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Abstract. The expanding use of location-based services has profenplications on the privacy of personal
information. If no adequate protection is adopted, infdiomaabout movements of specific individuals could be
disclosed to unauthorized subjects or organizations,rémugdting in privacy breaches. In this paper, we propose
a framework for preserving location privacy in moving-atjenvironments. Our approach is based on the idea
of sending to the service provider suitably modified logatioformation. Such modifications, that include
transformations like scaling, are performed by agentspoged between users and service providers. Agents
execute data transformation and the service providerttlirpmcesses the transformed dataset. Our technique
not only prevents the service provider from knowing the él@eations of users, but also protects information
about user movements and locations from being discloseth&r asers who are not authorized to access this
information. A key characteristic of our approach is thatdhieves privacy without degrading service quality.
We also define a privacy model to analyze our framework, aath@xe our approach experimentally.

1 Introduction

The expanding use of spatial, mobile and context-awarentdofjies, the deployment of integrated
spatial data infrastructures and sensor-networks, andgbef location data as the foundation for
many current and future information systems have profommlications on the privacy of personal
information. Today people are increasingly aware of pgvasues and do not want to expose their
personal information to unauthorized subjects or orgdinza. An important problem is represented
by the possibility that a piece of personal information asked by an individual to a party be com-
bined by this party, or other parties, with other informatiteading to the disclosure of sensitive
personal information. In other cases, even if an individlgds not directly release personal infor-
mation to another party, this party may still become awarthisfinformation if it has to provide
a service to such an individual. This is in particular theecablocation-based service providers
that, because of the very nature of the services they prpwieled to track user movements and
locations. It is then easy, based on this information, tealisr user habits and other personal in-
formation. There is therefore an important concernldaation privacyin location-based services,
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that is: “how can we prevent other parties from learning smeirrent or past location? [1]". By
looking more closely at the privacy problem in such a contertcan see that there are at least two
important requirements, that is, keeping movement anditmtanformation private from service
providers and from other users. For example, GPS users whotdeant to disclose their locations
to the system may still require service such as “is there &nyydfriends close to me now?” There
are two privacy requirements for this query. First, seryineviders are not allowed to know the real
locations of users. Second, users can only query an audtlditaset (e.g. a list of their friends).

In this paper, we address such a problem by developing a Wwark€o preserve location privacy
in moving-object environments. The basic idea of our apghasto send transformed user location
data to the service provider. We support a number of diffetygpes of transformations, such as
scaling, translation, rotation, to cloak user informatiorhese transformations are performed by
agents interposed between users and service provideratgAgre only responsible for transforming
information either received from the users or the serveryT$erve as intermediaries and do not
store user information. The service providers receiveridmestormed data and compute answers to
queries on these transformed data.

An important feature of our approach, which is critical foivpcy assurance, is the use of multiple
agents. The user can randomly choose the agent to receiugdrimation each time he issues an
update. Thus, each agent only has a part of the informatinoezaing the user. Such an approach
is crucial for enhancing privacy. For example, if an adverseacks one agent, it is still unable to
track the user; if some agents illegally store user infoiomathey cannot determine the trajectories
of users without colluding with other entities. Here our aggeh closely adheres to an important
security principle, dictating that sensitive informatisinould not be entrusted to a single entity;
rather such information should be spread among severékesnti

In our framework, the server stores for each agent a sulselaspecific to the agent. A query is
thus executed by the server separately on the sub-datasatbfagent. It is important to notice
that location-based queries require that relative digtaamong users through the same agent be
maintained after the transformation. The transformatisasadopt have such a property. Specifi-
cally, we employ a combination of the three basic types afsfermations, that is, scaling, rotation,
translation, as our transformation functions. It is howamgortant to notice that maintaining the
relative distance after the transformation may reveal thp topology. Therefore, we introduce the
concept ofmultiple transformatiorthat applies slightly different transformation functiciosusers’
positions updated at different time instants. This makesréative distance hard to be inferred.
Correspondingly, the multiple transformation also needsst applied to queries. To avoid handling
the increased number of queriessuper queryis then proposed, which covers all queries after the
multiple transformation. As explained later, a super quemyssentially an approximate version of
the original query, which facilitates efficient evaluatiohthis framework with additional filtering
costs.

Our technique not only prevents service providers fromriitig the exact locations of users, but
also keeps information about the location of an individualgie from other individuals not autho-
rized to access such information. Specifically, users haig af group IDs that indicate which
groups they belong to. Based on these group IDs, the sermaenaove the query answers that are
not in the qualified groups, so that users can avoid theiapyiteaked to other users not belonging
to the same group. A key characteristic of our approach isgiieacy is achieved without degrad-
ing service quality. Based on the experiments that we hawreedaout, our approach is particularly
efficient for update operations, in that it also reduces timalmer of disk accesses compared to con-
ventional algorithms. Such improvement is very attractivenoving-object environments where
update frequency is always high.

Finally, we develop a privacy model to analyze the privaselechieved in our framework. In
particular, we investigate the threats posted by the quames from discovering the users’ true lo-
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cations and movement pattern. We then propose intuitiveoastto quantify the level of protection
against these threats in our system.

To the best of our knowledge, this is the first framework thatects location privacy in moving-
object environments without sacrificing accuracy, and Whscalso scalable and supports a large
variety of queries.

A preliminary version of this paper appears in [14], wherepsesented the basic idea. In this pa-
per, we make the following additional contributions. Firgé provided more detailed description of
the framework. Second, we developed a new algorithnk fegarest neighbor queries. Third, we ex-
tended the discussion in the section of system analysishé&unore, we run a more comprehensive
set of experiments to demonstrate the efficiency of the syste

The rest of the paper is organized as follows. Section 2 wevielated work. Section 3 describes
the system architecture. Section 4 presents the detagedtims for location updates and queries.
Section 5 presents the system analysis. Section 6 covengrebansive performance experiments.
Finally, Section 7 concludes and gives future researclttiines.

2 Related Work

Privacy issues in location-aware mobile devices [15] haoently attracted considerable research
interest. Some early works on location privacy protectioggest the use of policies, which serve as
a contractual agreement about how user’s location infdomatan be used by service providers [9,
20]. Typically, users have to trust the service providemweler, such a trusted relationship is hard
and costly to establish especially for small or temporaryise providers.

Therefore, more recent works focus on the development ofyanization techniques specific
to location-based service environments. A common teclenigibased on the notion of spatial-
temporal cloaking. The idea is firstly introduced by Grutegtel. [8]. They propose the application
of the k-anonymity technique to cloak location information in artte support anonymous applica-
tions. Specifically, a user’s location is represented byg@orein which otherk — 1 users are also
present. This model has later been improved by Gedik et alTf&ir approach supports the assign-
ment of different values for different users to thparameter in a system. Also as part of their work,
they investigate the tradeoff between anonymity and acyuejuirements. In [1], Beresford et al.
use the k-anonymity metric in pseudonymous applicatiorise iiea is to rename user’s identity
when there are at leaktusers in the same zone. When there are lessithesers in the same zone,
a user may refuse to disclose his location. Recently, Chead) ] invetigated the trade-off of
location cloaking, privacy and quality of service. They eleped queries that evaluate cloaked data
and provide probabilistic answers. They also presentelitguzetrics in order to quantify the effect
of cloaking on service quality. Based on the similar ideakb et al.[16] propose a framework to
protect mobile users in location-based services, whiclpedbe cloaking idea and supports various
k parameters.

