
TRANSACTIONS ONDATA PRIVACY 2 (2009) 21–46

Location Privacy in
Moving-Object Environments

Dan Lin †, Elisa Bertino‡, Reynold Cheng§, Sunil Prabhakar‡
†Department of Computer Science, Missouri University of Science and Technology

500 w. 15th St., Rolla, MO 65409, USA

E-mail: lindan@mst.edu
‡Department of Computer Science, Purdue University

305 N. University St., West Lafayette, IN 47907, USA

E-mail: {bertino,sunil}@cs.purdue.edu
§Department of Computer Science, Hong Kong University

Pokfulam Road, Hong Kong

E-mail: ckcheng@cs.hku.hk

Abstract. The expanding use of location-based services has profound implications on the privacy of personal
information. If no adequate protection is adopted, information about movements of specific individuals could be
disclosed to unauthorized subjects or organizations, thusresulting in privacy breaches. In this paper, we propose
a framework for preserving location privacy in moving-object environments. Our approach is based on the idea
of sending to the service provider suitably modified location information. Such modifications, that include
transformations like scaling, are performed by agents interposed between users and service providers. Agents
execute data transformation and the service provider directly processes the transformed dataset. Our technique
not only prevents the service provider from knowing the exact locations of users, but also protects information
about user movements and locations from being disclosed to other users who are not authorized to access this
information. A key characteristic of our approach is that itachieves privacy without degrading service quality.
We also define a privacy model to analyze our framework, and examine our approach experimentally.

1 Introduction

The expanding use of spatial, mobile and context-aware technologies, the deployment of integrated
spatial data infrastructures and sensor-networks, and theuse of location data as the foundation for
many current and future information systems have profound implications on the privacy of personal
information. Today people are increasingly aware of privacy issues and do not want to expose their
personal information to unauthorized subjects or organizations. An important problem is represented
by the possibility that a piece of personal information released by an individual to a party be com-
bined by this party, or other parties, with other information, leading to the disclosure of sensitive
personal information. In other cases, even if an individualdoes not directly release personal infor-
mation to another party, this party may still become aware ofthis information if it has to provide
a service to such an individual. This is in particular the case of location-based service providers
that, because of the very nature of the services they provide, need to track user movements and
locations. It is then easy, based on this information, to discover user habits and other personal in-
formation. There is therefore an important concern forlocation privacyin location-based services,

21

22 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

that is: “how can we prevent other parties from learning one’s current or past location? [1]”. By
looking more closely at the privacy problem in such a context, we can see that there are at least two
important requirements, that is, keeping movement and location information private from service
providers and from other users. For example, GPS users who donot want to disclose their locations
to the system may still require service such as “is there any of my friends close to me now?” There
are two privacy requirements for this query. First, serviceproviders are not allowed to know the real
locations of users. Second, users can only query an authorized dataset (e.g. a list of their friends).
In this paper, we address such a problem by developing a framework to preserve location privacy

in moving-object environments. The basic idea of our approach is to send transformed user location
data to the service provider. We support a number of different types of transformations, such as
scaling, translation, rotation, to cloak user information. These transformations are performed by
agents interposed between users and service providers. Agents are only responsible for transforming
information either received from the users or the server. They serve as intermediaries and do not
store user information. The service providers receive the transformed data and compute answers to
queries on these transformed data.
An important feature of our approach, which is critical for privacy assurance, is the use of multiple

agents. The user can randomly choose the agent to receive hisinformation each time he issues an
update. Thus, each agent only has a part of the information concerning the user. Such an approach
is crucial for enhancing privacy. For example, if an adversary hacks one agent, it is still unable to
track the user; if some agents illegally store user information, they cannot determine the trajectories
of users without colluding with other entities. Here our approach closely adheres to an important
security principle, dictating that sensitive informationshould not be entrusted to a single entity;
rather such information should be spread among several entities.
In our framework, the server stores for each agent a sub-dataset specific to the agent. A query is

thus executed by the server separately on the sub-dataset ofeach agent. It is important to notice
that location-based queries require that relative distance among users through the same agent be
maintained after the transformation. The transformationswe adopt have such a property. Specifi-
cally, we employ a combination of the three basic types of transformations, that is, scaling, rotation,
translation, as our transformation functions. It is however important to notice that maintaining the
relative distance after the transformation may reveal the map topology. Therefore, we introduce the
concept ofmultiple transformationthat applies slightly different transformation functionsto users’
positions updated at different time instants. This makes the relative distance hard to be inferred.
Correspondingly, the multiple transformation also needs to be applied to queries. To avoid handling
the increased number of queries, asuper queryis then proposed, which covers all queries after the
multiple transformation. As explained later, a super queryis essentially an approximate version of
the original query, which facilitates efficient evaluationof this framework with additional filtering
costs.
Our technique not only prevents service providers from inferring the exact locations of users, but

also keeps information about the location of an individual private from other individuals not autho-
rized to access such information. Specifically, users have alist of group IDs that indicate which
groups they belong to. Based on these group IDs, the server can remove the query answers that are
not in the qualified groups, so that users can avoid their privacy leaked to other users not belonging
to the same group. A key characteristic of our approach is that privacy is achieved without degrad-
ing service quality. Based on the experiments that we have carried out, our approach is particularly
efficient for update operations, in that it also reduces the number of disk accesses compared to con-
ventional algorithms. Such improvement is very attractivein moving-object environments where
update frequency is always high.
Finally, we develop a privacy model to analyze the privacy level achieved in our framework. In

particular, we investigate the threats posted by the query server from discovering the users’ true lo-

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 23

cations and movement pattern. We then propose intuitive methods to quantify the level of protection
against these threats in our system.
To the best of our knowledge, this is the first framework that protects location privacy in moving-

object environments without sacrificing accuracy, and which is also scalable and supports a large
variety of queries.
A preliminary version of this paper appears in [14], where wepresented the basic idea. In this pa-

per, we make the following additional contributions. First, we provided more detailed description of
the framework. Second, we developed a new algorithm fork nearest neighbor queries. Third, we ex-
tended the discussion in the section of system analysis. Furthermore, we run a more comprehensive
set of experiments to demonstrate the efficiency of the system.
The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 describes

the system architecture. Section 4 presents the detailed algorithms for location updates and queries.
Section 5 presents the system analysis. Section 6 covers comprehensive performance experiments.
Finally, Section 7 concludes and gives future research directions.

2 Related Work

Privacy issues in location-aware mobile devices [15] have recently attracted considerable research
interest. Some early works on location privacy protection suggest the use of policies, which serve as
a contractual agreement about how user’s location information can be used by service providers [9,
20]. Typically, users have to trust the service providers. However, such a trusted relationship is hard
and costly to establish especially for small or temporary service providers.
Therefore, more recent works focus on the development of anonymization techniques specific

to location-based service environments. A common technique is based on the notion of spatial-
temporal cloaking. The idea is firstly introduced by Gruteser et al. [8]. They propose the application
of thek-anonymity technique to cloak location information in order to support anonymous applica-
tions. Specifically, a user’s location is represented by a region in which otherk − 1 users are also
present. This model has later been improved by Gedik et al. [6]. Their approach supports the assign-
ment of different values for different users to thek parameter in a system. Also as part of their work,
they investigate the tradeoff between anonymity and accuracy requirements. In [1], Beresford et al.
use the k-anonymity metric in pseudonymous applications. The idea is to rename user’s identity
when there are at leastk users in the same zone. When there are less thank users in the same zone,
a user may refuse to disclose his location. Recently, Cheng et al. [4] invetigated the trade-off of
location cloaking, privacy and quality of service. They developed queries that evaluate cloaked data
and provide probabilistic answers. They also presented quality metrics in order to quantify the effect
of cloaking on service quality. Based on the similar idea, Mokbel et al.[16] propose a framework to
protect mobile users in location-based services, which adopts the cloaking idea and supports various
k parameters.
However, the abovek-anonymity model based approaches have at least one of the following draw-

backs. First, some approaches cannot guarantee the accuracy of the query answers. Second, some
approaches cannot be applied when there are less thank users in a specific area. Third, they trust
agents and allow agents to store information about users, which may make agents the target of attacks
by malicious parties. Finally, such ak-anonymity model may not be able to support anonymization
around sensitive areas such as home addresses in non-anonymous applications. For example, if a
user’s ID is known, the cloaking region around his home address will tell attackers that the user is
probably at his home.
Some other approaches are based on cryptographic techniques. Hore et al. [10] suggest encrypting

location data and using a privacy-preserving index for executing range queries over encrypted data.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

