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Abstract

In the field of visual recognition such as scene categorization, representing an
image based on the local feature (e.g. the bags of visual words (BOW) model
and its variants) has become popular and one of the most successful method-
s. In this paper, we propose a method that uses localized maximum-margin
learning to fuse different types of features during the BOW modeling process
for eventual scene classification. Unlike previous feature fusion methods for
visual recognition, which combines the features after generating the entire
set of representations based on different types of features from local region-
s, the proposed method fuses different features at the stage when the best
visual word is selected to represent a local region (hard assignment) or the
probabilities of the candidate visual words used to represent the unknown
region are estimated (soft assignment). The merits of the proposed method
are that (1) errors caused by the ambiguity of single feature when assigning
local regions to the best representative visual words can be corrected or the
probabilities of the candidate visual words used to represent the region can
be estimated more accurately; and that (2) it offers a more flexible way in
fusing these features through determining the similarity-metric locally by lo-
calized maximum-margin learning. The proposed method has been evaluated
experimentally and the results indicate its effectiveness.
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similarity-metric learning

1. Introduction

Scene categorization concerns with automatically labeling or classifying
a given image to a specific scene category (e.g., coast, forest, highway, office,
kitchen, street, sitting room and etc.). Automatic categorization of an image
to a scene can be used to manage picture libraries and retrieve images from
Internet or in image databases [1, 2, 3]. Moreover, being able to recognize the
scene category of a place is vital for an intelligent vehicle or robot to locate its
position and take appropriate actions under different scenes [4, 5]. Further-
more, scene categorization can also provide critical contextual information
to many computer vision tasks, such as object recognition, image segmenta-
tion and etc. [6, 7]. It is also essential for an intelligent video surveillance
system in the future, which can help define what abnormal conditions are
for detection and tracking (e.g. abnormal objects, abnormal behaviors). For
instance, a person running can be considered as abnormal in a ‘street” scene,
but normal in a ‘sport ground’ scene.

In the early research work for scene categorization, many global feature
based methods [2, 3, 4, 8] have been proposed. In these methods, an image
is taken as a whole, and the distribution(s) of color [2, 3] and/or texture
2] and/or gradients [4, 8] over the entire image region is (are) employed to
describe the scene image. They have achieved certain success, especially in
separating outdoor scenes from indoor scenes. However, when they are em-
ployed to classify scenes that have similar global properties (e.g. bedroom vs.
sitting room; open country vs. coast), they often result in poor success rate.
In recent years, local semantic feature based methods [9, 10, 11, 12, 13] be-
come more popular because of its robustness towards occlusions, illumination
variations and slight geometric deformation. They model a scene image by
the co-occurrences of a number of visual components or the co-occurrences
of a certain number of visual topics (intermediate representation). One of
the most popular and successful models is called ‘the bags of visual word-
s’ (BOW) [11, 12, 13]. Many variants of this model have been proposed
(14, 15, 16, 17, 18]. In [14, 15, 16], latent variables, which can be taken
as a group of visual words, are learned using the techniques called proba-
bilistic Latent Semantic Analysis (pLSA) [19] or Latent Dirichlet Allocation
[20]. In [17], Lazebnik et al. proposed a spatial pyramid matching method,



Input
image Input
image

Extract feature Extract feature Extract feature /R\

type 1 from type 2 from | cooeeeees type n from Lehivaci fea?ure Extract feature Extract feature
local regions local regions local regions type 1 (dominant TR T — type n from
feature) from local . .
. local regions local regions
regions

N
Represent the image Represent the image Represent the image
based on bag-of- based on bag-of- | based on bag-of- Represent the image
word model of word model of word model of based on bag-of-word
feature type 1 feature type 2 feature type n model of dominant

feature after combining
other features

\L/

Combine the bag-
of-visual models

: Scene type
from different types (b)

of features

SR

Scene type

(a)

Figure 1: (a) Global feature combination; (b) Local feature combination based on domi-
nant feature.

which matches the distributions of visual words at different spatial resolution
between paired images then used it as a similarity measurement.