However, the abovk-anonymity model based approaches have at least one oflthwifay draw-
backs. First, some approaches cannot guarantee the acodithe query answers. Second, some
approaches cannot be applied when there are lesskthiarrs in a specific area. Third, they trust
agents and allow agents to store information about useishwiay make agents the target of attacks
by malicious parties. Finally, suchkaanonymity model may not be able to support anonymization
around sensitive areas such as home addresses in non-amwgpplications. For example, if a
user’s ID is known, the cloaking region around his home askiweill tell attackers that the user is
probably at his home.

Some other approaches are based on cryptographic techniqoee et al. [10] suggest encrypting
location data and using a privacy-preserving index for atieg range queries over encrypted data.
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However, this technique only works for specific query opaisaind is unable to provide accurate
query answers. Similarly, Khoshgozaran et al. [13] alsppse a one-way transformation to encode
all static and dynamic objects and resolve the query blimihe encoded space. Again, they are
not able to generate the exact query answers. To rectifihihrecomings of previous work, Yiu et al.
[24] have proposed a client-side query processing teclertivat retrieves points of interest from the
server incrementally until accurate query answers ardradmda The main problem of this approach
is the expensive communication cost since users need tiveemeich more data than just query
answers. Ghinita et al. [7] propose a framework to suppavafe nearest neighbor queries based
on Private Information Retrieval (PIR). Their approachginet require users to trust any third-party
anonymizer and can return exact answers. However, PIR miplz®ostly to be applied in practice.

Regarding the data transformation that we use in our systesre is one related work by Chen et
al. [3]. They also apply geometric transformations to datbwvith a different purpose which is to
preserve privacy in data classification.

Inrecentyears, researchers have developed a number gingdechniques for moving objects. As
we will explain in Section 3, any index for moving objects ¢snused in our framework. Represen-
tative indexes include the TPR-tree (Time-Parameterizé® family of indexes (e.g., [19, 21]),
transformation-based indexes such as STRIPES [17}rBe-based indexes such as tltetBee [12]
and the Bu/-tree [23]. In this paper, we employ the TPR*-tree [21] to m@e data at the server
side. Unlike existing approaches to the problem of locafidmacy protection, our approach can
be applied to anonymous, pseudonymous and non-anonymplisations, and guarantees 100%
correct query answers without information leaking.

3 The Strategies and the Architecture of the Location Privag
Protection System

In this section, we describe the strategies and the art¢higeof our Location Privacy Protection
(LPP) system. Figure 1 illustrates this architecture. Tagidstrategy underlying our approach is
to reduce the leaking of private information by using dagms$formation and employing agents
in-between users and servers. Each time a tiseeds to update his position, he does not directly
contact the server; instead, rdomlyselects an agent to which he sends his data. When querying,
the user has to send the query to all agents. Then the agéirggedute a transformation on the user
data or queries and pass the transformed data to the sehwesefver handles the data processing
and returns the query results to the agents. After receifiagesults from the server, the agents
perform a reverse transformation before returning theltetuthe user. We now proceed to describe
in details how each component of our system works.

e User

Users are position providers or query issuers. Users’ ipositare assumed to be unchanged
until next update, that is, tHecation databasat the service provider keeps the latest position of
each user. Users may have a list of qualified agents, and teegsaumed to have the ability to
randomly choose agents and perform some postprocessing.

Different policies can be adopted to protect informatioawtta given user from other users. One
policy is a global ranking, which allows users with high rartk query location and movement
information about users with equal or lower ranks. Anothaicy is a group policy, under which

users can query location and movement information abous uséhe same group. A user can be

1We use the term ‘user’ in the discussion. In reality the dbedractivities are carried out by some client softwarediasi
at the user’s device.
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Figure 1: LPP System Overview

a member of multiple groups and hence he may have a list ofpdiost In our system, we adopt
the latter policy. Hence, in location databases users aresented by records of the forfuid,
gids, loc, t,,p), Whereuid is the user IDgids is a list of group IDs, andoc is the user’s location
attimet,,.

e Agent

Agents are a critical component in our approach. An agensfoaims the data received from the
users and sends them to the server. It also executes rexarséotmations on the data obtained
from the server and then forwards them to the users.

The types of transformations supported by an agent incltiiesransformation of the user ID,
the group IDs, and the user locations. Agents periodicdlgnge their transformation functions
in order to prevent the server from analyzing the data froenséime agent. Thus, agents need to
maintain transformation tables for each type of data. Sables store records of the forft;,,

fid» count;q) and(tioe, fioe, countyo.), wheret records the time instant at which the transforma-
tion function f has started to be used, anglint is the number of objects being transformed by
I

There are three important features about our agents. Firsthe security purpose, agents are
independent of the main server, which means they are notr waaérol of the server. Second,
agents do not store any user data and hence they are lightwaqputers. Therefore, it is
possible to verify their code in order to provide assurarad@sut their correct behavior. Third,
transformation functions for different types of data do ne¢d to be changed at the same time.

e Server

The server is responsible for data storage, maintenance@ery processing. It also maintains
datasets transferred by various agents separately. Amxifai moving objects that supports
efficient updates and queries can be adopted to manage #setkain the server.

The main advantage of our approach is that no single entitagents or server) is able to track the
movement of any user without colluding with other entitieshie system. Because each agent only
collects a subset of the locations of each user in the sydterievel of trust required from each
agent does not need to be high. Moreover, the use afjents allows multiple transformations to
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be applied to the data by the same user. This makes it muclei@mdthe server to keep track of
the relative distance among users. In essence, the seiwellyia computing engine for the various
agents.

Finally, we would like to mention that we focus on queriesrav®ving objects in this paper. For
queries over static objects (e.g. restaurants, gas stqtioar framework can be extended in the
following way. We can store the static objects in a separatatzhse in the server since such objects
may not have any concern over location privacy, and then welightly modified query algorithms
(which will be explained later). Unless specified otherwia® assume the data of interest are
moving objects in subsequent discussions.

4  Algorithms

In this section, we present the detailed algorithms for ttatassformation, queries and updates in the
LPP system.