24 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

However, this technique only works for specific query operators and is unable to provide accurate
query answers. Similarly, Khoshgozaran et al. [13] also propose a one-way transformation to encode
all static and dynamic objects and resolve the query blindlyin the encoded space. Again, they are
not able to generate the exact query answers. To rectify the shortcomings of previous work, Yiu et al.
[24] have proposed a client-side query processing technique that retrieves points of interest from the
server incrementally until accurate query answers are obtained. The main problem of this approach
is the expensive communication cost since users need to receive much more data than just query
answers. Ghinita et al. [7] propose a framework to support private nearest neighbor queries based
on Private Information Retrieval (PIR). Their approach does not require users to trust any third-party
anonymizer and can return exact answers. However, PIR may betoo costly to be applied in practice.
Regarding the data transformation that we use in our system,there is one related work by Chen et

al. [3]. They also apply geometric transformations to data but with a different purpose which is to
preserve privacy in data classification.
In recent years, researchers have developed a number of indexing techniques for moving objects. As

we will explain in Section 3, any index for moving objects canbe used in our framework. Represen-
tative indexes include the TPR-tree (Time-Parameterized R-tree) family of indexes (e.g., [19, 21]),
transformation-based indexes such as STRIPES [17], B+-tree-based indexes such as the Bx-tree [12]
and the Bdual-tree [23]. In this paper, we employ the TPR*-tree [21] to manage data at the server
side. Unlike existing approaches to the problem of locationprivacy protection, our approach can
be applied to anonymous, pseudonymous and non-anonymous applications, and guarantees 100%
correct query answers without information leaking.

3 The Strategies and the Architecture of the Location Privacy
Protection System

In this section, we describe the strategies and the architecture of our Location Privacy Protection
(LPP) system. Figure 1 illustrates this architecture. The basic strategy underlying our approach is
to reduce the leaking of private information by using data transformation and employingm agents
in-between users and servers. Each time a user1 needs to update his position, he does not directly
contact the server; instead, herandomlyselects an agent to which he sends his data. When querying,
the user has to send the query to all agents. Then the agents will execute a transformation on the user
data or queries and pass the transformed data to the server. The server handles the data processing
and returns the query results to the agents. After receivingthe results from the server, the agents
perform a reverse transformation before returning the results to the user. We now proceed to describe
in details how each component of our system works.

• User

Users are position providers or query issuers. Users’ positions are assumed to be unchanged
until next update, that is, thelocation databaseat the service provider keeps the latest position of
each user. Users may have a list of qualified agents, and they are assumed to have the ability to
randomly choose agents and perform some postprocessing.

Different policies can be adopted to protect information about a given user from other users. One
policy is a global ranking, which allows users with high ranks to query location and movement
information about users with equal or lower ranks. Another policy is a group policy, under which
users can query location and movement information about users in the same group. A user can be

1We use the term ‘user’ in the discussion. In reality the described activities are carried out by some client software residing
at the user’s device.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 25

...

Server

... ...

... ...

...

DBDB

Agent

User User User

Agent Agent

User

Processor

DB

Figure 1: LPP System Overview

a member of multiple groups and hence he may have a list of group IDs. In our system, we adopt
the latter policy. Hence, in location databases users are represented by records of the form〈uid,
gids, loc, tup〉, whereuid is the user ID,gids is a list of group IDs, andloc is the user’s location
at timetup.

• Agent

Agents are a critical component in our approach. An agent transforms the data received from the
users and sends them to the server. It also executes reverse transformations on the data obtained
from the server and then forwards them to the users.

The types of transformations supported by an agent includesthe transformation of the user ID,
the group IDs, and the user locations. Agents periodically change their transformation functions
in order to prevent the server from analyzing the data from the same agent. Thus, agents need to
maintain transformation tables for each type of data. Such tables store records of the form〈 tid,
fid, countid〉 and〈tloc, floc, countloc〉, wheret records the time instant at which the transforma-
tion functionf has started to be used, andcount is the number of objects being transformed by
f .

There are three important features about our agents. First,for the security purpose, agents are
independent of the main server, which means they are not under control of the server. Second,
agents do not store any user data and hence they are lightweight computers. Therefore, it is
possible to verify their code in order to provide assurancesabout their correct behavior. Third,
transformation functions for different types of data do notneed to be changed at the same time.

• Server

The server is responsible for data storage, maintenance andquery processing. It also maintains
datasets transferred by various agents separately. Any index for moving objects that supports
efficient updates and queries can be adopted to manage the datasets in the server.

The main advantage of our approach is that no single entity (m agents or server) is able to track the
movement of any user without colluding with other entities in the system. Because each agent only
collects a subset of the locations of each user in the system,the level of trust required from each
agent does not need to be high. Moreover, the use ofm agents allows multiple transformations to

TRANSACTIONS ONDATA PRIVACY 2 (2009)

26 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

be applied to the data by the same user. This makes it much harder for the server to keep track of
the relative distance among users. In essence, the server isonly a computing engine for the various
agents.
Finally, we would like to mention that we focus on queries over moving objects in this paper. For

queries over static objects (e.g. restaurants, gas stations), our framework can be extended in the
following way. We can store the static objects in a separate database in the server since such objects
may not have any concern over location privacy, and then we use slightly modified query algorithms
(which will be explained later). Unless specified otherwise, we assume the data of interest are
moving objects in subsequent discussions.

4 Algorithms

In this section, we present the detailed algorithms for datatransformation, queries and updates in the
LPP system.

4.1 Data Transformation

Data transformation includes transformation of user IDs, group IDs, user locations, and queries. We
address each of them respectively in the following sections.

4.1.1 ID Transformation

The main purpose of ID transformation is two-fold. First, weneed to prevent the server from iden-
tifying the same users through different agents. This can beeasily achieved by choosing different
transformation functions for different agents. There are no restrictions on the transformation func-
tion itself. It could be a simple encryption. Also, we need toprevent the server from tracking the
positions of the same user from one agent. We thus propose to periodically change the transforma-
tion functions for each agent, which can assign different pseudo-IDs to the same user who sends data
at different time instants. A transformation table is then maintained for each agent. As mentioned
previously, the transformation table consists of records of the form〈tid, fid, countid〉. Algorithms
for its maintenance are covered in section 4.2.

