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Projection Lithography∗
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Abstract. Inverse lithography technology formulates the photomask synthesis as an inverse mathematical prob-
lem. To solve this, we propose a variational functional and develop a robust computational algo-
rithm, where the proposed functional takes into account the process variations and incorporates
several regularization terms that can control the mask complexity. We establish the existence of
the minimizer of the functional, and in order to optimize it effectively, we adopt an alternating
minimization procedure with Chambolle’s fast duality projection algorithm. Experimental results
show that our proposed algorithm is effective in synthesizing high quality photomasks as compared
with existing methods.
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1. Introduction. As a critical step in the semiconductor manufacturing process, optical
lithography serves to imprint the circuit design on the photomask onto silicon wafers via
light. It is known that deviation occurs on the printed image due to the subwavelength
circuit size on the mask [47, 40]. Such a deviation poses great challenges to the industry in
terms of maintaining the printed pattern integrity of the original design. One of the widely
adopted techniques to remedy the aforementioned difficulty is the so-called optical proximity
correction (OPC) [6, 29, 46], which is used to compensate for the imaging errors due to
diffraction and process variations by predistorting the patterns on the template or the mask
[47]. The predistortion can be guided by a set of rules implemented in the precomputed look-
up tables to move the contours or by simulating the fabrication process using mathematical
models to dynamically adjust the mask pattern. Based on the forward imaging model (as will
be introduced in section 3), inverse lithography technology (ILT) has emerged as a promising
approach to OPC that uses pixelated pattern images and computes the optimal mask by
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solving an inverse mathematical problem.

Equipped with increasingly sophisticated mathematical models of the lithography process,
researchers have developed various computational schemes [18] which facilitate the adoption
of optimization algorithms to solve the inverse mask design problem. From the earliest studies
in the 1990s [21] until now, many algorithms have been developed for more robust solutions
[30, 43, 35, 8, 42, 48, 24, 38, 23, 33, 15]. For instance, Sherif, Saleh, and De Leone [45] used
branch and bounds methods to synthesize the mask. Liu and Zakhor [21] designed binary and
phase-shifting masks based on simulated annealing. In [31], the authors adopted the method
of projection on convex sets for phase-shifting mask synthesis. Granik [12] proposed a fast
implementation scheme for solving an objective function which consists of linear, quadratic,
and nonlinear terms. A genetic algorithm [9], nonlinear programming [11], and a random-
pixel flipping technique [28] have also been proposed for mask synthesis. Recently, Poonawala
and Milanfar [35] formulated the mask synthesis problem by a continuous functional that
comprises data fidelity, quadratic, and complexity penalty terms. The functional was then
solved by the steepest descent algorithm. Since then, many efforts have been devoted to
refining the implementation of gradient-based optimization [4, 34, 36, 22, 3]. Such extensive
exploration has pushed ILT from theory to practice.

While the development of lithography technology has made great progress in recent years,
the process of ILT has met obstacles. One is mask manufacturability, i.e., the lack of mask
complexity control [18]: Most of the aforementioned approaches do not take this issue into
account. Without the constraint of mask geometry, ILT is appreciated for its ability to
freely manipulate pixels to achieve superior wafer image quality, but the resulting complex
shapes render it impossible to manufacture the mask. The second obstacle is that most ILT
algorithms focus on the mask performance only at nominal process conditions. However,
the mechanical fluctuations of the imaging system [47] as well as algorithm variability [19]
would lead to nonnegligible critical dimension (CD) variation and detection, which affect the
mask pattern fidelity. The increased CD sensitivity to process variations needs to be handled
to improve system performance. Some works have addressed this problem by considering
the focus variation as a random variable, turning it into a stochastic optimization problem
[16, 14, 44]. These works succeed in providing an extra margin for focus variation so that the
system can adapt to different process conditions.

Motivated by the aforementioned obstacles and recent research on ILT, we propose a
variational energy functional to tackle these obstacles and develop an effective computational
algorithm for inverse photomask synthesis. Compared with the traditional formulation of in-
verse lithography, the merit of our proposed energy functional is that it takes into consideration
the process variations and consists of penalty terms that can control the mask complexity.
Thus the synthesized photomask is expected to be simple and more robust to variations of
process conditions. In addition, we shall prove the existence of a minimizer of the energy
functional. To minimize the proposed functional, we adopt a variable splitting technique and
apply the alternating minimization method. Chambolle’s fast duality projection algorithm [2]
is used to solve the optimization problem.

This paper is organized as follows. In the next section, we briefly introduce the principle of
an optical lithography imaging system. In section 3, we present the mathematical description
of inverse lithography with focus variation. Sections 4 and 5 present the formulation of theD
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f: nominal focal length

w: nominal focal plane

Figure 1. Imaging system of optical lithography.

proposed energy functional and the optimization procedure. Experimental results will be
reported in section 6. Section 7 discusses the extension of our proposed framework, which is
followed by conclusions.

2. Principle of optical lithography. Optical lithography, as mentioned previously, uses
light to print circuit patterns from mask to wafer. A typical lithography system includes four
elements: an illuminator (a light source), a mask, an exposure system, and a silicon wafer [47],
as shown in Figure 1. Light energy from the illuminator is delivered to the mask. Patterns on
the mask are then replicated to the silicon wafer (at nominal focal plane) through the exposure
system, which consists of a series of imaging lenses. The wafer is coated with a light-sensitive
layer, on which regions with different levels of exposure are formed. This latent image on
the wafer is then developed to have the low (or high) exposure regions removed for further
processing. Assuming that the air, instead of the photo-resist wafer, occupies the space, the
concept of the so-called aerial image is introduced to denote the virtual image formed in the air
[25]. It serves as an approximator of the final image after development, which is represented
by a gray-scale image in the following discussion due to its multiple intensity levels. In this
paper, we also assume that the resist is ideal with infinite contrast so that the final image is
binary.

3. Mathematical modeling of inverse lithography. The projection lithography imaging
process can be described by the following forward model:

(3.1) I(x) = Γ{U(x)},

where x is the spatial image coordinates and Γ{•} is a function that maps the input intensity
function U(x) to the output intensity function I(x). Let I0(x) be the desired image function
(or target pattern). The objective of classical inverse lithography is to find an optimal input
intensity function (an optimal mask), Û(x), which minimizes the dissimilarity, d, betweenD
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Figure 2. Forward model of the simplified lithography process.

I0(x) and I(x):

(3.2) Û(x) = argmin
U(x)

d (I0(x),Γ{U(x)}) ,

where the L2-norm is the widely used dissimilarity measure in the literature.