4.1 Data Transformation

Data transformation includes transformation of user IDsyg IDs, user locations, and queries. We
address each of them respectively in the following sections

4.1.1 ID Transformation

The main purpose of ID transformation is two-fold. First, meed to prevent the server from iden-
tifying the same users through different agents. This caedsily achieved by choosing different
transformation functions for different agents. There areestrictions on the transformation func-
tion itself. It could be a simple encryption. Also, we needtevent the server from tracking the
positions of the same user from one agent. We thus proposaimdically change the transforma-
tion functions for each agent, which can assign differeatide-IDs to the same user who sends data
at different time instants. A transformation table is themimtained for each agent. As mentioned
previously, the transformation table consists of recoffdh® form (¢;4, fia, count;q). Algorithms

for its maintenance are covered in section 4.2.

4.1.2 Location Transformation

Just transforming IDs is not enough to provide location gmwfor users because some locations
(e.g. homes) are strong-ly associated with user IDs and mesydause information leak. Therefore,
we introduce the notion of location transformation, whislkaicrucial feature of our system.

The main challenge in the development of suitable functfontcation transformation is to keep
the relative distance in each sub-dataset (the dataséhebttrom the same agent) unaltered by the
transformation in order to support location based serVieas nearest neighbor queries). Possible
transformation functions include scaling, rotating, slation, and their combinations. In our sys-
tem, we employ a combination of scaling, rotation and tratish. \We represent the transformation
function through its parameters denoted by the tiplé, (¢, t,)], wheres is the scaling factog is
the rotation angle, and,, ¢, are the translation distance along thandy axes respectively.

However, the preservation of the relative distance amonectdcould disclose the map topology.
For example, if the server tries to connect objects clos@amother, it may be able to discover the
joint distribution of objects and then determine the roativoek. Figure 2 gives a simple example.
Suppose that the original data lie on a grid-like road nekwdfr they are transformed by a single
transformation function, the server may discover the gyiccbnnecting objects on the same lines
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Figure 2: An Example of Position Transformation

(dashed lines in the figure). To address such a problem, guoagh is to make the relative distance
hard to be inferred. We thus adopt a strategy that requirels agent to periodically change the
location transformation function. We refer to such strategmultiple transformationThe bottom-
right part of Figure 2 shows the effect of the multiple tramsfation strategy. Assume that objects
01, O3, O7 andOy are transformed by a functiofy; Oz, Oy, Os5, Og andOg are transformed by
another functiory, that is only a little bit different frormy;. From the transformed objects, it is hard
to discover the original data distribution.

We now proceed to present the generation of the multiplestoamation. The first transformation
function can be an arbitrary one, while the following traefiation functions need to fulfill some
constraints. The differences among the transformed paositbbtained by various transformation
functions should be kept within a small range. Such a coimstisacrucial in order to provide good
quality answers to queries based on the relative distanoagiwbjects.

A simple strategy to satisfy the above constraints is toyaihyg translation operations with different
parameters to the first transformation function. Moreot@rachieve efficient queries, multiple
transformation should preserve the following property.

Property 1. Let (x,y) be a point,(xo, yo) be the position obtained by applying the initial trans-
formation function to(z, y), and(x1,y1), (z2,y2),..., (Tn_1,yn—1) be the positions obtained from
subsequent multiple transformation functions. The distdretweerzy, yo) and(x;,y;) (1 < i <

n — 1) must be less than or equal to a threshuld

The detailed algorithm for multiple transformation is suarired in Figure 3. The first step selects
an initial transformation functioffisg, 6o, (20, ty0)], Sets its countecount, to 0, and stores the
values in the transformation table. After a period of timg, we generate a new transformation
function. We first randomly choose a valden (0, A), and then randomly generate the parameter
d, (the translation distance afaxis) in the range of—d, d). The parameter for thg axisd, can
be computed byl, = +(d? — d2)%. Then we insert a new tupl@, , [s, 0, (tzo + da, tyo + d)], 0)
in the transformation table. This process is repeated aygryime interval. There are two things
worth noting. First, each agent can choose his aw8econd, the transformation table will not keep
growing. Functions that are no longer used by users will beoreed during the update operations
(as addressed in Section 4.2).

4.1.3 Query Transformation

We now address how to transform queries. In the discussidioeues on snapshot range queries. A
range query retrieves all objects the location of whichsfalithin the circular range = (¢(z,y), )
at a given query timestamp, whetr, y) is the center and is the radius of the query.
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Algorithm Multiple _Transformation(7'table, t.)
Input: T'table is a transformation table, is current time

1. if (¢, =0)then
/I select the first transformation function
2 randomly generate), 0o, .0, tyo
3 insert(O, [80, 0o, (tz(), ty())], 0> into T'table
4. else
5. randomly generaiéin the range of0, \)
6 randomly generat, in the range of —d, d)
7 randomly seleat, from {—(d? — d2)z, (d? — d2)=}
8 insert(t., [so, 6o, (tzo + dz, tyo + dy)],0) to T'table
end Multiple Transformation.

Figure 3: Multiple Transformation Generation Algorithm

Due to the multiple transformation on the users’ positi@ng,ery has to handle data from different
transformations. One solution is to transform the querggisil transformation functions, and then
execute multiple queries. However, this is not efficient amaly disclose the relationship among
transformation functions. Therefore, we introduce thecemt of super query which covers all
queries after multiple transformations. For example, guFeé 2, a range queuyis first transformed
into two queries (represented in the figure as dashed cirblegunction f; and f>. Instead of
answering these two queries, we propose answering a suggrgjuhat covers the regions of these
two queries. In this case, the query efficiency mainly depemdthe extra area covered by the super
query. In the following, we first describe how to generate shper query, and then analyze the
characteristics of the super query.

Given a queryy = (c¢(z,y),r), we can obtain a set of transformed queries by using the phailti
transformation functions. Since the transformation figret change with time, to compute a super
query that tightly bounds all transformed queries requiheschecking of all the transformation
functions and thus involves extensive computations. We@se to use an easily-computed super
query (denoted ag,) which is always a superset of the transformed queries sitlesparameter
A changes. Specifically;, is computed asys = (c¢(fo(z) , fo(y)), fo(r) + A), wherefy is the
first (initial) transformation function. Figure 4 illustes an example, where the black point is the
transformed query center by using the first transformatimetfion, white circles are positions after
other transformations, and the transformed radius of tleeyis .

Super quel

Figure 4: Super Query

The generation of the easily-computed super query is basé&taperty 1 (see previous section).
Property 1 prevents the super query from growing arbifréaiige. It guarantees that the radius of the
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super range query is at mostarger than that of any transformed query. Itis true thastifger query
may incur some overhead due to the search of a larger spageacedto the query transformed by
any one of the transformation functions. To characterieestiper query, we define ifalse negative
rate as the number of missing query answers divided by the nunftmreect query answers, and
define itsfalse positive ratas the number of false query answers divided by the numberrodéct
guery answers. Esstimates for false positive and falsetivegates are established by the following
theorem.