4.1.2 Location Transformation

Just transforming IDs is not enough to provide location privacy for users because some locations
(e.g. homes) are strong-ly associated with user IDs and may thus cause information leak. Therefore,
we introduce the notion of location transformation, which is a crucial feature of our system.
The main challenge in the development of suitable functionsfor location transformation is to keep

the relative distance in each sub-dataset (the dataset obtained from the same agent) unaltered by the
transformation in order to support location based services(e.g. nearest neighbor queries). Possible
transformation functions include scaling, rotating, translation, and their combinations. In our sys-
tem, we employ a combination of scaling, rotation and translation. We represent the transformation
function through its parameters denoted by the tuple[s, θ, (tx, ty)], wheres is the scaling factor,θ is
the rotation angle, andtx, ty are the translation distance along thex andy axes respectively.
However, the preservation of the relative distance among objects could disclose the map topology.

For example, if the server tries to connect objects close to one another, it may be able to discover the
joint distribution of objects and then determine the road network. Figure 2 gives a simple example.
Suppose that the original data lie on a grid-like road network. If they are transformed by a single
transformation function, the server may discover the grid by connecting objects on the same lines

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 27

(b) Single

O7
O8 O9

O4 O5 O6

O1 O2 O3

q

O’7

O’1

O’2

O’3

O’4

O’5

O’6
O’9

O’8

O’9O’6
O’1

O’2

O’3

O’5
O’4 O’7

O’8

q’
q’

(a) Original Data
Transformation

(c) Multiple
Transformation

Figure 2: An Example of Position Transformation

(dashed lines in the figure). To address such a problem, our approach is to make the relative distance
hard to be inferred. We thus adopt a strategy that requires each agent to periodically change the
location transformation function. We refer to such strategy asmultiple transformation. The bottom-
right part of Figure 2 shows the effect of the multiple transformation strategy. Assume that objects
O1, O3, O7 andO9 are transformed by a functionf1; O2, O4, O5, O6 andO8 are transformed by
another functionf2 that is only a little bit different fromf1. From the transformed objects, it is hard
to discover the original data distribution.
We now proceed to present the generation of the multiple transformation. The first transformation

function can be an arbitrary one, while the following transformation functions need to fulfill some
constraints. The differences among the transformed positions obtained by various transformation
functions should be kept within a small range. Such a constraint is crucial in order to provide good
quality answers to queries based on the relative distance among objects.
A simple strategy to satisfy the above constraints is to apply the translation operations with different

parameters to the first transformation function. Moreover,to achieve efficient queries, multiple
transformation should preserve the following property.

Property 1. Let 〈x, y〉 be a point,〈x0, y0〉 be the position obtained by applying the initial trans-
formation function to〈x, y〉, and〈x1, y1〉, 〈x2, y2〉,..., 〈xn−1, yn−1〉 be the positions obtained from
subsequent multiple transformation functions. The distance between〈x0, y0〉 and〈xi, yi〉 (1 ≤ i ≤
n− 1) must be less than or equal to a thresholdλ.

The detailed algorithm for multiple transformation is summarized in Figure 3. The first step selects
an initial transformation function[s0, θ0, (tx0, ty0)], sets its countercount0 to 0, and stores the
values in the transformation table. After a period of timetint, we generate a new transformation
function. We first randomly choose a valued in (0, λ), and then randomly generate the parameter
dx (the translation distance ofx axis) in the range of(−d, d). The parameter for they axisdy can
be computed bydy = ±(d2 − d2

x)
1
2 . Then we insert a new tuple〈t1, [s, θ, (tx0 + dx, ty0 + dy)], 0〉

in the transformation table. This process is repeated everytint time interval. There are two things
worth noting. First, each agent can choose his ownλ. Second, the transformation table will not keep
growing. Functions that are no longer used by users will be removed during the update operations
(as addressed in Section 4.2).

4.1.3 Query Transformation

We now address how to transform queries. In the discussion wefocus on snapshot range queries. A
range query retrieves all objects the location of which falls within the circular rangeq = (c(x, y), r)
at a given query timestamp, wherec(x, y) is the center andr is the radius of the query.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

28 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

Algorithm Multiple Transformation(T table, tc)
Input: T table is a transformation table,tc is current time

1. if (tc = 0) then
// select the first transformation function

2. randomly generates0, θ0, tx0, ty0

3. insert〈0, [s0, θ0, (tx0, ty0)], 0〉 into T table
4. else
5. randomly generated in the range of(0, λ)
6. randomly generatedx in the range of(−d, d)

7. randomly selectdy from {−(d2 − d2
x)

1
2 , (d2 − d2

x)
1
2 }

8. insert〈tc, [s0, θ0, (tx0 + dx, ty0 + dy)], 0〉 to T table
end MultipleTransformation.

Figure 3: Multiple Transformation Generation Algorithm

Due to the multiple transformation on the users’ positions,a query has to handle data from different
transformations. One solution is to transform the query using all transformation functions, and then
execute multiple queries. However, this is not efficient andmay disclose the relationship among
transformation functions. Therefore, we introduce the concept of super query, which covers all
queries after multiple transformations. For example, in Figure 2, a range queryq is first transformed
into two queries (represented in the figure as dashed circles) by functionf1 and f2. Instead of
answering these two queries, we propose answering a super queryq′ that covers the regions of these
two queries. In this case, the query efficiency mainly depends on the extra area covered by the super
query. In the following, we first describe how to generate thesuper query, and then analyze the
characteristics of the super query.
Given a queryq = (c(x, y), r), we can obtain a set of transformed queries by using the multiple

transformation functions. Since the transformation functions change with time, to compute a super
query that tightly bounds all transformed queries requiresthe checking of all the transformation
functions and thus involves extensive computations. We propose to use an easily-computed super
query (denoted asqs) which is always a superset of the transformed queries unless the parameter
λ changes. Specifically,qs is computed as:qs = (c(f0(x) , f0(y)), f0(r) + λ), wheref0 is the
first (initial) transformation function. Figure 4 illustrates an example, where the black point is the
transformed query center by using the first transformation function, white circles are positions after
other transformations, and the transformed radius of the query isr′.

λ
λ

Super query

+r’

Figure 4: Super Query

The generation of the easily-computed super query is based on Property 1 (see previous section).
Property 1 prevents the super query from growing arbitrarily large. It guarantees that the radius of the

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 29

super range query is at mostλ larger than that of any transformed query. It is true that thesuper query
may incur some overhead due to the search of a larger space compared to the query transformed by
any one of the transformation functions. To characterize the super query, we define itsfalse negative
rate as the number of missing query answers divided by the number of correct query answers, and
define itsfalse positive rateas the number of false query answers divided by the number of correct
query answers. Esstimates for false positive and false negative rates are established by the following
theorem.

Theorem 1. Let q = (c, r) be a query, andf0, f1, ..., fn−1 be a set of transformation functions,
wheref0 is the initial transformation function. Its super queryqs = (cs, rs) satisfies the following
properties
(i) false negative ratefn is 0;
(ii) false positive ratefp is approximately2λ/fi(r) (0 ≤ i ≤ n− 1).

Proof. We denote the query transformed byfi asqi = (ci, ri) (0 ≤ i ≤ n − 1). We denote the
correct answer set asA.
(i) To prove the false negative rate is 0, we need to prove thatfor anya ∈ A, a can be captured by

qs.
We know thata is transformed by one of the transformation functions, sayfi (0 ≤ i ≤ n − 1).

Then,a can be captured by the queryqi which is transformed by the same transformation function.
According to Property 1, the distance between the centers ofqi andq0 (transformed byf0) is less

thanλ. According to the generation algorithm of the super query, the center ofq0 is the same as the
center ofqs, and the radius of theqs is λ more than that of theqi. Consequently, we havers − ri ≥
distance(cs, ci), which indicates thatqs coversqi. Hencea can be captured byqs.
(ii) Assume the data points are evenly distributed, then we may use the areas to see how more

points can be covered by the super query compared with the query by a single transformation (i.e.,
the number of false positives is proportional to the extra area).
The areaSi covered by a queryqi is πr2

i . The areaSs covered by the super query isπ(ri + λ)2.
Then the percentage of increase in the area of the super queryis:

fp = Ss−Si

Si

=
π(ri+λ)2−πr2

i

πr2
i

= λ(2ri+λ)
r2

i

Whenλ≪ ri, fp ≃ 2λ/ri.