To compute Û(x), we first mathematically express the image formation process (3.1).
Figure 2 summarizes the forward model of the simplified lithography process, which consists
of two functional blocks, namely, the projection optics effects (aerial image formation) and the
resist effects. In this paper, we shall focus only on the coherent illumination and chromium-
on-glass (CoG) binary mask, but our proposed method can be extended to apply to partially
coherent imaging systems (see section 7.1 for more details) and phase-shifting masks.

Due to the intrinsic lowpass characteristic (diffraction) of the coherent imaging system,
the aerial image intensity function IA(x) is typically a blurred version of U(x). In other words,
the projection optics effects can be regarded as a lowpass operation. Assume that there are
no mechanical fluctuations for the imaging system (i.e., the real image plane always lies on
the nominal focal plane). Then the aerial image can be approximated by

(3.3) IA(x) = |(H ∗ U)(x)|2.

The symbol “∗” denotes the convolution operator, and H(x) is a (linear spatially invariant)
point spread function that can be estimated by the inverse Fourier transform of the optical
transfer function [14]:

H(x) = F−1{h(v)},
where

h(v) =

{
1 if ||v||2 ≤ NA/λ,
0 else.

Here, || • ||2 is the Euclidean norm, v is the frequency variable, NA is the numerical aperture
of the imaging system, and λ is the wavelength of the light source.

The resist effects are actually a series of chemical reactions (or the etching process) on
the wafer, which can be simulated by various resist models such as a variable threshold resist
model [37], a constant threshold resist model [13], and a logarithmic sigmoid resist model
[35]. All these models involve a thresholding operation that removes the areas of aerial image
intensity higher than a certain threshold. Here, we shall use the logarithmic sigmoid function,
sig(•), as the resist effects. Together with the projection optics effects, the image formationD

ow
nl

oa
de

d 
05

/2
0/

13
 to

 1
47

.8
.2

30
.1

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST ALGORITHM FOR INVERSE PHOTOMASK SYNTHESIS 629

equation (3.1) can be written as

(3.4) I(x) = sig(IA(x)) =
1

1 + exp(−a(IA(x)− tr))
,

where a controls the steepness of the sigmoid function, and tr is the threshold. It is easy to
see that the sigmoid function would resemble the Heaviside step function with threshold at tr
when a is sufficiently large.

3.1. Inverse lithography with focus variation. In an ideal optical lithography system, the
real image plane always lies on the nominal focal plane (see Figure 1). In practice, however,
the real image plane no longer lies on the nominal focal plane but varies slightly around it,
presumably due to mechanical fluctuations. As mentioned in section 1, such a focus error may
significantly degrade the overall wafer image quality. Therefore, it is essential to control the
lithography system so that it can adapt to focus variation.

Let β be a random variable representing the distance between the real image plane and the
nominal focal plane, and let f be the nominal focal length between the lens and the nominal
focal plane (see Figure 1). Then the real image plane will lie on the position in the range
f − β to f + β measured from the lens. With focus variation β, the optical transfer function
used in the lithography system can be modeled as [16, 14]

(3.5) hβ(v) = h(v) exp(−jπβ||v||22),

which is equivalent to a shifting operation of the point spread function in the spatial domain.
The defocus point spread function is then obtained by taking the inverse Fourier transform
of (3.5), i.e., Hβ(x) = F−1{hβ(v)}. As in (3.3) and (3.4), the aerial image intensity function
and the output intensity function with focus variation are given by

IAβ (x) = |(Hβ ∗ U)(x)|2,(3.6)

Iβ(x) = sig(IAβ (x)) =
1

1 + exp(−a(IAβ (x)− tr))
.(3.7)

Given (3.6), (3.7), and a dissimilarity function d, our main objective is to compute the
optimal mask Û(x) by solving (3.2). Note that the minimization problem (3.2) involves de-
convolution and is generally ill-posed. In this work, we propose solving the inverse lithography
minimization problem with focus variation in a variational framework by incorporating the
regularization functional into the formulation. In what follows, we shall simply neglect the
argument x whenever there is no ambiguity.

4. The proposed method. The optical proximity correction mask synthesis problem with
focus variation can be formulated as follows: Given a desired image I0 : Ω → R, where the
image domain Ω is a bounded open subset of R

2, the goal is to find a mask U such that
the output pattern Iβ, which depends on U and the defocus point spread function Hβ, is
approximately close to the given image I0 by a certain suitable measure.D
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In this paper, we propose defining the energy functional Pβ(U) as follows:

Pβ(U) =
λ1

2

∫
Ω
(Iβ − I0)

2dx+
λ2

2

∫
Ω
(U − I0)

2dx+ λ3

∫
Ω
|∇U |dx(4.1)

+λ4

∫
Ω
|∇IAβ |dx+

λ5

2

∫
Ω
(1− (2U − 1)2)dx,

where λi ≥ 0 for all i are constants, ∇ is a gradient operator, and IAβ and Iβ are defined
in (3.6) and (3.7), respectively. For the defocus point spread function Hβ, we assume that∫
ΩHβdx = 1. The interpretation of (4.1) is as follows: The first term is the cost function
of the classical inverse lithography which requires that the output pattern approximates the
target pattern and thus minimizes the pattern error; the second and third terms control the
mask complexity globally and locally to ensure that the mask is easy to manufacture; the
fourth term is the total variation of the aerial image which attempts to preserve the sharp
edges of the aerial image and improves its overall contrast (or the tolerance to dose variation
[47]); and the last term is a quadratic penalty that forces the mask to be closed to a binary
pattern. We remark that while the second term can control the mask complexity globally, the
value of λ2 should be set sufficiently small. Otherwise, the optimal mask would resemble the
target pattern and some useful assist features would be suppressed, leading to unsatisfactory
pattern fidelity (see section 6.2 for more details).

We propose solving the inverse lithography problem with focus variation by minimizing
the expectation of Pβ(U):

(4.2) E{Pβ(U)},

subject to the constraint

(4.3) 0 ≤ U ≤ 1.

Note that we relax the original binary constraint U ∈ {0, 1} to 0 ≤ U ≤ 1 such that the
discrete optimization setting is transformed to the continuous optimization framework. In
addition, the energy functional (4.1) is a highly nonlinear transcendental function, and thus
its expectation is difficult to derive. Since the real image plane fluctuates around the nominal
focal plane with focus variation β, it is reasonable to assume that the focus variation is zero-
mean Gaussian distributed with variance σ2, i.e., β ∼ N (0, σ2). Given a collection of defocus
samples (βi)i=1,2,...,N , we shall approximate (4.2) by the weighted sum of Pβi

(U) using a
technique similar to that in [14]:

(4.4) E{Pβ(U)} ≈
N∑
i=1

ηiPβi
(U),

where ηi denotes the Gaussian density function of βi. In this work, we solve the minimization
problem (4.4) subject to the constraint (4.3).D
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4.1. Mathematical analysis. In this subsection, we shall prove the existence of a min-
imizer of (4.4). Since (4.4) is the weighted sum of (4.1), this is equivalent to proving the
existence of a minimizer of the proposed energy functional (4.1) given a fixed defocus sam-
ple β. Under the assumption that I0 ∈ BV (Ω) ∩ L∞(Ω), where BV (Ω) is a space of
functions of bounded variations, the energy Pβ(U) is well defined and finite for the set
SU = {U ∈ BV (Ω), 0 ≤ U ≤ 1}.