Theorem 1. Letq = (¢, 7) be a query, and, f1, ..., fn—1 be a set of transformation functions,
where f is the initial transformation function. Its super queyy = (cs, ) satisfies the following
properties

(i) false negative ratgn is 0;

(i) false positive ratefp is approximatel2\/ f;(r) (0 <i <n —1).

Proof. We denote the query transformed fiyasq; = (¢;,r;) (0 < i < n — 1). We denote the
correct answer set as.

() To prove the false negative rate is 0, we need to provefthianya € A, a can be captured by
qs-

We know thata is transformed by one of the transformation functions, gaf) < i < n — 1).
Then,a can be captured by the querywhich is transformed by the same transformation function.

According to Property 1, the distance between the centegsaridq, (transformed byyfy) is less
than\. According to the generation algorithm of the super quéry,denter ofy, is the same as the
center ofy,, and the radius of the, is A more than that of the;. Consequently, we have — r; >
distance(cs, ¢;), which indicates thag, coversg;. Hencea can be captured by;.

(il) Assume the data points are evenly distributed, then vag mse the areas to see how more
points can be covered by the super query compared with thy §yea single transformation (i.e.,
the number of false positives is proportional to the extemar

The areaS; covered by a query; is 7r? . The areaS, covered by the super queryigr; + \)2.
Then the percentage of increase in the area of the super iguery

f _ S.=Si _ w(ri+ )2 —mr? _ A@2ritA)
p Si 777’12 r?

When\ < r;, fp >~ 2\/r;. O

Theorem 1 demonstrates the correctness of the super quefglée negatives) and points out a
way to tune the performance of the query. Given a false pesitite, we can choose a proper

Note that from the users’ point of view, there will be no fafsssitive because the agent will filter
the data rerturned by the server in order to eliminate theefpbsitives.

4.2 Updates

Generally, an update is interpreted as a deletion followeahnsertion. Figure 5 shows the detailed
update algorithm.

To insert a tuplguid, gids, loc, t,,) Of a user, three steps are executed. First, the user randomly
selects an agent and sends his information to the agentn&eite agent transforms the user ID,
the group ID list and the location, and then sends the tramsfd data to the server. During the
transformation, the agents will adjust the counters of thesformation functions, and remove the
ones with counters equal to 0 which will not be used in therkitirinally, the server tags the data
with the agent ID and stores them.

For the deletion, the user needs to submit his old informatitothe same agent which handled
the insertion of this information. The agent will check thansformation table and look for the
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Algorithm Update

User:
Insertion:
1. randomly select an agent with 2d
2. send(uid, gids, loc, t,,," i) to the agentiid
Deletion:
1. send(uid, gids, loc, t,p, d') to the agentid
Agent:
1. receive(uid, gids, loc, t,, op) from the user
2. fiq < ID transformation function of time,,
3. (uid', gids") — fia(uid, gids)
4. fioc « location transformation function of timsg,,
5.loc «— fioc(loc)
6. send(uid’, gids’',loc , t,,, op, aid) to the server
7.if (op =='1") then// this is an insertion

8. count;g <+ count;qg + 1
9. countye < countye + 1
10. else// this is a deletion
11. count;q < count;q — 1
12. countjye <+ countjye — 1
13. if (count,. is 0 andfi,. is not1s! function)
14. delete the tuple ofj,. from transformation table
15. invoke MultipleTransformation every;,,,
Server:

1. receive(uid', gids’, loc’, t,,, op, aid) from the agent
2.if (op ==’ 1) then// this is an insertion
3. insert(uid’, gids',loc’, ty,, aid)
4. else/l this is a deletion
5. delete{uid’, gids’,loc , tyy, aid)
end Update.

Figure 5: Update Algorithm

User Space Agents Server Space
JPCE "1 0110
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Figure 6: An Example of Update Operation
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corresponding function at the update time. Then, the agéhtse this function to transform user
information, and decrease the counter of this function &y ¢fithe counter is 0, the function (except
for the first one) will be removed from the transformationi¢éalihe remaining process for deletion
is similar to the insertion.

It is worth noting that users can send deletion message tolthegents and insertion message to
the new agents.

Consider the example shown in Figure 6. Suppose there are$evsO,, Oz, O3 andO,, and two
agents4; andA;. O; andOs select agenfl;, andO; andO,4 select agentl,. The transformed
data ofO; andOs is O] andOj, and the transformed data©f andO, is O} andO),, respectively.

We also consider the situation when an object disappeaigeatally without being able to notify
the server. The information of such objects will soon be atgd. We define that an object is
outdated if difference between its latest update time anckotitime is larger than a given threshold.
During each insertion or deletion, we identify and deletlated entries in accessed nodes.

4.3 Queries

Our model supports various types of snapshot queries. Ifotlesving, we outline the query execu-
tion strategies for two popular types of queries, rangeiga@ndk nearest neighbor queries.

User Space Agents Server Space
Oi’o/ q';\\
RG] o
o T o | 4 >
: ‘o, 7 Al-g oo/
A\/ - \,\/

7 \ . > \
~ NEYe) .
a, Phd < A ¢ as ! l\)4 e l
—t - - 2. i
- e O ,
- ql N pa
~ — !
- - ql

Figure 7: An Example of Query Operation

4.3.1 Range Query

A range query retrieves all objects whose location fall$imithe circular range = (c¢(x,y),r) at
a given query timestamp, whetér, y) is the center and is the radius of the query.

As object positions are transformed in different ways tigtodifferent agents, we have to send a
query to all agents. Each agent will generate and send a qupgy to the server. After receiving the
query answers from the server, the agent needs to transfam back and to check whether they
are the correct answers to the original query. Finally,s18élt aggregate the partial results obtained
from the agents. If user ranks or group IDs are to be takenbintihe query, one more filtering step
will be carried out by the server in order to prune unqualiiedwers. Note that the server can filter
the results based on transformed IDs before sending angsésagents. Figure 8 shows the outline
of the algorithm.

Figure 7 gives a simple query example, wheres a current circular range query and the dataset
in Figure 6 is reused. We can see from the user spacé&xthahdO, are the query answers. Since
O3 andO, are transformed by different agents, in order to capturie tfemsformed positions in the
server spacey needs to be transformed through all agents. The transfammgeénerates querie$
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Algorithm Range_Query

User:

1.for (i — 0)to (z < m) do

2. senduid, gids, c(x,y), ) to theit" agent
Agent:

1. receive(uid, gids, c(x,y), ) from the user

2. gids' — fia(gids)

3. (@', y), ") — (e(fo(x), fo(y)), fo(r) +A)

4. send(c' (', y'),r', gids', aid) to the server
Server:

1. receive(c/ (2, y'), ', gids’, aid) from the agent

2. find users in the query range

3. remove users that not in any groupyedls’

4. return query resulfyresult) to agentid

Agent:
1. receive the query resul§id’, gresult) from the server
2. gresult’ — reverse transformresult
3. for each resulgr in gresult’ do
4. if (gr not an answer of the original queryjen

5. removeyr from gresult’
6.returngresult’ to useruid
User:

1.for (i — 0)to (z < m) do

2. receivegresult from theit" agent

3. aggregate all the query results
end Range&Query.