Theorem 1 demonstrates the correctness of the super query (no false negatives) and points out a
way to tune the performance of the query. Given a false positive rate, we can choose a properλ.
Note that from the users’ point of view, there will be no falsepositive because the agent will filter

the data rerturned by the server in order to eliminate the false positives.

4.2 Updates

Generally, an update is interpreted as a deletion followed by an insertion. Figure 5 shows the detailed
update algorithm.
To insert a tuple〈uid, gids, loc, tup〉 of a user, three steps are executed. First, the user randomly

selects an agent and sends his information to the agent. Second, the agent transforms the user ID,
the group ID list and the location, and then sends the transformed data to the server. During the
transformation, the agents will adjust the counters of the transformation functions, and remove the
ones with counters equal to 0 which will not be used in the future. Finally, the server tags the data
with the agent ID and stores them.
For the deletion, the user needs to submit his old information to the same agent which handled

the insertion of this information. The agent will check the transformation table and look for the

TRANSACTIONS ONDATA PRIVACY 2 (2009)

30 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

Algorithm Update

User:
Insertion:

1. randomly select an agent with IDaid
2. send〈uid, gids, loc, tup,

′ i′〉 to the agentaid
Deletion:

1. send〈uid, gids, loc, tup,
′ d′〉 to the agentaid

Agent:
1. receive〈uid, gids, loc, tup, op〉 from the user
2. fid ← ID transformation function of timetup

3. (uid′, gids′)← fid(uid, gids)
4. floc ← location transformation function of timetup

5. loc′ ← floc(loc)
6. send〈uid′, gids′, loc′, tup, op, aid〉 to the server
7. if (op ==′ i′) then // this is an insertion
8. countid ← countid + 1
9. countloc ← countloc + 1
10. else// this is a deletion
11. countid ← countid − 1
12. countloc ← countloc − 1
13. if (countloc is 0 andfloc is not1st function)
14. delete the tuple offloc from transformation table
15. invoke MultipleTransformation everytint

Server:
1. receive〈uid′, gids′, loc′, tup, op, aid〉 from the agent
2. if (op ==′ i′) then // this is an insertion
3. insert〈uid′, gids′, loc′, tup, aid〉
4. else// this is a deletion
5. delete〈uid′, gids′, loc′, tup, aid〉

end Update.

Figure 5: Update Algorithm

A2

2

O4O3

O1

O’3

O’2

O’4

O’1

User Space Agents Server Space

A1O

Figure 6: An Example of Update Operation

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 31

corresponding function at the update time. Then, the agent will use this function to transform user
information, and decrease the counter of this function by one. If the counter is 0, the function (except
for the first one) will be removed from the transformation table. The remaining process for deletion
is similar to the insertion.
It is worth noting that users can send deletion message to theold agents and insertion message to

the new agents.
Consider the example shown in Figure 6. Suppose there are four usersO1, O2, O3 andO4, and two

agentsA1 andA2. O1 andO3 select agentA1, andO2 andO4 select agentA2. The transformed
data ofO1 andO3 is O′

1 andO′
3, and the transformed data ofO2 andO4 is O′

2 andO′
4, respectively.

We also consider the situation when an object disappears accidentally without being able to notify
the server. The information of such objects will soon be outdated. We define that an object is
outdated if difference between its latest update time and current time is larger than a given threshold.
During each insertion or deletion, we identify and delete outdated entries in accessed nodes.

4.3 Queries

Our model supports various types of snapshot queries. In thefollowing, we outline the query execu-
tion strategies for two popular types of queries, range queries andk nearest neighbor queries.

A2

1

O3

O4
q1

q2
O’1

O’3q’’1
q’1

O’2

O’4

O2

q’’2

q’2

Agents Server SpaceUser Space

A1
O

Figure 7: An Example of Query Operation

4.3.1 Range Query

A range query retrieves all objects whose location falls within the circular rangeq = (c(x, y), r) at
a given query timestamp, wherec(x, y) is the center andr is the radius of the query.
As object positions are transformed in different ways through different agents, we have to send a

query to all agents. Each agent will generate and send a superquery to the server. After receiving the
query answers from the server, the agent needs to transform them back and to check whether they
are the correct answers to the original query. Finally, users will aggregate the partial results obtained
from the agents. If user ranks or group IDs are to be taken intoby the query, one more filtering step
will be carried out by the server in order to prune unqualifiedanswers. Note that the server can filter
the results based on transformed IDs before sending any results to agents. Figure 8 shows the outline
of the algorithm.
Figure 7 gives a simple query example, whereq1 is a current circular range query and the dataset

in Figure 6 is reused. We can see from the user space thatO3 andO4 are the query answers. Since
O3 andO4 are transformed by different agents, in order to capture their transformed positions in the
server space,q1 needs to be transformed through all agents. The transformation generates queriesq′1

TRANSACTIONS ONDATA PRIVACY 2 (2009)

32 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

Algorithm Range Query

User:
1. for (i← 0) to (i < m) do
2. send〈uid, gids, c(x, y), r〉 to theith agent

Agent:
1. receive〈uid, gids, c(x, y), r〉 from the user
2. gids′ ← fid(gids)
3. 〈c′(x′, y′), r′〉 ← 〈c(f0(x), f0(y)), f0(r) + λ〉
4. send〈c′(x′, y′), r′, gids′, aid〉 to the server

Server:
1. receive〈c′(x′, y′), r′, gids′, aid〉 from the agent
2. find users in the query range
3. remove users that not in any group ofgids′

4. return query result〈qresult〉 to agentaid

Agent:
1. receive the query result〈qid′, qresult〉 from the server
2. qresult′ ← reverse transformqresult
3. for each resultqr in qresult′ do
4. if (qr not an answer of the original query)then
5. removeqr from qresult′

6.returnqresult′ to useruid
User:

1. for (i← 0) to (i < m) do
2. receiveqresult from theith agent
3. aggregate all the query results

end RangeQuery.

Figure 8: Range Query Algorithm

andq′′1 . Thenq′1 will return the answerO′
3 to agentA1, andq′′1 will return the answerO′

4 to agent
A2. Agents execute reverse transformations on the obtained answers and send the final answerO3

andO4 back to the user.
If a range query about static objects that have no privacy (e.g., restaurants) is submitted by the user,

the algorithm in Figure 8 is simplified as follows. First, thequery does not contain any user group
information. Second, the user only sends it to any one of the agents. The agent does not need to do
any transformation (i.e., steps 2 and 3 are skipped). The server then evaluates the query as usual, but
this time using the static object database. Finally, the agent simply passes back the result obtained
from the server to the user without doing any transformation.