Theorem 4.1 (existence of a minimizer of Pβ). Assume that IAβ , I0 ∈ BV (Ω) ∩ L∞(Ω) and

α1 ≤ IAβ ≤ α2. Then for fixed parameters λi for all i, α1, α2, β, a, tr, there exists a minimizer
of the energy Pβ in SU .

Proof. Let U = 0; then IAβ = 0 and Iβ = 1/(1 + exp(a · tr)) ∈ (0, 1), and thus Pβ |U=0 =
λ1
2

∫
Ω(Iβ − I0)

2dx + λ2
2

∫
Ω I20dx < +∞. Since Pβ ≥ 0, we deduce that the infimum of the

energy Pβ must be finite. Let {Un} ⊆ SU be a minimizing sequence for the energy Pβ , i.e.,
Pβ(U

n) → infPβ(U) as n → ∞. Then there exists a constant M > 0 such that

Pβ(U
n) =

λ1

2

∫
Ω
(Inβ − I0)

2dx+
λ2

2

∫
Ω
(Un − I0)

2dx+ λ3

∫
Ω
|∇Un|dx

+λ4

∫
Ω
|∇(IAβ )

n|dx+
λ5

2

∫
Ω
(1− (2Un − 1)2)dx ≤ M,

where (IAβ )
n = |Hβ ∗ Un|2 and Inβ = sig((IAβ )n). This implies that each term of Pβ(U

n) is
bounded by M .

Since 0 ≤ Un ≤ 1, ‖Un‖L1(Ω) =
∫
Ω Undx ≤ |Ω|. Together with

∫
Ω |∇Un|dx ≤ M , we

see that {Un} is uniformly bounded in BV (Ω). Since every uniformly bounded sequence in
BV (Ω) is relatively compact in L1(Ω), there exist a subsequence (also denoted by) {Un} and
a function U∗ ∈ BV (Ω) such that

Un→ U∗ strongly in L1(Ω),

Un→ U∗ a.e. x ∈ Ω,

∇Un→ ∇U∗ in the sense of measure.

By the lower semicontinuity of total variation and the L2-norm and Fatou’s lemma, we have∫
Ω
|∇U∗|dx ≤ lim inf

n→∞

∫
Ω
|∇Un|dx,(4.5) ∫

Ω
(U∗ − I0)

2dx ≤ lim inf
n→∞

∫
Ω
(Un − I0)

2dx,(4.6) ∫
Ω
(1− (2U∗ − 1)2)dx ≤ lim inf

n→∞

∫
Ω
(1− (2Un − 1)2)dx.(4.7)

Since
∫
Ω |∇(IAβ )

n|dx ≤ M and α1 ≤ (IAβ )
n ≤ α2, we have that the total variation and

the L1-norm of (IAβ )
n are uniformly bounded. Then {(IAβ )n} is uniformly bounded in BV (Ω),

and there exist a subsequence (also denoted by) {(IAβ )n} and a function (IAβ )
∗ ∈ BV (Ω),D
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α1 ≤ (IAβ )
∗ ≤ α2, such that

(IAβ )
n→ (IAβ )

∗ strongly in L1(Ω),

(IAβ )
n→ (IAβ )

∗ a.e. x ∈ Ω,

∇(IAβ )
n→ ∇(IAβ )

∗ in the sense of measure.

The lower semicontinuity of total variation gives

(4.8)

∫
Ω
|∇(IAβ )

∗|dx ≤ lim inf
n→∞

∫
Ω
|∇(IAβ )

n|dx.

Since Inβ = sig((IAβ )n) ∈ (0, 1) and (IAβ )
n → (IAβ )

∗ a.e. x ∈ Ω, from the boundedness of the
sequence {Inβ }, we can extract a subsequence (also denoted by) {Inβ } and a function I∗β such
that

Inβ = sig((IAβ )
n) → sig((IAβ )

∗) = I∗β uniformly.

By the lower semicontinuity of the L2-norm, we have

(4.9)

∫
Ω
(I∗β − I0)

2dx ≤ lim inf
n→∞

∫
Ω
(Inβ − I0)

2dx.

Combining (4.5)–(4.9), we have established that

Pβ(U
∗) ≤ lim inf

n→∞ Pβ(U
n) = inf Pβ(U),

and hence U∗ must be a minimizer.

5. The optimization procedure. Minimization of (4.4) with the constraint (4.3) forms a
class of constrained nonlinear optimization problems whose solutions are unknown. In order
to effectively minimize the energy functional subject to the constraint, we adopt an alternat-
ing minimization procedure and make use of Chambolle’s fast duality projection algorithm
[2]. The data fidelity and the total variation terms in the functional can be decoupled by
introducing auxiliary variables V and JA

β = (JA
βi
)i=1,2,...,N . Given a set of defocus samples

(βi)i=1,2,...,N , we shall approximate (4.4) by replacing U and IAβ = (IAβi
)i=1,2,...,N with V and

JA
β , respectively, in the total variation terms of (4.1) and adding convex terms that force IAβ

and JA
β , and U and V , to be sufficiently close:

Qβ(U, V, J
A
β ) =

N∑
i=1

ηi

(
λ1

2

∫
Ω
(Iβi

− I0)
2dx+

λ2

2

∫
Ω
(U − I0)

2dx+ λ3

∫
Ω
|∇V |dx

+
1

2θ1

∫
Ω
(V − U)2dx+ λ4

∫
Ω
|∇JA

βi
|dx+

1

2θ2

∫
Ω
(JA

βi
− IAβi

)2dx(5.1)

+
λ5

2

∫
Ω
(1− (2U − 1)2)dx

)
,

where θ1 and θ2 are small positive constants. We remark that when θ1 and θ2 are sufficiently
small, we force V close to U , and JA

β close to IAβ . Therefore, minimizing (5.1) can be regarded

as a minimization of (4.4) when θ1 and θ2 are sufficiently small with respect to the L2-norm.
In the following, we shall present the alternating minimization procedure (sections 5.1–5.3)
and the overall implementation of the mask synthesis algorithm (section 5.4).D
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5.1. Solving for auxiliary variable V . Fixing U and JA
β , we compute V by minimizing∫