Figure 8: Range Query Algorithm

andqy. Theng] will return the answeD); to agentd,, andg} will return the answepD), to agent
As. Agents execute reverse transformations on the obtainedeans and send the final answey
andO, back to the user.

If a range query about static objects that have no privagy,(estaurants) is submitted by the user,
the algorithm in Figure 8 is simplified as follows. First, theery does not contain any user group
information. Second, the user only sends it to any one of ¢lem®. The agent does not need to do
any transformation (i.e., steps 2 and 3 are skipped). Thestren evaluates the query as usual, but
this time using the static object database. Finally, thenagienply passes back the result obtained
from the server to the user without doing any transformation

4.3.2 K Nearest Neighbor Query

Given a query object with positiofyz, qy), thek nearest neighbor quergIN query) retrieves
objects for which no other objects are nearer to the quergablait a given query timestamp.

One way to compute this kind of query is to transform the pmsiof the query object using all
the functions in the agent’s transformation table. And thever needs to considéNN for each
transformed query position. For simplicity, we propose éonpute thekNN query by iteratively
performing range queries with an incrementally expandactseregion untik answers are obtained.
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The conversion from &NN query to a range query is as follows. The first range qugris
centered atqx, qy) with radiusrg = Dy, where Dy, is the estimated distance between the query
object and its:'th nearest neighbot);, can be estimated by the equation [22]:

1
2 k\?

whereN is the number of objects. The radius will be enlarged-by= D;,/k at each iteration in
query processing, untl answers are found.

Like the range query, NN query also needs to be sent to all agents. The main ditferenthat
each agent needs to convert tildN query to a range query first. Then the agent transforms the
range query and the expansion paramejeand sends them to the server (the transformed query
andr, are denoted ag' andr; respectively). The server will keep processing the range g
with the radius extended by, each time, and return the query result to the agent onceafrebt
qualified answers. Finally, each agent computes the cadis@nce, and sends the distance along
with the user IDs to the user that issued the query. The usardbmbines these to find his trie
nearest neighbors.

For example (see Figure %) is a nearest neighbor query, agidandq} are corresponding queries
in the server space after the transformation. FggnagentA; gets a candidate nearest neigh®ér
Fromgy, agentA, gets a candidate nearest neigh®gr Then the user will receive two candidates
O; andO,. After comparing the real distance between candidateslanduery object, the user
finally obtain its nearest neighb6r; .

If a KNN query is executed over non-private static objedts, query just needs to be submitted
to one of the agent, which does not do any transformation ansaird the query to the server.
The server executes the KNN query over the static objecbdataand returns the result to the user
through the help of the agent. If the query object of the kNNrgus a private property (e.g., it is
the current location of the user), then the kNN query can bweded to a range query in order to
hide the actual position of the query object.

5 System Analysis

This section analyzes the privacy protection, commurocatbsts and concurrent processing in the
LPP system.

5.1 Privacy

For the privacy analysis, we provide a formal model for braftederstanding and evaluation of the
LPP system. We focus on location breach rather than ID ptiotemn the following discussion.
Several assumptions are adopted in the model. First, wenastat agents are trustable since
they are lightweight systems and may be easily verified. @ssumption is commonly used in
many other location privacy protection methods (e.g. [4).16econd, we assume that the server
knows the overall architecture of the LPP system, which ra¢la@ server knows from which agent
an update or a query is sent. Based on these assumptions,fiwe der privacy modelSpatial
I'—anonymity, as below.

Definition 2. Spatiall'—anonymity
Given a usellU, U is said to satisfySpatiall'—anonymity if the probability that the server can
infer the position of this user is less than or equdl'to
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In the LPP system, a global privacy threshdlds guaranteed for all users by properly setting
system parameters. Given a privacy requirement, thereddmiimore than one applicable system
settings. An important step of the system configuration detiine an analytical model of the privacy
achieved by our approach. In what follows, I&tp» denote the spatial anonymity achieved by the
LPP system. We describe hdw, pp is formulated.

First, let us review the multiple transformation strategt each agent, the first transformation
function is randomly selected and the following transfatiorafunctions are developed from the
first function by using\. We definel';,., as the probability that the first transformation function of
agent is disclosed, anfl'y, as the probability that the value of agent is disclosed. To guess one
location of a user, the server needs to know the reversddramation function of the corresponding
agent, of which the probability iB;,, - I'x,. Then for any user, we hai&, pp as follows:

I'rpp = max}il (th : ]-—‘M) (1)

wherem is the number of agents. We now proceed to present how todbtaandI™, and analyze
possible threats in the LPP system (for convenience, wetti®pubscript from I';,., andI’y,). We
will mainly introduce two types of privacy issues: privagyainst location discovery and privacy
against pattern discovery.

Iy, largely determines thprivacy against location discoverysince the data transformation is
dominated by the first transformation function. To computg we classify the servers into three
categories: (i) Servers without any prior knowledge; (&n&rs with weak prior knowledge; and
(i) Servers with strong prior knowledge.

We denote the user’s original position(asy). After applying a combination of translation, scaling
and rotation (i.e., the first transformation function), visain the transformed positiqa’, ). The
transformation process is formalized as follows:

2 = Ryg(d, + s 2)
y/:RG(dy+5'y)

where Ry denotes the rotatiord(is the angle)d, andd, are translation parameters, andgs the
scaling parameter. The original domaingofl ands are denoted aR,, Dy andsSy.

If the server does not have any prior knowledge, and in pdsidt does not even know the type
of applied transformation, it is unable to determiney) from (z’, y’) because the right side of the
equation 2 is totally unknown to it. In this case, the probgbi’;,. that the server can infer the
user’s location at this agent is close to 0, which means thatlocations have the maximum degree
of privacy.

If the server has some weak prior knowledge, for exampledtathe type of transformation and
some constraints on the application, the original domaitmefparameter can be narrowed to some
extent. LefR, D andS denote the new domains. To find the original locationy), the server needs
to try all the combinations of the three transformation paters in the new domains. Heilé,.
represents an estimate of the possibility of determinimgdtiginal position. If the values in the
domain are discretd;;, can be evaluated by equation 3, whgké |D| and|S| are the cardinalities
of the domains.

)

1
L = RIS ©
If the values in the domain are continuoiis, can be estimated by the volume of the three domains.
Given the range of each domain toBe= [R~,R*|,D = [D~,D*] andS = [S—, ST], and the
granularity that an application requires to@ewe measuré';,. by equation 4.
1

Ly = - - -
ey 4

(4)
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Just having the knowledge of the first transformation fumttihe server can only infer that the user
location is within a certain circle with radius X is the value that indicates how much a transformed
location will deviate from the one strictly preserving ttedative distance. Therefore, we defing
in equation 5. The larger thg the harder it is to discover the real location of the used, aiivacy
is thus better protected.