4.3.2 K Nearest Neighbor Query

Given a query object with position(qx, qy), thek nearest neighbor query (kNN query) retrievesk
objects for which no other objects are nearer to the query object at a given query timestamp.
One way to compute this kind of query is to transform the position of the query object using all

the functions in the agent’s transformation table. And the server needs to considerkNN for each
transformed query position. For simplicity, we propose to compute thekNN query by iteratively
performing range queries with an incrementally expanded search region untilk answers are obtained.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 33

The conversion from akNN query to a range query is as follows. The first range queryq0 is
centered at(qx, qy) with radiusr0 = Dk, whereDk is the estimated distance between the query
object and itsk’th nearest neighbor;Dk can be estimated by the equation [22]:

Dk =
2√
π



1−

√

1−
(

k

N

)
1
2





whereN is the number of objects. The radius will be enlarged byrq = Dk/k at each iteration in
query processing, untilk answers are found.
Like the range query, akNN query also needs to be sent to all agents. The main difference is that

each agent needs to convert thekNN query to a range query first. Then the agent transforms the
range query and the expansion parameterrq , and sends them to the server (the transformed query
andrq are denoted asq′ andr′q respectively). The server will keep processing the range query q′

with the radius extended byr′q each time, and return the query result to the agent once it obtainsk
qualified answers. Finally, each agent computes the correctdistance, and sends the distance along
with the user IDs to the user that issued the query. The user then combines these to find his truek
nearest neighbors.
For example (see Figure 7),q2 is a nearest neighbor query, andq′2 andq′′2 are corresponding queries

in the server space after the transformation. Fromq′2, agentA1 gets a candidate nearest neighborO′
1.

Fromq′′2 , agentA2 gets a candidate nearest neighborO′
2. Then the user will receive two candidates

O1 andO2. After comparing the real distance between candidates and the query object, the user
finally obtain its nearest neighborO1.
If a kNN query is executed over non-private static objects, the query just needs to be submitted

to one of the agent, which does not do any transformation and forward the query to the server.
The server executes the kNN query over the static object database and returns the result to the user
through the help of the agent. If the query object of the kNN query is a private property (e.g., it is
the current location of the user), then the kNN query can be converted to a range query in order to
hide the actual position of the query object.

5 System Analysis

This section analyzes the privacy protection, communication costs and concurrent processing in the
LPP system.

5.1 Privacy

For the privacy analysis, we provide a formal model for better understanding and evaluation of the
LPP system. We focus on location breach rather than ID protection in the following discussion.
Several assumptions are adopted in the model. First, we assume that agents are trustable since
they are lightweight systems and may be easily verified. Thisassumption is commonly used in
many other location privacy protection methods (e.g. [4, 16]). Second, we assume that the server
knows the overall architecture of the LPP system, which means the server knows from which agent
an update or a query is sent. Based on these assumptions, we define our privacy model,Spatial
Γ−anonymity, as below.

Definition 2. SpatialΓ−anonymity
Given a userU , U is said to satisfySpatialΓ−anonymity if the probability that the server can

infer the position of this user is less than or equal toΓ.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

34 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

In the LPP system, a global privacy thresholdΓ is guaranteed for all users by properly setting
system parameters. Given a privacy requirement, there could be more than one applicable system
settings. An important step of the system configuration is todefine an analytical model of the privacy
achieved by our approach. In what follows, letΓLPP denote the spatial anonymity achieved by the
LPP system. We describe howΓLPP is formulated.
First, let us review the multiple transformation strategy.At each agent, the first transformation

function is randomly selected and the following transformation functions are developed from the
first function by usingλ. We defineΓtri

as the probability that the first transformation function of
agenti is disclosed, andΓλi

as the probability that theλ value of agenti is disclosed. To guess one
location of a user, the server needs to know the reverse transformation function of the corresponding
agent, of which the probability isΓtri

· Γλi
. Then for any user, we haveΓLPP as follows:

ΓLPP = maxm
i=1(Γtri

· Γλi
) (1)

wherem is the number of agents. We now proceed to present how to obtain Γtr andΓλ and analyze
possible threats in the LPP system (for convenience, we dropthe subscripti from Γtri

andΓλi
). We

will mainly introduce two types of privacy issues: privacy against location discovery and privacy
against pattern discovery.
Γtr largely determines theprivacy against location discoverysince the data transformation is

dominated by the first transformation function. To computeΓtr, we classify the servers into three
categories: (i) Servers without any prior knowledge; (ii) Servers with weak prior knowledge; and
(iii) Servers with strong prior knowledge.
We denote the user’s original position as(x, y). After applying a combination of translation, scaling

and rotation (i.e., the first transformation function), we obtain the transformed position(x′, y′). The
transformation process is formalized as follows:

{

x′ = Rθ(dx + s · x)
y′ = Rθ(dy + s · y)

(2)

whereRθ denotes the rotation (θ is the angle),dx anddy are translation parameters, ands is the
scaling parameter. The original domains ofθ, d ands are denoted asR0, D0 andS0.
If the server does not have any prior knowledge, and in particular it does not even know the type

of applied transformation, it is unable to determine(x, y) from (x′, y′) because the right side of the
equation 2 is totally unknown to it. In this case, the probability Γtr that the server can infer the
user’s location at this agent is close to 0, which means that user locations have the maximum degree
of privacy.
If the server has some weak prior knowledge, for example it knows the type of transformation and

some constraints on the application, the original domain ofthe parameter can be narrowed to some
extent. LetR, D andS denote the new domains. To find the original location(x, y), the server needs
to try all the combinations of the three transformation parameters in the new domains. Here,Γtr

represents an estimate of the possibility of determining the original position. If the values in the
domain are discrete,Γtr can be evaluated by equation 3, where|R|, |D| and|S| are the cardinalities
of the domains.

Γtr =
1

|R| · |D| · |S| (3)

If the values in the domain are continuous,Γtr can be estimated by the volume of the three domains.
Given the range of each domain to beR = [R−, R+], D = [D−, D+] andS = [S−, S+], and the
granularity that an application requires to beG, we measureΓtr by equation 4.

Γtr =
1

(|R
+−R−|

G
+ 1)(|D

+−D−|
G

+ 1)(|S
+−S−|

G
+ 1)

(4)

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 35

Just having the knowledge of the first transformation function, the server can only infer that the user
location is within a certain circle with radiusλ. λ is the value that indicates how much a transformed
location will deviate from the one strictly preserving the relative distance. Therefore, we defineΓλ

in equation 5. The larger theλ, the harder it is to discover the real location of the user, and privacy
is thus better protected.

Γλ =
1

πλ2/G
(5)

On the other hand,λ also protectsprivacy against pattern discovery. If the server has strong
prior knowledge, such information may not only provide information on parameter constraints of
the transformation functions, but may also indicate the pattern of distribution of users’ locations.
However, the identification of such patterns is still a difficult problem for both statisticians and com-
puter scientists [5, 11], and after using our proposed multiple transformation strategy, the problem
could become even harder as illustrated in Figure 9. Figure 9(a) shows the original data (about 1K
user locations), from which we can clearly observe the road topology. Figure 9(b) shows the trans-
formed data from one agent (3 agents in total), which is transformed by the combination of scaling,
rotation and translation. We can see that after transformation, it is hard to identify the pattern; only
some dense regions can be seen.

(a) Original Data (b) Transformed Data

Figure 9: Original Data vs. Transformed Data

To sum up,Γtr gives the probability that the server discover the single transformation function at
each agent; andΓtr · Γλ gives the probability that the server discover the multipletransformation
strategy. Then, the finalΓLPP is the maximum value ofΓtr ·Γλ of m agents, which is the probability
that the server knows about data transformation at any agent. We would like to mention thatΓLPP

is generally very small and can satisfy most privacy requirements. To have some idea of how small
thisΓLPP could be, let us look at the following example. Suppose at theagent with the most prior
knowledge, the rotation domain has been constrained within0 degree to 60 degree, the translation
domain is [0..10], the scaling value is chosen from 1 to 3,πλ2 is 10, and the granularityG is 10−6.
We can compute thatΓtr is 5.6 × 10−10 andΓλ is 0.1. TheΓLPP is about only6 × 10−11. On the
other hand, we can also see that by adjusting domain size orλ value, the LPP system can achieve a
given privacy requirement. The detailed configuration is left to the future work.