Ω
|∇V |dx+

1

2δ1

∫
Ω
(V − U)2dx,

where δ1 = λ3 · θ1. This is the well-known Rudin–Osher–Fatemi model [41], which can be
solved by many different methods such as Chambolle’s fast duality projection algorithm [2, 7],
semismooth Newton’s method [27], and the multilevel optimization method [5]. In this paper,
we employ the fast duality projection algorithm of Chambolle due to its efficiency, effectiveness,
ease of implementation [20], and high numerical stability [26]. Then the solution is given by

(5.2) V̂ = U − δ1divp1,

where div is a divergence operator and p1 can be computed using a fixed point algorithm:

pn+1
1 =

pn1 + τ1∇(div pn1 − U/δ1)

1 + τ1|∇(div pn1 − U/δ1)| , n = 0, 1, . . . ,

with initial value p01 = 0. Since the algorithm is guaranteed to converge for 0 < τ1 ≤ 1/8 [2], we
simply choose τ1 = 0.025. In addition, we choose θ1 = 0.01 in all the following experiments.1

5.2. Solving for auxiliary variable JA
β . Fixing U and V , we compute JA

βi
by minimizing∫

Ω
|∇JA

βi
|dx+

1

2δ2

∫
Ω
(JA

βi
− IAβi

)2dx,

where δ2 = λ4 · θ2. Using the same technique as in section 5.1, the solution is given by

(5.3) ĴA
βi

= IAβi
− δ2divp2,i,

where p2,i can be determined using a fixed point algorithm, provided that δ2 and τ2 are fixed.
Following the parameter specification as in section 5.1, we simply choose θ2 = θ1 and τ2 = τ1
in all our experiments.

5.3. Solving for mask U . Fixing V and JA
β , we solve U by minimizing

Q̃β(U) =
N∑
i=1

ηi

(
λ1

2

∫
Ω
(Iβi

− I0)
2dx+

λ2

2

∫
Ω
(U − I0)

2dx+
1

2θ1

∫
Ω
(V − U)2dx

+
1

2θ2

∫
Ω
(JA

βi
− IAβi

)2dx+
λ5

2

∫
Ω
(1− (2U − 1)2)dx

)
,(5.4)

subject to

(5.5) 0 ≤ U ≤ 1.

1We also found that 0 < θ1 < 0.5 achieved satisfactory optimal masks and output patterns. As θ1 = 0.01
usually gave the best results, we simply report the θ1 = 0.01 case in our experiments.D
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If Ũ is a minimizer of Q̃β, the gradient of Q̃β with respect to Ũ must vanish. Then we have

(5.6)
∂Q̃β

∂Ũ
=

N∑
i=1

ηigβi
(Ũ) = 0,

where

gβi
(Ũ ) = Hβi

∗
(
(H†

βi
∗ Ũ) • �1

i

)
+H†

βi
∗
(
(Hβi

∗ Ũ) • �1
i

)
(5.7)

+

(
1

θ1
(Ũ − V ) + λ2(Ũ − I0) + λ5(2− 4Ũ )

)
,

�1
i = aλ1Iβi

• (1− Iβi
) • (Iβi

− I0) +
1

θ2
(IAβi

− JA
βi
).

For the derivation of (5.6), we refer the reader to Appendix A. In (5.7), the symbol “•”
denotes pointwise multiplication, and H†

βi
is the complex conjugate of Hβi

. Note that (5.6) is
a transcendental equation and can be solved numerically. We shall use the Newton–Raphson
algorithm for computing Ũ .

Define the middle part of (5.6) as a function of Ũ , fβ(Ũ), i.e., fβ(Ũ) =
∑N

i=1 ηigβi
(Ũ ).

Differentiating fβ(Ũ ) with respect to Ũ gives

(5.8) f ′
β(Ũ ) =

N∑
i=1

ηig
′
βi
(Ũ ),

where

g′βi
(Ũ ) = 2(Hβi

•H†
βi
) ∗ (�1

i +�2
i • IAβi

)
+H2

βi
∗
(
(H†

βi
∗ Ũ)2 • �2

i

)
+(H†

βi
)2 ∗

(
(Hβi

∗ Ũ)2 • �2
i

)
+

(
1

θ1
+ λ2 − 4λ5

)
,

�2
i = a2λ1Iβi

• (1− Iβi
) • (Iβi

• (1− Iβi
) + (Iβi

− I0) • (1− 2Iβi
)) +

1

θ2
.

The derivation of (5.8) can be obtained using similar techniques as in Appendix A. Then the
minimizer Ũ is obtained by

Ũn+1 = Ũn − fβ(Ũ
n)

f ′
β(Ũ

n)
, n = 0, 1, . . . .

Note that, in each iteration of the Newton–Raphson algorithm, Ũ is updated after computing
the gradients for all the defocus samples (βi)i=1,2,...,N , which is computationally expensive.
Here we shall adopt a more efficient way to compute the minimizer. Specifically, instead of
considering all the defocus samples for each iteration step, we simply update Ũ using a single
defocus sample βi which is randomly generated from N (0, σ2). Then the minimizer is

(5.9) Ũn+1 = Ũn − gβi
(Ũn)

g′βi
(Ũn)

, n = 0, 1, . . . .
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By using a different defocus sample in each iteration step, the estimated mask is adjusted
continuously to adapt to different defocus conditions, and, thus, the lithography system is
more robust in a certain range (depends on the variance of βi) of focus errors. We also remark
that the ratio gβi

(Ũn)/g′βi
(Ũn) is independent of the Gaussian density function ηi. Once the

mask Ũ is computed from (5.9), the solution Û is constructed by projecting Ũ onto [0, 1] such
that the constraint (5.5) is satisfied:

(5.10) Û = min{max{Ũ , 0}, 1}.
5.4. Algorithm. The overall implementation of the mask synthesis algorithm is summa-

rized as follows:
• Step 1: Initialize the mask U .
• Step 2: Update the auxiliary variables V̂ and ĴA

βi
using (5.2) and (5.3).

• Step 3: Update Û using (5.10).
Repeat Step 2 and Step 3 until termination. The iteration stops if one of the following
criteria is satisfied: ∫

Ω
(Ûnew − Ûold)2dx < ε or Ite < K,

where ε is a small positive constant, Ite is the number of iterations of the algorithm,
and K is a positive integer.