1

I="T0w7G

()

On the other hand) also protectgrivacy against pattern discovery. If the server has strong
prior knowledge, such information may not only provide imf@tion on parameter constraints of
the transformation functions, but may also indicate theepatof distribution of users’ locations.
However, the identification of such patterns is still a difftgroblem for both statisticians and com-
puter scientists [5, 11], and after using our proposed pieltransformation strategy, the problem
could become even harder as illustrated in Figure 9. Fig(agshows the original data (about 1K
user locations), from which we can clearly observe the ropdlbgy. Figure 9(b) shows the trans-
formed data from one agent (3 agents in total), which is franged by the combination of scaling,
rotation and translation. We can see that after transfaomgait is hard to identify the pattern; only
some dense regions can be seen.

(a) Original Data (b) Transformed Data

Figure 9: Original Data vs. Transformed Data

To sum up,I'y, gives the probability that the server discover the singdadformation function at
each agent; antly,. - "y gives the probability that the server discover the multipesformation
strategy. Then, the findl;, pp is the maximum value df .- I" of m agents, which is the probability
that the server knows about data transformation at any ayémtvould like to mention thaf . pp
is generally very small and can satisfy most privacy requésts. To have some idea of how small
thisT', pp could be, let us look at the following example. Suppose aatfent with the most prior
knowledge, the rotation domain has been constrained witldagree to 60 degree, the translation
domain is [0..10], the scaling value is chosen from 1 ta & is 10, and the granularitg is 10~°.

We can compute that,, is 5.6 x 101% andI'y is 0.1. Thel';, pp is about onlys x 10~!*. On the
other hand, we can also see that by adjusting domain sixevalue, the LPP system can achieve a
given privacy requirement. The detailed configurationfistiethe future work.

Another common threat in network services is eavesdropgimigg communications. However,
we do not consider it in our paper since this type of threat lmamitigated or avoided by data
encryption.
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5.2 Communication Cost

In our system, there are two types of operations: update aexyeperations. An update needs one
round of communication between a user (agent) and an agawe(¥. Its communication cost is
independent of the number of agents. A query needs one roetiagtbn a user ana agents, and

a server and the, agents. The server returns subquery results to each ageniose the message
sizes of a query and a query result set gyeandS, respectively. The subquery result sizesisin

the worst case. Then the communication cost of a queyigS, + S,). Sincem determines the
privacy level (n = 1 i.e. no privacy), the larger the value of, the higher the privacy level would
be. Therefore, a trade-off exists between the communitatists and the privacy level.

The trade-off issues between privacy and communicatiots ¢ave been widely studied in context
of network-level privacy protection. In particular, tedfpmes have been devised to enhance network
privacy by increasing the communication costs. For exaniplg2, 18], in order to conceal the IP
address, network packets have to go throughgents before reaching the receiver. In this case, a
complexity ofO(m) for communication costs is required.

5.3 Concurrent Processing

We now discuss the effect of concurrent processing in ouesygompared with systems that do
not use any agents. As mentioned in the previous sectiomsnethod converts one query from a
user into several small queries. From a user’s view, theopeiince difference lies in “one server
handling one big query” versus “one server handling sevarelll queries”. The processing time
for a small query is obviously short. Due to the limited thttgmol, all small queries may not be
executed exactly simultaneously. So the timéo get results from all small queries may be a little
longer than the time for executing a single small query. Wenoasay? is always longer than
the time to process a big query. There should be a balanciimg. p our case, the balancing
point may be found by varying the number of agents (i.e. thaber of small queries) when the
system configuration is known. In the worst case, small @saaie executed in sequence, the query
performance is still comparable to that of traditional nogkh as shown in our results. Further, our
approach can be easily applied to multiple-server enviemtsas the sub-databases in the server
are relatively independent of one another. If so, the soBvemntention may be reduced to more
extent than traditional approaches. In fact, our approaaviges increased opportunities for parallel
execution.

6 Performance Study

6.1 Experimental Settings

All the experiments were run on a 2.6G Pentium IV desktop WiEbyte of memory. The page size
is 4K. At the server side we employ the TPR*-tree [21] to ind®ving objects. The original range
query algorithm for the TPR*-tree only supports rectangleges. We modified it to support the
circle ranges by executing a regular rectangle range qukighaightly covers the circle range, and
then filtering the extra results. We compare both query anidigmperformance of our model against
the pure TPR*-tree. Performance is measured in terms offdigk I/O and CPU time.

We use synthetic datasets of users with positions in a spam&id of 1000 x 1000. One may
think of the unit of space being the kilometer. In most experits, we use uniform data, where
users’ positions are chosen randomly. We have also run iexgets on skewed datasets that follow
the exponential distribution. The maximum interval betaé®o successive updates by a user is
120 time units. Unless noted otherwise, we create the lirdagaset for all users at time 0, and
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| Parameter | Setting |
Page size 4K
Buffer pages 100
Number of agents 2,3,4,5,...,20
A fr) 0.01,...0.05...,0.1
Time interval of changing function 0, 5,10, 15, ..., 50
Max update interval 120
Query size (diameter) 10,...,50, ..., 100
Number of neighborg; 10, 20, 30, ..., 100
Number of queries 100
Data size 100K, ..., 1M
Data distribution uniform, exponential

Table 1: Parameters and Their Settings

then evaluate the system performance after the maximunteipdarval during which each user has
issued at least one update.

The parameters used in the experiments are summarized i@ Tatvhere values in bold denote
the default values.

6.2 Range Query Performance
6.2.1 Impact of Super Queries

The notion of super query is an important component of our@ggh with respect to the protection
of the map topology. However, super queries may introduoeedalse positives that may adversely
affect performance. In the experiments reported here, ugitivestigate the performance impact of
the super query by examining the false positive rate. Réatlthe false positive rate is the number
of query answers filtered by the agent divided by the numbejuefy answers received from the
server. The smaller the false positive rate, the less aditivork the server and the agent have to
carry out.

First, we use the same size of range queries in a 100K dasasktest the false positive rate when
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Figure 10: False Positive Rate
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varying the values of. Figure 10(a) shows the results, where thaxis is the rate oh/ f(r) (f(r)
is the query radius after transformation). As expectedfdlse positive rate increases linearly with
A/ f(r); alargerA results in a larger searching space.

Then, we fix the value of to 0.5 and vary the query range diameter from 10 to 100. FigQ¢k)
shows the corresponding false positive rate. We can obskatdhe false positive rate decreases
when the query size increases. As we know, the higher thee@flu is, the more obscure the
transformed data pattern would be. This indicates that # &ystem provides higher privacy and
with smaller performance overhead when the query sizegelar

Next, we vary the time interval,,, between each pair of consecutive transformation functiées
shown in Figure 11(a), the false positive rate for differigpt is almost the same. The reason is that
the super query is computed based on the first transformatimtion and the value of, and hence
the frequency of the transformation function changes dogaffect performance.