Another common threat in network services is eavesdroppingduring communications. However,
we do not consider it in our paper since this type of threat canbe mitigated or avoided by data
encryption.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

36 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

5.2 Communication Cost

In our system, there are two types of operations: update and query operations. An update needs one
round of communication between a user (agent) and an agent (server). Its communication cost is
independent of the number of agents. A query needs one round between a user andm agents, and
a server and them agents. The server returns subquery results to each agent. Suppose the message
sizes of a query and a query result set areSq andSr respectively. The subquery result size isSr in
the worst case. Then the communication cost of a query is2m(Sq + Sr). Sincem determines the
privacy level (m = 1 i.e. no privacy), the larger the value ofm, the higher the privacy level would
be. Therefore, a trade-off exists between the communication costs and the privacy level.
The trade-off issues between privacy and communication costs have been widely studied in context

of network-level privacy protection. In particular, techniques have been devised to enhance network
privacy by increasing the communication costs. For example, in [2, 18], in order to conceal the IP
address, network packets have to go throughm agents before reaching the receiver. In this case, a
complexity ofO(m) for communication costs is required.

5.3 Concurrent Processing

We now discuss the effect of concurrent processing in our system compared with systems that do
not use any agents. As mentioned in the previous sections, our method converts one query from a
user into several small queries. From a user’s view, the performance difference lies in “one server
handling one big query” versus “one server handling severalsmall queries”. The processing time
for a small query is obviously short. Due to the limited thread pool, all small queries may not be
executed exactly simultaneously. So the timeT to get results from all small queries may be a little
longer than the time for executing a single small query. We cannot sayT is always longer than
the time to process a big query. There should be a balancing point. In our case, the balancing
point may be found by varying the number of agents (i.e. the number of small queries) when the
system configuration is known. In the worst case, small queries are executed in sequence, the query
performance is still comparable to that of traditional methods as shown in our results. Further, our
approach can be easily applied to multiple-server environments as the sub-databases in the server
are relatively independent of one another. If so, the software contention may be reduced to more
extent than traditional approaches. In fact, our approach provides increased opportunities for parallel
execution.

6 Performance Study

6.1 Experimental Settings

All the experiments were run on a 2.6G Pentium IV desktop with1Gbyte of memory. The page size
is 4K. At the server side we employ the TPR*-tree [21] to indexmoving objects. The original range
query algorithm for the TPR*-tree only supports rectangle ranges. We modified it to support the
circle ranges by executing a regular rectangle range query which tightly covers the circle range, and
then filtering the extra results. We compare both query and update performance of our model against
the pure TPR*-tree. Performance is measured in terms of diskpage I/O and CPU time.
We use synthetic datasets of users with positions in a space domain of1000 × 1000. One may

think of the unit of space being the kilometer. In most experiments, we use uniform data, where
users’ positions are chosen randomly. We have also run experiments on skewed datasets that follow
the exponential distribution. The maximum interval between two successive updates by a user is
120 time units. Unless noted otherwise, we create the initial dataset for all users at time 0, and

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 37

Parameter Setting

Page size 4K
Buffer pages 100
Number of agents 2, 3, 4, 5, ... , 20
λ/f(r) 0.01, ...,0.05, ... , 0.1
Time interval of changing function 0, 5,10, 15, ... , 50
Max update interval 120
Query size (diameter) 10, ...,50, ... , 100
Number of neighbors,k 10, 20, 30, ... , 100
Number of queries 100
Data size 100K, ..., 1M
Data distribution uniform , exponential

Table 1: Parameters and Their Settings

then evaluate the system performance after the maximum update interval during which each user has
issued at least one update.
The parameters used in the experiments are summarized in Table 1, where values in bold denote

the default values.

6.2 Range Query Performance

6.2.1 Impact of Super Queries

The notion of super query is an important component of our approach with respect to the protection
of the map topology. However, super queries may introduce some false positives that may adversely
affect performance. In the experiments reported here, we thus investigate the performance impact of
the super query by examining the false positive rate. Recallthat the false positive rate is the number
of query answers filtered by the agent divided by the number ofquery answers received from the
server. The smaller the false positive rate, the less additional work the server and the agent have to
carry out.
First, we use the same size of range queries in a 100K dataset,and test the false positive rate when

0%

2%

4%

6%

8%

10%

12%

14%

16%

0
 0.02
 0.04
 0.06
 0.08
 0.1

Lambda

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(a) Varyingλ

0%

2%

4%

6%

8%

10%

12%

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(b) Varying Query Size

Figure 10: False Positive Rate

TRANSACTIONS ONDATA PRIVACY 2 (2009)

38 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

varying the values ofλ. Figure 10(a) shows the results, where thex-axis is the rate ofλ/f(r) (f(r)
is the query radius after transformation). As expected, thefalse positive rate increases linearly with
λ/f(r); a largerλ results in a larger searching space.
Then, we fix the value ofλ to 0.5 and vary the query range diameter from 10 to 100. Figure10(b)

shows the corresponding false positive rate. We can observethat the false positive rate decreases
when the query size increases. As we know, the higher the value of λ is, the more obscure the
transformed data pattern would be. This indicates that the LPP system provides higher privacy and
with smaller performance overhead when the query size is large.
Next, we vary the time intervaltint between each pair of consecutive transformation functions. As

shown in Figure 11(a), the false positive rate for differenttint is almost the same. The reason is that
the super query is computed based on the first transformationfunction and the value ofλ, and hence
the frequency of the transformation function changes does not affect performance.
We also evaluate the false positive rate for values of data size ranging from 100K to 1M. Fig-

ure 11(b) shows that the false positive rate oscillates around 7% for different sizes of dataset. This
again shows that the false positive rate is dominated by the rate ofλ/f(r) as stated in Theorem 1.

0%

1%

2%

3%

4%

5%

6%

7%

8%

0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Time interval of changing functions

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(a) Varying Time Interval of Changing Functions

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

100K
 300K
 500K
 700K
 900K

Number of users

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(b) Varying the Number of Users

Figure 11: False Positive Rate

6.2.2 Impact of Data size

In this set of experiments, we vary the data size and analyze the range query performance of the sin-
gle TPR*-tree and two versions of our model. “LPP (superquery)” denotes the version that uses the
concept of the super query; “LPP (non-superquery)” denotesthe version that uses the single trans-
formation. The reason for comparing these two versions is toinvestigate the possible performance
degradation incurred by the super query.
Figure 12 compares the query cost of the TPR*-tree and the sumof query cost of all agents in our

model. Based on the results reported in the figure, we can makethe following observations. First,
the performance of the approach based on the super query is quite similar to that of the approach
based on the single transformation. The difference betweenthem is less than 3%, which indicates
that the use of the super query provides increased privacy protection without compromising query
performance. This is an important experimental result thatvalidates a key idea of our approach. In
the experiments reported in what follows, we thus only consider the version of our techniques that
uses the super query. Second, givenm agents, the total query cost of our approach is sometimes a
little bit higher but notm times more than that of the TPR*-tree. This is because one query will be
sent to all agents according to our schema, and the server needs to compute the transformed queries

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 39

0

10

20

30

40

50

60

70

80

90

100

100K
 300K
 500K
 700K
 900K

Number of users

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree

LPP (Superquery)

LPP (Non-superquery)

(a) Total I/Os

0

10

20

30

40

50

60

70

100K
 300K
 500K
 700K
 900K

Number of users

T
ot

al
 q

ue
ry

 ti
m

e
(m

s)

TPR*-tree

LPP (Superquery)

LPP (Non-superquery)

(b) Total CPU time

Figure 12: Impact of Data Sizes on Range Query Performance

from all agents. The cost of computing a query from an agent isless than that of evaluating a query
in the single TPR*-tree since the query from an agent is executed on a smaller dataset that maintains
transformed data from the same agent.
Although our model may incur a little bit higher total query costs, the query response time of our

model could be better given that the server supports multi-tasks or there are multiple servers; it
can run multiple queries in parallel since each sub-datasetis relatively independent. As shown in
Figure 13, the response time of our approach is much smaller than that of the TPR*-tree, and the
difference increases with growing data size. This behavioris not surprising. The response time of
our approach corresponds to the time required to execute a query from an agent because the server
can compute queries from all agents simultaneously. As mentioned previously, the cost to compute
a query from an agent is smaller because it is executed on a small sub-dataset.