• Step 4: Given Û(x) ∈ [0, 1], x ∈ Ω, obtained from Step 3, the optimal binary mask
Ûopt(x) ∈ {0, 1} is constructed by

Ûopt(x) =

{
1 if Û(x) > tm,
0 else,

where tm = 0.5.
Note that in Step 4 of the above mask synthesis algorithm, tm = 0.5 corresponds to the value
that maximizes the term

∫
Ω(1−(2U−1)2)dx in our proposed functional (4.1). Thus, this value

can be used as a natural threshold to binarize the mask Û ∈ [0, 1]. We also remark that in Step
2, p1 and p2,i are computed in order to update the variables V̂ and ĴA

βi
. Here, we iterate the

fixed point algorithm only one time with the initial values p01 and p02,i equal to the last loop of
the alternating minimization to estimate p1 and p2,i. This setting makes use of the information
of p1 and p2,i obtained in the last loop in the minimization process and is presumably more
efficient and effective. Similarly, we shall iterate the Newton–Raphson algorithm only one time
(given the updated auxiliary variables) to obtain Ũ (see (5.9)). Moreover, instead of employing
the steepest descent algorithm, as used in the traditional inverse lithography problem, to
solve for Ũ , we adopt the Newton–Raphson algorithm to compute Ũ , which avoids choosing
a constant step size that may yield poor results.

6. Experiments. We apply our proposed methodology to design some CoG binary mask
patterns. Unless otherwise specified, we fix the parameters in all our experiments as follows:
λ = 193nm, NA = 0.85, resolution = 10nm/pixel, a = 90, tr = 0.3, and the size of Hβ is
51 × 51. We simply choose these values as they are often adopted in the literature; see, forD
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instance, [14, 16, 33, 43]. For the regularization parameters, we note that λ1 and λ4 are the
parameters corresponding to the pattern fidelity and aerial image contrast penalty terms which
would affect the accuracy of the output pattern. Therefore, they should be set sufficiently large
compared to other regularization parameters. On the other hand, λ3 and λ5 are the parameters
of the local complexity and quadratic penalty terms which mainly influence the structure of
the optimal masks (and also affect the pattern fidelity indirectly). Thus, they are presumably
less important than λ1 and λ4. For the parameter of global complexity penalty term λ2, as we
mentioned earlier in section 4, it should be set sufficiently small; otherwise, the optimal mask
would resemble the target pattern leading to unsatisfactory pattern fidelity. Nevertheless, a
well-chosen λ2 can make the optimal mask less complex. Generally speaking, we suggest that
the regularization parameters should be set according to λ1 > λ4 ≥ λ3 ≈ λ5 > λ2. In this
paper, we simply choose λ1 = 10.0, λ3 = 1.0, λ4 = 3.0, λ5 = 1.0, whereas the parameter
0 ≤ λ2 < 1 is required to be tuned for each case. The choice of these parameters seems
to give the best results in our experiments.2 The parameters of the stopping criteria of the
mask synthesis algorithm, ε and K, can be set arbitrarily by the user. Here, we shall set
ε = 0.005 and K = 300. In addition, the defocus sample is assumed to be zero-mean Gaussian
distributed with variance σ2. In practice, the standard deviation would not be too large, and
setting σ = 150nm would be good enough to capture the most probable range of fluctuations
of the real image plane. In the proposed algorithm, only the mask needs to be initialized.
A trivial guess for the initial mask is the target pattern itself (i.e., U init = I0). However,
the major disadvantage of such an initialization is that the algorithm tends to search for a
local minimum around the target pattern, which may lead to unsatisfactory fidelity [4]. Here,
the initial mask is generated based on the uniform distribution to ensure that the constraint
(4.3) is satisfied. For simplicity, we shall refer to it as U init = UD hereafter. To quantify the
effectiveness of our proposed method, we use a pattern error, Pe, defined as the number of
pixel differences between the target pattern and the output pattern:

Pe = ‖I0 − Iβ‖2F ,

where || • ||F is the Frobenius norm.
All experiments have been implemented on a Pentium IV PC (2 GHz) in a MATLAB

environment. Essentially, the computational cost of the proposed mask synthesis algorithm
mainly depends on solving Ũ in (5.9) using the Newton–Raphson algorithm. For each image
shown below, the computation time to synthesize the optimal mask is about 60–300 seconds.
We emphasize that our main goal is to propose a robust and effective computational algorithm
to synthesize a simple mask which gives a small pattern error. Therefore the computational
cost is not a major issue in this paper. Moreover, in all the following experiments (Figures
3–6 and Figures 9–11), the target patterns are chosen such that their critical dimensions lie
in the range [80nm, 130nm] and are below the Rayleigh criterion R = 0.61λ/NA ≈ 140nm.

We start by comparing the results of the proposed method at the best focus and under
defocus when the inputs are target pattern and optimal mask, respectively. Then we compare
our methodology with some existing approaches. We remark that, for all binary images

2We also found that λ1 ∈ [5, 12], λ2 ∈ [0, 0.5], λ3 ∈ [0.5, 1.5], λ4 ∈ [1.5, 4], and λ5 ∈ [0.5, 1.5] gave similar
and satisfactory results in all our experiments.D
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(a) (b) (c)

(d) (e) (f)

Figure 3. (a) Target pattern of size 170× 140 pixels. (b)–(c) Output patterns at the best focus and under
defocus 300nm with target pattern as input. (d) Optimal mask generated by our method. (e)–(f) Output patterns
at the best focus and under defocus 300nm with optimal mask as input.

shown below, the black regions represent the unexposed region on the wafer, whereas the
white regions correspond to the printed patterns on the wafer.

6.1. Effectiveness of our methodology. We first illustrate the significance of mask opti-
mization by comparing the output patterns when the inputs are target pattern and optimal
mask synthesized by our method, respectively. Figures 3–6 show the comparative results at
the best focus β = 0nm and under defocus β = 300nm. Here, we shall choose λ2 = 0 in these
four experiments, and therefore, we control the mask complexity only locally (note that in
section 6.2, we shall discuss the impact of a global complexity penalty on the structure of the
optimal mask and the pattern fidelity). In Figures 3–6, the top row displays the results using
the target pattern as input, whereas the bottom row is the results using the synthesized mask
as input.

Figure 3(a) shows the target pattern consisting of five vertical rectangular bars. Figures
3(b)–3(c) display the output patterns at the best focus and under defocus, respectively, with
target pattern as input. Compared with the desired target pattern, we observe that the errors
for Figures 3(b)–3(c) are visually noticeable, especially for the regions located at the end of
each rectangular bar. Figure 3(d) shows the optimal mask generated by our proposed method,
and Figures 3(e)–3(f) are the corresponding output patterns. As can be seen in Figure 3(d),
some assist features near the vertical bars are automatically generated in the minimization
process, which would help to improve the overall pattern fidelity. In addition, the corner-
rounding effect at the end of each bar shown in Figures 3(e)–3(f) is reduced compared to
Figures 3(b)–3(c), and the optimal mask gives the satisfactory contours in the output patterns.
To quantitatively assess the pattern fidelity, we shall compare their pattern errors (and also
their corresponding percentage errors) at the best focus and under defocus conditions, asD
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Table 1
Pattern errors and the corresponding percentage errors of our method at the best focus and under defocus

300nm when the inputs are target pattern and optimal mask.