We also evaluate the false positive rate for values of da iinging from 100K to 1M. Fig-
ure 11(b) shows that the false positive rate oscillatesratdi%o for different sizes of dataset. This
again shows that the false positive rate is dominated byetteeaf)\/ f (r) as stated in Theorem 1.
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Figure 11: False Positive Rate

6.2.2 Impact of Data size

In this set of experiments, we vary the data size and anahgenge query performance of the sin-
gle TPR*-tree and two versions of our model. “LPP (superg)ietenotes the version that uses the
concept of the super query; “LPP (non-superquery)” denthtesersion that uses the single trans-
formation. The reason for comparing these two versions isuestigate the possible performance
degradation incurred by the super query.

Figure 12 compares the query cost of the TPR*-tree and theofwumery cost of all agents in our
model. Based on the results reported in the figure, we can thek®llowing observations. First,
the performance of the approach based on the super querytéssipilar to that of the approach
based on the single transformation. The difference betwheEm is less than 3%, which indicates
that the use of the super query provides increased privamtggiion without compromising query
performance. This is an important experimental result thtlates a key idea of our approach. In
the experiments reported in what follows, we thus only cdasthe version of our techniques that
uses the super query. Second, giveragents, the total query cost of our approach is sometimes a
little bit higher but notm times more than that of the TPR*-tree. This is because oneyquié be
sent to all agents according to our schema, and the servds i@eompute the transformed queries
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Figure 12: Impact of Data Sizes on Range Query Performance

from all agents. The cost of computing a query from an agdesisthan that of evaluating a query
in the single TPR*-tree since the query from an agent is ebegbon a smaller dataset that maintains
transformed data from the same agent.

Although our model may incur a little bit higher total querysts, the query response time of our
model could be better given that the server supports magkig or there are multiple servers; it
can run multiple queries in parallel since each sub-daiagetatively independent. As shown in
Figure 13, the response time of our approach is much sméaber that of the TPR*-tree, and the
difference increases with growing data size. This behasioot surprising. The response time of
our approach corresponds to the time required to executery fpom an agent because the server
can compute queries from all agents simultaneously. Asioreed previously, the cost to compute
a query from an agent is smaller because it is executed onlassrmhadataset.
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Figure 13: Query Response Time with Varying the Data Size

6.2.3 Impact of Number of Agents

We next study the impact the number of agents has on the qeefgrmance. The TPR*-tree is
used as the baseline for comparison.

Figure 14 shows the total query cost as a function of the nuwftagents. We observe that, for our
model, the total query I/Os first increases until a point beefodecreases and then remains almost
constant. Specifically, in the 100K dataset, the total quidyg starts to decrease when more than
6 agents are used. This behavior can be explained as folldotws.total query cost is determined
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Figure 14: Impact of Number of Agents on Range Query Perfagaa

by two factors: the query cost of one agent and the numbereritag When the number of agents
increases, the query cost for one agent decreases due tedfeasded dataset size with respect to
one agent. Therefore, the results can be seen as a comhinétite two effects. From the Figure,
we observe that their product reach a maximum point, whiéhirsthis case.

However, the total query time of our model always increasiéls the number of agents. This can
be explained by observing that the query time does not dser@afast as the increase of the number
of agents. In the TPR*-tree, the number of node accesseseceediced to a greater extent when
the dataset becomes small, while the CPU time decreasesstoveér as shown in the Figure 15.
Figure 15 also indicates that our model may achieve betspiorese time compared with the TPR*-
tree. The reason is similar to that we discussed for the pusvéxperiments (Section 6.2.2).

—a— TPR*-tree

—a—LPP

Query response time (ms)
o = N W = a o ~ ) ©
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Figure 15: Query response time for varying number of agents

In the following experiments, we explore the combined dffefcthe number of agents and data
sizes. Figure 16 shows the results in the 100K and 500K ddtgagsing up to 20 agents. We can
observe that the performance of 100K and 500K dataset de¢ratesssimilar patterns, while the
point at which the query I/O cost starts to decrease is a liftl different, namely 6 agents for 100K
dataset, and 12 agents for 500K dataset. This implies trggraatasets may need more agents.
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Figure 16: Impact of Number of Agents and Data Sizes on RangsyPerformance

6.2.4 Impact of Query Size

In this section, we analyze the effect of the query size, imgrthe query diameter from 10 to 100
for a dataset of size 100K. Figure 17 shows that the quensaufshoth TPR*-tree and the LPP
system increase with the query size. The reason is straigvafd. Larger query ranges contain
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Figure 17: Impact of Query Size on Range Query Performance
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Figure 18: Query Response Time with Varying the Query Size
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more objects and therefore lead to more tree node accessasman/dlso observe that the total query
I/Os of the LPP system is quite close and sometimes less tiaaotthe TPR*-tree, while the total
query time of the LPP system is slightly longer.

Figure 18 plots the response time of the TPR*-tree and thedyBEm, which shows the similar
performance patterns as that of previous experiments.

6.2.5 Impact of Skewed Data

To analyze the query performance on skewed data, we usestlatd®xponential distribution with
the same skewed parameters from 100K to 1M. Figure 19 shawdqberiment results. It is inter-
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Figure 19: Impact of Skewed Data on Range Query Performance

esting to see that the LPP system performs much better tleahRR*-tree for skewed data. Both
the total I/0O cost and CPU time of the LPP system are less tietrof the TPR*-tree, and the dif-
ferences between them increases as the data size incraasason for such behavior is as follows.
Overlaps among MBRs in the TPR*-tree become more severe Wiedataset become skewed
and large. The LPP system partitions the dataset into sabetatwith respect to agents, and hence
reduces the chance of overlaps which leads to the enhantefrtba query performance.

6.3 K Nearest Neighbor Query Performance

We proceed to evaluate the efficiency /fIN queries. Because theNN query is treated as an
incrementally expanded range queries, the performantereiifce between the TPR*-tree and the
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Figure 21: Query Response Time when Varying

LPP system exhibits a behavior similar to that of range @sasihen considering the effect of super
query, data size, number of agents and so forth. Here, wemirasepresentative result which is the
impact of the value of, that is, the number of required nearest neighbors.

As shown in Figure 20, the total query cost increases for @l PR*-tree and the LPP system
ask increases. The LPP system has higher query cost becausatbersust execute/d\NN query
in each sub-dataset corresponding to each agent, and tich seage would be bigger for the same
k in a smaller dataset. However, the response time of the LBfersycould be still better than that
of the TPR*-tree as we can observe from the Figure 21.

6.4 Update Performance

We now compare the average update cost (amortized ovetiors@nd deletion) of our model
against the TPR*-tree.

