e, to ¢’ in G". Joining all these paths together, we have a path from e to e’ in G".
Hence, e and e’ belong to the same connected component in G”. 0O

LemmMmA 11.4. Algorithm Biconnect runs in O(n/K +lg2 n) time with nK(K =1)
processors.

Proof. With nK (K =1) processors available, step 1 takes O(n/K +lg2 n) time
(Theorem 5.2). Step 2 takes O(n/K +lgn lglg n) time (Theorem 8.8). Step 3 can be
carried out as follows: Construct an adjacency matrix M" for G". For every e E’,
M"[e,e']and M"[e', e] are set to 1 if and only if (i) e’ is on the path [a *» HLCA (a)]
or (ii) (a,b) is in G —T and neither a =b nor b =a in T, where e =(a, F(a)) and
e' = (b, F(b)). Due to |E'| = O(n) and the availability of F*, testing the above conditions
takes O(n/K) time with nK (K = 1) processors (Lemma 3.1). Step 4 takes O(n/K +
1g°n) time [3], [4]. Hence, Algorithm Biconnect takes O(n/K +1g”>n) time with
nK (K =1) processors. 0

12, Finding all separation vertices and determining the biconnectivity of a con-
nected, undirected graph. It is easily verified that if a is not the root r of T, then a
is a separation vertex of G if and only if a is the root of T n B; for some j where B;
is a biconnected component of G and that r is a separation vertex if and only if 7 is
the root of at least two distinct TN B’, TN B”. As a result, the algorithm for finding
the biconnected components can be used to determine the set of all separation vertices
of G as follows.

THEOREM 12.1. The set of separation vertices can be found in O(n/K +1g° n)
time with nK (K = 1) processors.

Proof. First, the set of all biconnected components is determined. This takes
On/K +1g2 n) time with nK (K =1) processors (Theorem 11.4). Next, the head of
each e e E', head (e), is determined. This obviously takes O(1) time with nK pro-
cessors. Then the set of all head (e)’s are divided into groups such that those e’s
belonging to the same biconnected component have their head (e¢)’s grouped together.
This involves sorting and takes O(lg n Iglg n) time with n processors [1]. Finally, the
head (¢) with the smallest depth in each group is selected, these head (¢)’s form the
set of separation vertices. r is included in the set if and only if r is selected from two
or more groups. This takes O(n/K +1g K) time with nK processors (Lemma 3.2). 0

To determine the biconnectivity of a connected, undirected graph G, we can
check the numbers of separation vertices it has. Clearly, G is biconnected if and only
if there are no separation vertices. This takes O(n/K +lg2 n) time with nK(K =1)
processors.

For completeness, we would like to point out that the algorithm for finding all
biconnected components can be used to determine the set of all bridges as well. This
is based on the fact that an edge e of G is a bridge if and only if e is a biconnected
component of G.

13. Conclusions. The parallel algorithms presented in this paper are optimal for
dense graphs except for the problem of finding the lowest common ancestor of vertex
pairs in a directed tree and the problem of finding all fundamental cycles in an
undirected graph. If an optimal algorithm for finding the lowest common ancestors
running in O(n+q)/nK time with nK (K = 1) processors is found, then the algorithm

EFFICIENT PARALLEL ALGORITHMS 595

for finding the fundamental cycles presented in this paper is also improved without any
modification. Moreover, this achievement will provide us with an alternate efficient way
to compute HLCA (v), Vve V which is crucial in the design of optimal parallel
algorithms for the last five problems.

The optimality of our parallel algorithms may suggest that optimal sequential
algorithms can be derived from them. As a matter of fact, it has been shown that
O(| V| +|E|) time and space sequential algorithms for finding the bridges and biconnec-
ted components can be derived [18].

Of all the algorithms presented in this paper, only the algorithm for the lowest
common ancestor problem achieves the O(lg n) time bound. It is therefore intriguing
to consider whether there exist O(lg n) time algorithms for the remaining problems
on our SIMD model. No one has yet proven that the O(lg” n) time is a lower bound
and this time bound seems unlikely to be surmounted. The difficulty seems to arise from
the model we use. In fact, Shiloach and Vishkin [17] have conjectured that the O(Ig* n)
time bound cannot be breached with a polynomial number of processors on our SIMD
model. Recently, Reif managed to design O(lg n) time probabilistic algorithms for this
class of problems [13]. His probabilistic algorithms can be converted into O(lg n) time
parallel algorithms. The resulting algorithms are, however, nonuniform in the sense that
a different program is needed for each n. Another problem of immediate interest is
whether there exist parallel algorithms which are optimal for both dense and sparse
graphs. Specifically, they achieve the O(lg® n) time bound using [m/lg? n] processors
where m is the number of edges of the given graph.

Finally, we shall point out that although we assume nK, the number of processors
available, satisfies the condition K = 1 throughout this paper, it is not difficult to extend
our results to cases where 0 < K <1 if Brent’s theorem [19] is used.