Target pattern Optimal mask
Figure

β = 0 β = 300 β = 0 β = 300

3 158 260 82 163
(0.66%) (1.09%) (0.34%) (0.68%)

4 679 781 47 256
(2.85%) (3.28%) (0.20%) (1.08%)

5 857 1116 228 432
(2.28%) (2.97%) (0.61%) (1.15%)

6 592 1311 273 636
(1.48%) (3.28%) (0.68%) (1.59%)

(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Target pattern of size 170× 140 pixels. (b)–(c) Output patterns at the best focus and under
defocus 300nm with target pattern as input. (d) Optimal mask generated by our method. (e)–(f) Output patterns
at the best focus and under defocus 300nm with optimal mask as input.

reported in Table 1. With the target pattern as input, the pattern errors (and percentage
errors) for Figures 3(b)–3(c) are Pe = 158 (0.66%) and Pe = 260 (1.09%), respectively, while
Pe = 82 (0.34%) and Pe = 163 (0.68%) for Figures 3(e)–3(f) when the input is the optimal
mask. This reveals that the optimal mask generated by our method gives a more accurate
pattern fidelity compared with using the target pattern as input. Moreover, our approach
is also robust to focus variation in the sense that the proposed algorithm gives a promising
output pattern even when a 300nm focus error is introduced.

Figure 4 shows another example where the target pattern is composed of vertical and
horizontal rectangular bars. As far as the pattern fidelity is concerned, the pattern errors
(and percentage errors) for Figures 4(b)–4(c) are about 14 times (Pe = 679 (2.85%) versus
Pe = 47 (0.20%)) and 3 times (Pe = 781 (3.28%) versus Pe = 256 (1.08%)) higher than thoseD
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Target pattern of size 186× 202 pixels. (b)–(c) Output patterns at the best focus and under
defocus 300nm with target pattern as input. (d) Optimal mask generated by our method. (e)–(f) Output patterns
at the best focus and under defocus 300nm with optimal mask as input.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a) Target pattern of size 200× 200 pixels. (b)–(c) Output patterns at the best focus and under
defocus 300nm with target pattern as input. (d) Optimal mask generated by our method. (e)–(f) Output patterns
at the best focus and under defocus 300nm with optimal mask as input.

for Figures 4(e)–4(f), respectively. This clearly indicates the importance of mask optimization.

The next two examples, Figures 5–6, show the more complicated structures in which
the target patterns are composed of various polygons. When the input is target pattern,D
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Edge placement error map.

the corner-rounding effect in the output patterns is significant. On the other hand, the
synthesized masks with some small and isolated assist features (see Figures 5(d) and 6(d)) are
automatically generated using our algorithm. Similar to the previous examples, the optimal
mask achieves satisfactory output patterns where the corners of the rectangular bars are well
preserved (see also Figure 7 for more details). In these two cases, the pattern errors are
apparently smaller using our optimal masks as input, as can be seen in Table 1.

To further evaluate the robustness of the proposed method, we compute the edge placement
error (EPE) map, which measures the difference between the output pattern and the target
pattern. Each EPE map shown below is generated by accumulating multiple EPE maps acrossD
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the defocus range [0nm, 300nm]. The EPE map indicates the level of deviation between the
printed edge and the target edge from infocus to defocus. The more robust the mask pattern
is, the smaller the observed deviation is. Figure 7 displays the EPE maps of the previous
patterns when the inputs are the target patterns (left column) and the optimal masks (right
column), respectively. As can be seen, the accumulated edge placement errors occur mostly at
the end of long bars and pattern corners, which in optical lithography are the critical locations
that are sensitive to optical proximity effects and process variations. In these examples, our
results show that the optimal masks produce less deviation, especially at the line ends and
corners under different focus conditions, and therefore the proposed method can effectively
enhance mask robustness.

Generally speaking, these results show that without mask optimization, using the target
pattern as an input directly will lead to unsatisfactory pattern fidelity. On the other hand,
the optimal mask synthesized by our method gives a very good output pattern contour with
a relatively small error and our algorithm is also robust to focus fluctuation.

6.2. Impact of global complexity penalty. In this subsection, we discuss the impact of
the global complexity penalty term on the optimal mask and the pattern fidelity by choosing
different values of λ2. Figure 8 shows the optimal masks of Figures 4–6 for λ2 = 0 (left
column), λ2 = 0.4 (middle column), and λ2 = 0.8 (right column). As can be seen, when the
global complexity penalty term is neglected (i.e., λ2 = 0), some small, irregular, and isolated
assist features are automatically generated using our algorithm. But when λ2 becomes larger,
most of the assist features are suppressed, and the optimal mask resembles the target pattern
when λ2 = 0.8. Theoretically, the optimal mask would be equal to the target pattern as
λ2 → ∞. This phenomenon is expected and is consistent with our analysis and discussion in
section 4. Table 2 reports the corresponding pattern errors and percentage errors. As far as
the pattern fidelity is concerned, the best results are achieved when λ2 = 0, and the pattern
errors slightly increase when λ2 = 0.4. But when λ2 = 0.8, some useful assist features are
removed, leading to poor pattern fidelity. It is important to note that while λ2 = 0 gives the
smallest pattern errors, the corresponding optimal masks are a bit complex compared with
the ones when λ2 = 0.4 and λ2 = 0.8. Our results suggest that there is a tradeoff between
the mask complexity and the pattern fidelity, and, therefore, one can always obtain a less
complex mask at the expense of the pattern fidelity by choosing a suitable value of λ2. In
these three cases, if both the mask complexity and pattern fidelity are taken into consideration,
the best results perhaps correspond to the cases when λ2 = 0.4. Generally speaking, these
results clearly indicate the importance of the global complexity penalty and reveal that our
proposed variational formulation could be used to synthesize a simple mask with a small
pattern error where the complexity of the optimal mask could be adjusted arbitrarily. We
believe that this property would be an important and welcome advantage if it could be used
in the semiconductor manufacturing process.

6.3. Comparative results. We compare our methodology with the machine learning ap-
proach [14]. In this method, the authors proposed minimizing the weighted pattern error
with focus variation, where the weights are assumed to be zero-mean Gaussian distributed
with standard deviation 150nm. The optimization problem was then solved by the gradient
descent algorithm with initial mask U init = 0.1I0 + 0.45. In the following experiments, theD
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. The optimal masks of Figures 4–6 for different values of λ2. From the left column to the right
column, the values of λ2 are 0, 0.4, and 0.8, respectively.