0

10

20

30

40

50

60

70

100K
 300K
 500K
 700K
 900K

Number of users

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
s)

 TPR*-tree

LPP

Figure 13: Query Response Time with Varying the Data Size

6.2.3 Impact of Number of Agents

We next study the impact the number of agents has on the query performance. The TPR*-tree is
used as the baseline for comparison.
Figure 14 shows the total query cost as a function of the number of agents. We observe that, for our

model, the total query I/Os first increases until a point before it decreases and then remains almost
constant. Specifically, in the 100K dataset, the total queryI/Os starts to decrease when more than
6 agents are used. This behavior can be explained as follows.The total query cost is determined

TRANSACTIONS ONDATA PRIVACY 2 (2009)

40 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

0

2

4

6

8

10

12

14

16

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree

LPP

(a) Total I/Os

0

5

10

15

20

25

30

35

40

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

T
ot

al
 q

ue
ry

 ti
m

e
(m

s)

TPR*-tree

LPP

(b) Total CPU time

Figure 14: Impact of Number of Agents on Range Query Performance

by two factors: the query cost of one agent and the number of agents. When the number of agents
increases, the query cost for one agent decreases due to the decreased dataset size with respect to
one agent. Therefore, the results can be seen as a combination of the two effects. From the Figure,
we observe that their product reach a maximum point, which is6 in this case.

However, the total query time of our model always increases with the number of agents. This can
be explained by observing that the query time does not decrease as fast as the increase of the number
of agents. In the TPR*-tree, the number of node accesses can be reduced to a greater extent when
the dataset becomes small, while the CPU time decreases muchslower as shown in the Figure 15.
Figure 15 also indicates that our model may achieve better response time compared with the TPR*-
tree. The reason is similar to that we discussed for the previous experiments (Section 6.2.2).

0

1

2

3

4

5

6

7

8

9

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
s)

TPR*-tree

LPP

Figure 15: Query response time for varying number of agents

In the following experiments, we explore the combined effect of the number of agents and data
sizes. Figure 16 shows the results in the 100K and 500K dataset by using up to 20 agents. We can
observe that the performance of 100K and 500K dataset demonstrates similar patterns, while the
point at which the query I/O cost starts to decrease is a little bit different, namely 6 agents for 100K
dataset, and 12 agents for 500K dataset. This implies that larger datasets may need more agents.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 41

0

10

20

30

40

50

60

70

80

90

100

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree (100K)

TPR*-tree (500K)

LPP (100K)

LPP (500K)

(a) Total I/Os

0

10

20

30

40

50

60

70

80

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

T
ot

al
 q

ue
ry

 ti
m

e
(m

s)

TPR*-tree (100K)

TPR*-tree (500K)

LPP (100K)

LPP (500K)

(b) Total CPU time

Figure 16: Impact of Number of Agents and Data Sizes on Range Query Performance

6.2.4 Impact of Query Size

In this section, we analyze the effect of the query size, varying the query diameter from 10 to 100
for a dataset of size 100K. Figure 17 shows that the query costs of both TPR*-tree and the LPP
system increase with the query size. The reason is straightforward. Larger query ranges contain

0

5

10

15

20

25

30

35

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree

LPP

(a) Total I/Os

0

5

10

15

20

25

30

35

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

T
ot

al
 q

ue
ry

 ti
m

e
(m

s)

TPR*-tree

LPP

(b) Total CPU time

Figure 17: Impact of Query Size on Range Query Performance

0

5

10

15

20

25

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
s)

 TPR*-tree

LPP

Figure 18: Query Response Time with Varying the Query Size

TRANSACTIONS ONDATA PRIVACY 2 (2009)

42 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

more objects and therefore lead to more tree node accesses. We can also observe that the total query
I/Os of the LPP system is quite close and sometimes less than that of the TPR*-tree, while the total
query time of the LPP system is slightly longer.
Figure 18 plots the response time of the TPR*-tree and the LPPsystem, which shows the similar

performance patterns as that of previous experiments.

6.2.5 Impact of Skewed Data
To analyze the query performance on skewed data, we use datasets of exponential distribution with
the same skewed parameters from 100K to 1M. Figure 19 shows the experiment results. It is inter-

0

100

200

300

400

500

600

700

100K
 300K
 500K
 700K
 900K

Number of users

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree

LPP

(a) Total I/Os

0

50

100

150

200

250

300

350

400

100K
 300K
 500K
 700K
 900K

Number of users

T

ot
al

 q
ue

ry
 ti

m
e

(m
s)

TPR*-tree

LPP

(b) Total CPU time

Figure 19: Impact of Skewed Data on Range Query Performance

esting to see that the LPP system performs much better than the TPR*-tree for skewed data. Both
the total I/O cost and CPU time of the LPP system are less than that of the TPR*-tree, and the dif-
ferences between them increases as the data size increases.A reason for such behavior is as follows.
Overlaps among MBRs in the TPR*-tree become more severe whenthe dataset become skewed
and large. The LPP system partitions the dataset into subdatasets with respect to agents, and hence
reduces the chance of overlaps which leads to the enhancement of the query performance.

6.3 K Nearest Neighbor Query Performance
We proceed to evaluate the efficiency ofkNN queries. Because thekNN query is treated as an
incrementally expanded range queries, the performance difference between the TPR*-tree and the

0

2

4

6

8

10

12

1
 10
 20
 30
 40
 50

k

T
ot

al
 q

ue
ry

 I/
O

s

TPR*-tree

LPP

(a) Total I/Os

0

1

2

3

4

5

6

7

8

9

1
 10
 20
 30
 40
 50

k

T
ot

al
 q

ue
ry

 ti
m

e
(m

s)

TPR*-tree

LPP

(b) Total CPU time
Figure 20: Impact ofk onkNN Query Performance

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 43

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
 10
 20
 30
 40
 50

k

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
s)

 TPR*-tree

LPP

Figure 21: Query Response Time when Varyingk

LPP system exhibits a behavior similar to that of range queries when considering the effect of super
query, data size, number of agents and so forth. Here, we present a representative result which is the
impact of the value ofk, that is, the number of required nearest neighbors.
As shown in Figure 20, the total query cost increases for boththe TPR*-tree and the LPP system

ask increases. The LPP system has higher query cost because the server must execute akNN query
in each sub-dataset corresponding to each agent, and the search range would be bigger for the same
k in a smaller dataset. However, the response time of the LPP system could be still better than that
of the TPR*-tree as we can observe from the Figure 21.

6.4 Update Performance

We now compare the average update cost (amortized over insertion and deletion) of our model
against the TPR*-tree.