6.4.1 Impact of Data Size

First we examine the update performance with respect todtesdt size. We compute the average
update cost after the maximum update interval of 120 timésufirom Figure 22, we can see that
our model achieves better performance than the TPR*-treth e 1/0 and CPU costs incurred by
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Figure 22: Impact of Data Sizes on Update Performance
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our approach are less than that of the TPR*-tree. Moredvenipdate cost of our model increases
slower than that of the TPR*-tree. A reason is that an updasemt to only one agent. The whole
dataset has been partitioned by agents, and then the sanalel each update only in a small par-
tition corresponding to the agent, which leads to reducethtgcosts. This result is very important
because the update performance is crucial when dealingmadtring object databases where the
update frequency is much higher than that of the queries.

6.4.2 Impact of the Number of Agents

In this section, we investigate the update performance ohmdel when using varying values for
the number of agents in the system. Figure 23 shows the I/@&télcosts of the update. Observe
that the update cost of our model is smaller than that of the*firee and keeps decreasing when
the number of agents increases. This is because the usés dataibuted among agents. The more
agents, the fewer number of data that this agent is resgerisiband hence the dataset of this agent
maintained by the server is smaller. It is obvious that aratgédxecuted in a smaller dataset would

be more efficient.
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Figure 23: Effect of Number of Agents on Update Performance

6.4.3 Impact of Skewed Data

Finally, we evaluate the update performance in the skewtabdts that we used in the experiments
on queries. As shown in Figure 24, both the TPR*-tree and BB kystem have a performance
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similar to that of the uniform datasets. A reason for thisawédr is that the update cost is already
very small and hence less affected by the skewed data.

7 Conclusions and Future Work

In this paper, we propose a novel system framework to addihesproblems of location privacy
in moving-object environments. Our framework achieveshhdgh assurance privacy and good
performance. Specifically, our framework uses a number eftsgin-between users and servers.
Agents are lightweight systems which do not store any udernmtion, but only perform data
transformation. In this way, our system can prevent serfivers knowing exact locations of users,
and even map topology. We have also developed a privacy nodelalyze the degree of privacy
protection.

We have carried out extensive performance studies to adsesapact of various parameters. We
have tested our technique on both uniform and skewed datdare analyzed the impact of various
parameters, such as data size, number of agents, query\i@zeave also compared the performance
of our technique with a traditional approach — the TPR*-trarghich does not consider privacy. The
results show that our approach outperforms the TPR*-trée rggards to update operations.

Several promising directions for future work exist. An innfamt extension is the support for con-
tinuous queries. Another relevant direction is how to setygtem configurations so that the privacy
level of the system satisfies a given threshold. Further, aveconsider how to satisfy individual
privacy requirement in the system. Yet another directido i®fine the proposed privacy protection
metrics by taking into account priori knowledge that theexdary may possess, in order to have a
better assessment on privacy risks.

Acknowledgement

The work reported in this paper has been supported by UM Reis®&oard under the project “Pre-
serving Location Privacy in Pervasive Environments”, tres@rch Grants Council of the Hong
Kong SAR, China (Project No. HKU 513806E) and the ResearcfteCéor Ubiquitous Computing,
Central Allocation Group Research Projects (HKBU 1/05C).

References

[1] A. R. Beresford and F. Stajano. Location privacy in psiva computing.|[EEE Pervasive Computing
2(1):46-55, 2003.

[2] D. L. Chaum. Untraceable electronic mail, return addess and digital pseudonym&omm. of ACM
24(2):84-88, 1981.

[38] K. Chen and L. Liu. A random rotation perturbation appro#o privacy preserving data classification. In
Proc. ICDM’'05, 2005.

[4] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Prasguser location privacy in mobile data man-
agement infrastructures. Proc. Workshop on Privacy Enhancing Technolog&06.

[5] D.L.Donoho and X. Huo. Beamlet pyramids: a new form of tinakolution analysis suited for extracting
lines, curves, and objects from very noisy image dat&@rbc. SPIE pages 434—-444, 2000.

[6] B. Gedik and L. Liu. A customizable k-anonymity model famotecting location privacy. IRroc. IEEE
ICDCS pages 620-629, 2005.

[7] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and_Ran. Private queries in location based
services: Anonymizers are not necessaryPioc. SIGMOD 2008.

[8] M. Gruteser and D. Grunwald. Anonymous usage of localiased services through spatial and temporal
cloaking. InProc. MobiSyspages 31-42, 2003.

TRANSACTIONS ONDATA PRIVACY 2 (2009)



46

Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

9]
(10]
(11]
(12]
(13]
(14]

(15]
(16]

(17]
(18]
(19]

(20]
(21]

(22]
(23]

(24]

U. Hengartner and P. Steenkiste. Protecting accessdpl@éocation information. IfProc. SPC pages
25-38, 2003.

B. Hore, S. Mehrotra, and G. Tsudik. A privacy-presegvindex for range queries. FProc. VLDB pages
720-731, 2004.

X. Huo and D. L. Donoho. Recovering filamentary objectsseverely degraded binary images using
beamlet-decorated partitioning. Rroc. ICASSP2002.

C. S.Jensen, D. Lin, and B. C. Ooi. Query and update efftdi+-tree based indexing of moving objects.
In Proc. VLDB pages 768-779, 2004.

A. Khoshgozaran and C. Shahabi. Blind evaluation ofestaneighbor queries using space transformation
to preserve location privacy. Broc. SSTDpages 239-257, 2007.

D. Lin, E. Bertino, R. Cheng, and S. Prabhakar. Positransformation: A location privacy protection
method for moving objects. IRroc. ACM GIS Workshop on Security and Priva2§08.

R. P. Minch. Privacy issues in location-aware mobileides. InProc. HICS$2004.

M. F. Mokbel, C. Y. Chow, and W. G. Aref. The new casper: eQuprocessing for location services
without compromising privacy. IRroc. VLDB pages 763774, 2006.

J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An effitieadex for predicted trajectories. Proc.
ACM SIGMOD pages 637—-646, 2004.

M. Reiter and A. Rubin. Crowds:anonymity for web tractans. ACM Trans. On Inform. and Sys.
Security 1(1):66-92, 1998.

S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. pez.o Indexing the positions of continuously
moving objects. IProc. ACM SIGMOD pages 331-342, 2000.

E. Snekkenes. Concepts for personal location privatigies. InProc. ACM EC pages 48-57, 2001.

Y. Tao, D. Papadias, and Jimeng Sun. The tpr*-tree: Aintped spatio-temporal access method for
predictive queries. liProc. VLDB pages 790-801, 2003.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficieost model for optimization of nearest
neighbor search in low and medium dimensional spate®E, pages 16(10): 1169-1184, 2004.

M. Yiu, Y. Tao, and N. Mamoulis. The®*!-tree: Indexing moving objects by space-filling curves ia th
dual spaceVLDB Journa) 2006.

M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. A random ratatperturbation approach to privacy
preserving data classification. Rroc. ICDE, 2008.

TRANSACTIONS ONDATA PRIVACY 2 (2009)