Table 2
Pattern errors and the corresponding percentage errors of Figures 4–6 at the best focus and under defocus

300nm for different values of λ2.

λ2 = 0 λ2 = 0.4 λ2 = 0.8
Figure

β = 0 β = 300 β = 0 β = 300 β = 0 β = 300

4 47 256 62 272 121 345
(0.20%) (1.08%) (0.26%) (1.14%) (0.51%) (1.45%)

5 228 432 247 464 305 524
(0.61%) (1.15%) (0.66%) (1.23%) (0.81%) (1.39%)

6 273 636 275 648 378 725
(0.68%) (1.59%) (0.69%) (1.62%) (0.95%) (1.81%)

same parameter setting (except the mask initialization) is used as in [14]. We shall assess the
performance of our method and the machine learning approach by comparing their optimal
masks and the corresponding output patterns. In addition, we shall also compare the results
of the proposed method by using different initialization strategies (see the last two rows of
Figures 9–11).D
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 9. (a) Target pattern of size 121× 121 pixels. (b) Optimal mask using the method in [14]. (c)–(d)
Output patterns at the best focus and under defocus 250nm with (b) as input. (e) Optimal mask generated by
our method with U init = UD. (f)–(g) Output patterns at the best focus and under defocus 250nm with (e) as
input. (h) Optimal mask generated by our method with U init = 0.5I0 +N (0, 1). (i)–(j) Output patterns at the
best focus and under defocus 250nm with (h) as input.

Figures 9–11 show the comparative results of optimal masks and the associated output
patterns. For all cases, one first observes that the optimal masks generated by the machine
learning approach (see Figures 9(b), 10(b), 11(b)) are rather complex compared with the
optimal masks synthesized by our method (see Figures 9(e), 9(h), 10(e), 10(h), 11(e), 11(h)).
This may be explained by the fact that the machine learning approach does not take intoD
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 10. (a) Target pattern of size 141× 141 pixels. (b) Optimal mask using the method in [14]. (c)–(d)
Output patterns at the best focus and under defocus 250nm with (b) as input. (e) Optimal mask generated by
our method with U init = UD. (f)–(g) Output patterns at the best focus and under defocus 250nm with (e) as
input. (h) Optimal mask generated by our method with U init = 0.5I0 +N (0, 1). (i)–(j) Output patterns at the
best focus and under defocus 250nm with (h) as input.

account the mask complexity, whereas our method incorporates penalty terms that can control
the mask structure. Note that we have set λ2 = 0 and λ3 = 1.0 for Figures 9–10 and thus
we shall control their mask complexity only locally. Nevertheless, we have found that setting
λ2 = 0 is good enough to achieve low complexity and high quality masks with small pattern
error in these two cases. For Figure 11, we have set λ2 = 0.4 and λ3 = 1.0, and hence bothD
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 11. (a) Target pattern of size 201× 201 pixels. (b) Optimal mask using the method in [14]. (c)–(d)
Output patterns at the best focus and under defocus 250nm with (b) as input. (e) Optimal mask generated by
our method with U init = UD. (f)–(g) Output patterns at the best focus and under defocus 250nm with (e) as
input. (h) Optimal mask generated by our method with U init = 0.5I0 +N (0, 1). (i)–(j) Output patterns at the
best focus and under defocus 250nm with (h) as input.

global and local mask structures are taken into consideration. The output patterns at the
best focus and under defocus 250nm are also shown in the corresponding figures. We see that
parts of the output patterns for the machine learning approach are not accurately reproduced,
whereas our method gives very good pattern contours. The summary of pattern errors (and
percentage errors) is reported in Table 3. In terms of pattern fidelity, our algorithm in generalD
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Table 3
Pattern errors and the corresponding percentage errors of the machine learning approach [14] and our

method at the best focus and under defocus 250nm. Proposed method 1: Our method with uniform distribution
as initial mask (U init = UD). Proposed method 2: Our method with U init = 0.5I0 +N (0, 1).

Method in [14] Proposed method 1 Proposed method 2
Figure

β = 0 β = 250 β = 0 β = 250 β = 0 β = 250

9 85 103 43 63 44 65
(0.58%) (0.70%) (0.29%) (0.43%) (0.30%) (0.44%)

10 289 338 205 227 221 245
(1.45%) (1.70%) (1.03%) (1.14%) (1.11%) (1.23%)

11 202 259 134 189 154 211
(0.50%) (0.64%) (0.33%) (0.47%) (0.38%) (0.52%)

outperforms the machine learning approach.

In addition to the comparisons of our method and the machine learning approach, we also
compare the optimal masks and the pattern fidelity of the proposed method when different
initialization strategies are adopted. Note that for all of the above experiments, the initial
mask is generated based on the uniform distribution (i.e., U init = UD). Here, we shall adopt
another initialization U init = 0.5I0 +N (0, 1), where N (0, 1) is the zero-mean Gaussian noise
with variance 1. Figures 9(e), 10(e), and 11(e) show the optimal masks with U init = UD ,
whereas Figures 9(h), 10(h), and 11(h) display the optimal masks with U init = 0.5I0+N (0, 1).
Their output patterns are shown in the same row. As can be seen, both initializations give
similar optimal masks in Figures 9 and 11. On the other hand, we observe that the optimal
mask in Figure 10(e) looks more regular than the one in Figure 10(h). Table 3 reports the
corresponding pattern errors and percentage errors. While both initializations result in similar
mask structures, our study indicates that using U init = UD as an initialization gives smaller
pattern errors compared with using U init = 0.5I0 + N (0, 1). Interestingly, we also found
that using U init = UD as an initial guess in our algorithm always outperforms any other
initializations in the form of a linear combination of target pattern.

7. Extensions and conclusions. In this section, we shall discuss the extension of our
proposed framework to partially coherent imaging systems, which are currently adopted in
the semiconductor manufacturing industry. We then conclude with some discussions.

7.1. Extensions to partially coherent imaging systems. Practical lithography systems
in real-world industrial simulations are partially coherent imaging systems. Therefore, the
proposed framework needs to be extended to apply to such systems in order to have practical
value to the lithography community. Essentially, the major issue in our formulation is how to
obtain the aerial image in a partially coherent imaging system. Here, we shall only discuss the
computation of the aerial image without focus variation. Incorporating the focus variation
into the aerial image is straightforward.

The aerial image under partially coherent imaging based on the Hopkin approach [1] can
be computed as

IA(x) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
J(v)h(v1 + v)h†(v2 + v)u(v1)u

†(v2)e−j2π(v1−v2)xdv1dv2dv.
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Here, J and u are the functions of the effective source and the mask spectrum, respectively.
Note that the aerial image is formed by adding the interferences of wave pairs traveling from
directions corresponding to v1 and v2. The interaction between each wave pair is weighted by
a factor known as the transmission cross-coefficient (TCC):

TCC(v1, v2) =

∫ ∞

−∞
J(v)h(v1 + v)h†(v2 + v)dv.