6.4.1 Impact of Data Size

First we examine the update performance with respect to the dataset size. We compute the average
update cost after the maximum update interval of 120 time units. From Figure 22, we can see that
our model achieves better performance than the TPR*-tree. Both the I/O and CPU costs incurred by

0

0.5

1

1.5

2

2.5

3

100K
 300K
 500K
 700K
 900K

Number of users

U
pd

at
e

I/O
s

TPR*-tree

LPP

(a) I/Os

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100K
 300K
 500K
 700K
 900K

Number of users

U
pd

at
e

tim
e

(m
s)

TPR*-tree

LPP

(b) CPU time

Figure 22: Impact of Data Sizes on Update Performance

TRANSACTIONS ONDATA PRIVACY 2 (2009)

44 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

our approach are less than that of the TPR*-tree. Moreover, the update cost of our model increases
slower than that of the TPR*-tree. A reason is that an update is sent to only one agent. The whole
dataset has been partitioned by agents, and then the server handles each update only in a small par-
tition corresponding to the agent, which leads to reduced update costs. This result is very important
because the update performance is crucial when dealing withmoving object databases where the
update frequency is much higher than that of the queries.

6.4.2 Impact of the Number of Agents

In this section, we investigate the update performance of our model when using varying values for
the number of agents in the system. Figure 23 shows the I/O andCPU costs of the update. Observe
that the update cost of our model is smaller than that of the TPR*-tree and keeps decreasing when
the number of agents increases. This is because the user datais distributed among agents. The more
agents, the fewer number of data that this agent is responsible for, and hence the dataset of this agent
maintained by the server is smaller. It is obvious that an update executed in a smaller dataset would
be more efficient.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

U
pd

at
e

I/O
s

TPR*-tree

LPP

(a) I/Os

0

0.2

0.4

0.6

0.8

1

1.2

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

U
pd

at
e

tim
e

(m
s)

TPR*-tree

LPP

(b) CPU time

Figure 23: Effect of Number of Agents on Update Performance

6.4.3 Impact of Skewed Data

Finally, we evaluate the update performance in the skewed datasets that we used in the experiments
on queries. As shown in Figure 24, both the TPR*-tree and the LPP system have a performance

0

0.5

1

1.5

2

2.5

3

100K
 300K
 500K
 700K
 900K

Number of users

U
pd

at
e

I/O
s

TPR*-tree

LPP

(a) Total I/Os

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100K
 300K
 500K
 700K
 900K

Number of users

U
pd

at
e

tim
e

(m
s)

TPR*-tree

LPP

(b) Total CPU time

Figure 24: Effect of Data Distribution on Update Performance

TRANSACTIONS ONDATA PRIVACY 2 (2009)

Location Privacy in Moving-Object Environments 45

similar to that of the uniform datasets. A reason for this behavior is that the update cost is already
very small and hence less affected by the skewed data.

7 Conclusions and Future Work

In this paper, we propose a novel system framework to addressthe problems of location privacy
in moving-object environments. Our framework achieves both high assurance privacy and good
performance. Specifically, our framework uses a number of agents in-between users and servers.
Agents are lightweight systems which do not store any user information, but only perform data
transformation. In this way, our system can prevent serversfrom knowing exact locations of users,
and even map topology. We have also developed a privacy modelto analyze the degree of privacy
protection.
We have carried out extensive performance studies to assessthe impact of various parameters. We

have tested our technique on both uniform and skewed data, and have analyzed the impact of various
parameters, such as data size, number of agents, query size.We have also compared the performance
of our technique with a traditional approach – the TPR*-tree– which does not consider privacy. The
results show that our approach outperforms the TPR*-tree with regards to update operations.
Several promising directions for future work exist. An important extension is the support for con-

tinuous queries. Another relevant direction is how to set upsystem configurations so that the privacy
level of the system satisfies a given threshold. Further, we can consider how to satisfy individual
privacy requirement in the system. Yet another direction isto refine the proposed privacy protection
metrics by taking into account priori knowledge that the adversary may possess, in order to have a
better assessment on privacy risks.

Acknowledgement

The work reported in this paper has been supported by UM Research Board under the project “Pre-
serving Location Privacy in Pervasive Environments”, the Research Grants Council of the Hong
Kong SAR, China (Project No. HKU 513806E) and the Research Center for Ubiquitous Computing,
Central Allocation Group Research Projects (HKBU 1/05C).

References
[1] A. R. Beresford and F. Stajano. Location privacy in pervasive computing.IEEE Pervasive Computing,

2(1):46–55, 2003.
[2] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.Comm. of ACM,

24(2):84–88, 1981.
[3] K. Chen and L. Liu. A random rotation perturbation approach to privacy preserving data classification. In

Proc. ICDM’05, 2005.
[4] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user location privacy in mobile data man-

agement infrastructures. InProc. Workshop on Privacy Enhancing Technologies, 2006.
[5] D. L. Donoho and X. Huo. Beamlet pyramids: a new form of multiresolution analysis suited for extracting

lines, curves, and objects from very noisy image data. InProc. SPIE, pages 434–444, 2000.
[6] B. Gedik and L. Liu. A customizable k-anonymity model forprotecting location privacy. InProc. IEEE

ICDCS, pages 620–629, 2005.
[7] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L.Tan. Private queries in location based

services: Anonymizers are not necessary. InProc. SIGMOD, 2008.
[8] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial and temporal

cloaking. InProc. MobiSys, pages 31–42, 2003.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

46 Dan Lin, Elisa Bertino, Reynold Cheng, Sunil Prabhakar

[9] U. Hengartner and P. Steenkiste. Protecting access to people location information. InProc. SPC, pages
25–38, 2003.

[10] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. InProc. VLDB, pages
720–731, 2004.

[11] X. Huo and D. L. Donoho. Recovering filamentary objects in severely degraded binary images using
beamlet-decorated partitioning. InProc. ICASSP, 2002.

[12] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+-tree based indexing of moving objects.
In Proc. VLDB, pages 768–779, 2004.

[13] A. Khoshgozaran and C. Shahabi. Blind evaluation of nearest neighbor queries using space transformation
to preserve location privacy. InProc. SSTD, pages 239–257, 2007.

[14] D. Lin, E. Bertino, R. Cheng, and S. Prabhakar. Positiontransformation: A location privacy protection
method for moving objects. InProc. ACM GIS Workshop on Security and Privacy, 2008.

[15] R. P. Minch. Privacy issues in location-aware mobile devices. InProc. HICSS, 2004.
[16] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The new casper: Query processing for location services

without compromising privacy. InProc. VLDB, pages 763–774, 2006.
[17] J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An efficient index for predicted trajectories. InProc.

ACM SIGMOD, pages 637–646, 2004.
[18] M. Reiter and A. Rubin. Crowds:anonymity for web transactions. ACM Trans. On Inform. and Sys.

Security, 1(1):66–92, 1998.
[19] S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously

moving objects. InProc. ACM SIGMOD, pages 331–342, 2000.
[20] E. Snekkenes. Concepts for personal location privacy policies. InProc. ACM EC, pages 48–57, 2001.
[21] Y. Tao, D. Papadias, and Jimeng Sun. The tpr*-tree: An optimized spatio-temporal access method for

predictive queries. InProc. VLDB, pages 790–801, 2003.
[22] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient cost model for optimization of nearest

neighbor search in low and medium dimensional spaces.TKDE, pages 16(10): 1169–1184, 2004.

[23] M. Yiu, Y. Tao, and N. Mamoulis. The bdual-tree: Indexing moving objects by space-filling curves in the
dual space.VLDB Journal, 2006.

[24] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. A random rotation perturbation approach to privacy
preserving data classification. InProc. ICDE, 2008.

TRANSACTIONS ONDATA PRIVACY 2 (2009)