Appendix.
AvLGoRrITHM DSF (+To find an inverted spanning forest in an undirected graph *)
Stage 1
{Variable declarations}
M; array[1..n,1..n]of0..1;
FR™: array[1..2n—1,0..n—1]of1 .. nlgn;
depth: array[1..2n—1]of 0 .. n—1;
PTR: array[1..nlgn]of1..2n-1;
DV: array[0..lgn,1..n]of 1..n;
rootv: array[1..2n—1]of 1 .. n;
B: array[1..2,1..n,1..n]of1..n;
flag: array[1..n]of 0. . 1;
D, C: array[1..n]of 1..n;
phase: 1..1gn;startpt:1..2n—1;
Step 1: {initialization}
forall i: 1=/ =n pardo
DVI[0,i]:=DI[i]:=i;flag [i]:=0
dopar;
foralli:1=i/=nlgn pardo PTR[i] = O dopar;
foralli:1=/=2n—1 pardo
FR'[i,0]:= FR[i,1]:=0;
rootv[i]:=0
dopar;

596 YUNG H. TSIN AND FRANCIS Y. CHIN

forall ;, j; 1=/, j =n pardo
B[1,i,j]1=1i;B[2,i,j]1=]

dopar;
phase = 0; startpt = 0;
repeat
Step 2(a):

{Pack all defined rows in each segment together}
S = {ilflag[i] = 0};

{Set pointers in array PTR. second is a function extracting the second
portion of a variable formed by the function concatenation in the
preceding step.}

temp = second(sort({concat(flag[i], i)|1 = i=n}));

PTR[phase * n+1. . (phase +1) = n] = second(sort({concat(temp|i],
startpt +i)|1 =i =|S[}U {concat(temp[i], 0)||S|<i =n}));

startpt = startpt +n/2 ** phase ;

Step 2(b):
for all i € S pardo
j() = min {]lM[la]]= 19163}
if none then j, == i;
Cli]=jo;
FR[PTR|[phase * n +i), 0] := phase * n +i;
FR'[PTR[phase * n +i), 1] = phase * n +j,
dopar;
Step 3(a):

{Check to see if the set § can be reduced any further;
if not, then terminate execution}

if (forallie S, C[i]=1) then exit;

Step 3(b):

for alli € S pardo if C[i]=1 then flag[i]:= 1 dopar;
Step 4:

for all i € S pardo D[i] = C[i] dopar;
Step S:

for j := 1 step 1 until Ign do
for all i € S pardo C[i]:= C[C[i]] dopar;
Step 6(a):
for all i € S pardo D[i]:= min {C[i], D[C[{]]} dopar;
Step 6(b):
forall i: 1 =i =n pardo D[i]:= D[D[i]] dopar;
Step 6(c): {Record the array D[i], 1 =i =n}
foralli:1=i/=n pardo
ifieS
then DV[phase +1,i] = D[i]
else DV[phase +1, i]:= D[DV[phase, i]]
dopar;
Step 6(d): {Convert the edge from the smallest-numbered vertex of each
1-tree-loop to a self-loop}
foralli: D[i]=i
pardo
FR*[PTR|[phase * n +i], 1]:= FR'[PTR[phase * n +i], 0]
dopar;

EFFICIENT PARALLEL ALGORITHMS 597

Step 7(a):
for all i € S pardo
foralljeS:j=DJ[j] pardo

Choose any j,€ S such that D{j,]=; and M[i, j,]=1

if none then j, = j;
MTi, j1:= MTi, jol;
B[l’ i9]] = B[17 i7 j()];
B[27 i9]] = B[2’ i’ j()]
dopar
dopar;
Step 7(b):
foralljeS: j=D[;] pardo
forall icS:i=D[i]pardo

Choose any iy €S such that D[i;]=¢ and M[i,, j]=1 if none then i, = i;

MIi, j1= Mlio, j1;

B(1,i,j]= B[1,io,/];

B[2,i,j]1= B[2,i,]]

dopar
dopar;
Step 7(c):
for all / € S pardo M[i, (] := 0 dopar;
Step 8:
for all i € S pardo if D[i]# i then flag[i]:= 1 dopar;
phase = phase + 1,
until (phase =lg n);
Stage 2
Step 1: {Evaluate the array FR '}
Compute FR" and depth [i]for 1=i=2n—1.
Step 2:
phase = phase —1;
{Note that at this point, each vertex k leftin S is the root of a in-tree recorded
in the “last”” segment}
for all k: k € S pardo
rootv[PTR [phase+n +k]] =k
dopar;
repeat
for all i: (phase *n +1=i =(phase+1)*n
and PTR[i]#0
and FR'[PTR[i], (n —1)—depth [i]]
FR*[PTR[i), (n —1)—depth [i]+1]);
{not self-loop}
pardo {Output all the edges except the one emanating
from the new root first}