Incorporating the TCC into the above aerial image function leads to

IA(x) =

∫ ∞

−∞

∫ ∞

−∞
TCC(v1, v2)u(v1)u

†(v2)e−j2π(v1−v2)xdv1dv2.

To improve efficiency, the TCC can be decomposed into a series of eigenvectors φl and the
corresponding eigenvalues λ̃l [10, 32, 39] as

TCC(v1, v2) =

∞∑
l=1

λ̃lφl(v1)φ
†
l (v2).

For typical exposure systems, the magnitudes of a few eigenvalues are much larger than the
rest. Assuming that there are L dominant eigenvectors, we can thus approximate the TCC
as

TCC(v1, v2) ≈
L∑
l=1

λ̃lφl(v1)φ
†
l (v2).

Then the aerial image can be calculated as

IA(x) =

L∑
l=1

λ̃l

∫ ∞

−∞

∫ ∞

−∞
φl(v1)φ

†
l (v2)u(v1)u

†(v2)e−j2π(v1−v2)xdv1dv2

=

L∑
l=1

λ̃l

∣∣∣∣∫ ∞

−∞
φl(v1)u(v1)e

−j2πv1xdv1

∣∣∣∣2

=
L∑
l=1

λ̃l |(Φl ∗ U)(x)|2 ,(7.1)

where Φl is the inverse Fourier transform of φl. Therefore, the aerial image in the partially
coherent imaging system can be formulated as the superposition of a finite number of coherent
images. Once the aerial image is computed using (7.1), the output pattern is obtained by
taking the sigmoid function of the aerial image. The corresponding energy functional can also
be defined in a similar manner (see (4.1)), and the optimization problem under the partially
coherent imaging system can be solved directly using our proposed mask synthesis algorithm.

7.2. Conclusions. This paper presents a variational formulation and a computational
algorithm for pixel-based binary photomask design using inverse lithography. Compared with
the classical and current state-of-the-art functionals, our proposed formulation is robust to
process variations and can make the resulting mask less complex. We have also proved theD
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existence of a minimizer of the proposed functional. To optimize the proposed functional, we
present an effective alternating minimization scheme and adopt the fast duality projection
algorithm of Chambolle. Experimental results reveal that our methodology can effectively
synthesize robust photomasks compared with some existing approaches.

While the mask synthesis algorithm presented in this paper achieves promising results
in computational lithography, we apply the proposed algorithm only to coherent imaging
systems. Extensive numerical experiments should be performed in the partially coherent
imaging system to show the effectiveness of our methodology. In addition, an intervention
scheme [17], which prevents undesirable geometrical characteristics of mask features, can also
be incorporated into our framework. These issues will be explored in our future work.

Appendix A. We shall show that if Ũ is a minimizer of Q̃β defined in (5.4), then

∂Q̃β

∂Ũ
=

N∑
i=1

ηigβi
(Ũ) = 0,

where gβi
(Ũ) is defined by (5.7).

We begin by computing the partial derivatives of the sigmoid function sig(z) = 1/(1 +
exp(−a(z − tr))) and the convolution (Hβi

∗ U)(z). It is straightforward to show that

∂sig(z)

∂z
= a · sig(z) (1− sig(z)) ,

∂(Hβi
∗ U)(z)

∂U(p)
=

∂
∫
ΩHβi

(z − v)U(v)dv

∂U(p)
= Hβi

(z − p).

Using the above equations, the partial derivatives of the aerial image IAβi
(x) = |(Hβi

∗U)(x)|2
and the output image Iβi

(x) = sig(IAβi
(x)) are given by

∂IAβi
(x)

∂U(p)
= (H†

βi
∗ U)(x)Hβi

(x− p) + (Hβi
∗ U)(x)H†

βi
(x− p),(A.1)

∂Iβi
(x)

∂U(p)
= a · Iβi

(x)(1 − Iβi
(x))

(
(H†

βi
∗ U)(x)Hβi

(x− p)(A.2)

+ (Hβi
∗ U)(x)H†

βi
(x− p)

)
,

where H†
βi

is a complex conjugate of Hβi
. In the following, we shall simply drop the argument

x ∈ Ω whenever there is no ambiguity.

Given the energy functional defined in (5.4) and using (A.1) and (A.2), the partial deriv-D
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ative of Q̃β with respect to U is

∂Q̃β

∂U
=

N∑
i=1

ηi

{
λ1

∫
Ω
(Iβi

− I0)

(
∂Iβi

∂U

)
dx+ λ2(U − I0) +

1

θ1
(U − V )

+
1

θ2

∫
Ω
(IAβi

− JA
βi
)

(
∂IAβi

∂U

)
dx+ λ5(2− 4U)

}
,

=
N∑
i=1

ηi

{
λ1

∫
Ω
a · (Iβi

− I0)Iβi
(1− Iβi

)

(
(H†

βi
∗ U)Hβi

(x− p)

+ (Hβi
∗ U)H†

βi
(x− p)

)
dx+ λ2(U − I0) +

1

θ1
(U − V )

+
1

θ2

∫
Ω
(IAβi

− JA
βi
)

(
(H†

βi
∗ U)Hβi

(x− p) + (Hβi
∗ U)H†

βi
(x− p)

)
dx

+λ5(2− 4U)

}
,

=

N∑
i=1

ηi

{
aλ1Hβi

∗
(
Iβi

• (1− Iβi
) • (Iβi

− I0) • (H†
βi
∗ U)

)
+ aλ1H

†
βi
∗
(
Iβi

• (1− Iβi
) • (Iβi

− I0) • (Hβi
∗ U)

)
+

1

θ2
·Hβi

∗
(
(IAβi

− JA
βi
) • (H†

βi
∗ U)

)
+

1

θ2
·H†

βi
∗
(
(IAβi

− JA
βi
) • (Hβi

∗ U)

)
+

1

θ1
(U − V ) + λ2(U − I0) + λ5(2− 4U)

}
.

Let �1
i = aλ1Iβi

• (1− Iβi
) • (Iβi

− I0) +
1
θ2
(IAβi

− JA
βi
). Then we obtain

∂Q̃β

∂U
=

N∑
i=1

ηi

{
Hβi

∗
(
(H†

βi
∗ U) • �1

i

)
+H†

βi
∗ ((Hβi

∗ U) • �1
i

)
(A.3)

+

(
1

θ1
(U − V ) + λ2(U − I0) + λ5(2− 4U)

)}
.

Substitute Ũ into (A.3) and set it to zero; the result follows.
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