{Denoting FR “[PTR[i], (n —1)—depth [i]] mod n
and FR[PTR[i], (n —1)—depth [i]+ 1] mod n by
voli] and v,[i] respectively}

if rootw[PTR[i]]=0 then

begin

T(1, B[1, vo[i], v1!i]] = B[1, vo[i], va[i];
T[2, B[1, voli], v:[i1]] = B[2, vo[i], va[i1];
end,;

598 YUNG H. TSIN AND FRANCIS Y. CHIN

{Define the roots for the next segment};
if phase >0
then rootv[PTR[DV [phase — 1, B[1, vo[i], v1[i]]]+
(phase —1) * n]] = B[1, vo[i], vi[i]};
{Reverse the edges if necessary}
if rootv[PTR[i]]#0
then for all j: (n —1)—depth [i]1=j<(n —1))
pardo{Denoting FR *[PTR[i], jJmod n and FR"*[
PTR[i], j +1]mod n by vo[j] and v,[j] respectively}
T[l’ B[z) vO[j]a vl[]]]] = B[29 UO[]']’ Ul[]]]’
T[2, B[2, volj], vilj11] = B[1, volj], vi[/1];
{Redefine the roots as well}
if phase >0 then
begin
rootv[PTR[DV [phase — 1, B[1, vo[j], v1[j]]]
+(phase —1) *n]] = 0;
rootv[PTR[DV [phase —1, B[2, vo[j], v1[j]1]]
+(phase —1) x n]] = B[2, vo[j], v:1[/]]
end
dopar
dopar;
{Pass the roots defined in the current and previous segments to the next
segment}
for all i: (phase * n +1 =i =(phase +1) * n
and PTR[i] and rootv[PTR[i]]#0)
pardo
rootv[PTR[DV [phase — 1, rootv[PTR[i]]]+ (phase
—1) * n]] = rootv[PTR[i]]
dopar;
phase ‘= phase — 1,
until (phase <0);

REFERENCES

[1] A. BORODIN AND J. E. HOPCROPT, Routing, merging and sorting on parallel models of computation,
Proc. 14th ACM Symposium on Theory of Computing, San Francisco, April 1982, pp. 338-344.
[2] A. K. CHANDRA, Maximal parallelism in matrix multiplication, IBM Rept., RC 6193, 1975.
[3] F. Y. CHIN, J. LAM AND I-NGO CHEN, Efficient parallel algorithms for some graph problems, Comm.
ACM, 25 (1982), pp. 659-665.
[4] , Optimal parallel algorithms for the connected component problem, IEEE Proc. Intel. Conference
on Parallel Processing, 1981, pp. 170-175.
[5] D. M. ECKSTEIN AND D. A. ALTON, Parallel graph processing using depth-first search, Conferences
on Theoretic Computer Science Univ. Waterloo, 1977, pp. 21-29.
[6] S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, Proc. 10th Symposium on
Theory of Computing, San Diego, CA, 1978, pp. 114-118.
[7] D. S. HIRSCHBERG, A. K. CHANDRA AND D. V. SARWATE, Computing connected components on
parallel computers, Comm. ACM, 22 (1979), pp. 461-464.
[8] J. JA’ JA’ AND J. SIMON, Parallel algorithms in graph theory: planarity testing, this Journal, (1982),
pp. 314-328.
[9] D.KNUTH, The Art of Computer Programming, Vol. 1., 2nd ed., Addison-Wesley, Reading, MA, 1973.
{10] P. KOGGE AND H. STONE, A parallel algorithm for the efficient solution of a general class of recurrence
equations, IEEE Trans. Comput., C-22 (1973), pp. 786-792.
[11] F. P. PREPARATA AND J. VUILLEMIN, The cube-connected cycles: A versatile network for parallel
computation, Comm. ACM, 24 (1981), pp. 300-309.

EFFICIENT PARALLEL ALGORITHMS 599

[12] E. REGHBATI AND D. G. CORNEIL, Parallel computations in graph theory, this Journal, 7 (1978),
pp. 230-237.

[13] J. REIF, Symmetric complementation, Proc. 14th ACM Symposium on Theory of Computing, San
Francisco, April 1982, pp. 201-214.

[14] E. M. REINGOLD, J. NIEVERGELT AND N. DEO, Combinatorial Algorithms: Theory and Practice,
Prentice Hall, Englewood Cliffs, NJ, 1977.

[15] C. D. SAVAGE, Parallel algorithms for graph theoretic problems, Ph.D. dissertation, R-784, Dept.
Mathematics Univ. Illinois, Urbana, 1977.

[16] C.D.SAVAGE AND J. JA’ JA’, Fast, efficient parallel algorithms for some graph problems, this Journal,
(1981), pp. 682-691.

[17] Y. SHILOACH AND U. VISHKIN, An O(logn) Parallel Connectivity Algorithm, J. Algorithms, 3
(1982), pp. 57-67.

[18] Y. H. TsIN, A generalization of Tarjan’s depth first search algorithm for the biconnectivity problem,
Tech. Rept. TR82-2, Univ. Alberta, Alberta, April 1982.

[19] R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21
(1974), pp. 201-206.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