To further enhance the performance of the BOW based methods, algo-
rithms have been proposed to combine different types of features [21, 22, 23]
in the field of object recognition. The methods proposed by Varma et al.
[21] and Bosch et al. [23] create several spatial pyramid representations of
the BOW model that correspond to different types of features, and then
a multiple-kernel learning (MKL) approach is employed to learn the linear
weighting of different kernels that correspond to different spatial pyramid
representations. Gehler et al. [24] proposed an enhanced multiple kernel
method called ‘LPboost’ (linear programming boosting), which allows the
support vector machines (SVM)’ parameters trained for different types of
features to be different. From the combination procedures of the aforemen-
tioned methods, we can see that the combination of features occurs after
the image has been represented by the BOW model or its variants. In other
words, such feature combination is carried out globally. Figure 1 depicts the



differences between the global feature combination method and the proposed
local combination method. One of the weaknesses of the global combination
method is that the ambiguity of the local patches caused by the single fea-
ture representation would unlikely be resolved by other globally introduced
features. This is, because as the other features are globally coded, they do
not provide information about a specific local image region. For example,
just based on the SIFT feature, a region of an image that represents the
grass land of the ‘Open country’ scene may be incorrectly represented by the
visual word that represents a part of the sea water from the ‘Coast’ scene,
which may result in incorrect classification of the image from ‘Open country’
to ‘Coast’. Although, combining BOW model of SIFT and BOW model of
color feature may alter the final classification result (‘Open country’ may
have more green regions while ‘Coast’ may have more blue regions). How-
ever, in some cases, the image of ‘Open country’ may have an equally large
region that represents the blue sky, which is similar to sea water in color.
Conversely, ‘Coast’ may show a large region of green trees. As such, ‘Open
country’ scenes and ‘Coast’ scenes can share very similar BOW model of
color feature. The other weakness of the global approach is that they can
only give fixed weightings to the considered features. However, in practice,
in order to differentiate a region from other regions, we may give more weight
to a particular feature. For instance, in order to differentiate the shore in
the ‘Coast’ scene from the grass land in the ‘Open country’ scene, we can
put more weights on the color feature. However, if the target is to differenti-
ate the grass land in the ‘Open country’ scene from the trees in the ‘Forest’
scene, gradient and texture features should be given more weighting values
instead.

In this paper, we propose a local feature fusion method using localized
maximum-margin learning. Given an unknown image region, the dominant
feature (we choose SIFT feature as the dominant feature due to its successful-
ness and popularity in the area of visual recognition [14, 25, 26].) and other
features (we choose color feature and (or) local binary pattern (LBP) feature
[27]) are extracted from the image region. Based on the dominant feature,
we select a set of nearest neighbor visual words based on Euclidean distance
measured from the dominant feature. Then, these candidate visual words are
considered as classes. The dominant features and other features of the train-
ing image regions that form these visual words are taken as the features of the
samples belonging to each class. Next, maximum margin learning is employed
to search for a combination of the multiple features that result in maximum-
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margin separation between each class (Since this maximum-margin learning
is performed on the visual words which are closest to the feature extracted
from unknown region, we call it localized maximum-margin learning.). This
can also be treated as a support vector machine (SVM) classifier training
based on the classes formed by the candidate visual words. The trained
classifier is used to measure the similarity between features of the unknown
image region and the candidate visual words. The classification result deter-
mines which visual word best represents the unknown region, or estimates
the probabilities of the candidate visual words used to represent the unknown
region. Based on the maximum-margin criteria, the classifier adaptively de-
termines different combination strategies for different features. After a list of
visual words, a 0-1 binary vector that represents the existence of the visual
word is compiled to form the BOW representation of the image and used for
classifier training or testing. In order to enhance the generalization ability
of the method, we use a soft multiple visual words assignment strategy in
which the output of the maximum-margin learning is used to estimate the
probabilities of the visual words. Then, a float type vector representing the
probabilities of the visual words is compiled to form the BOW representation
of the image. We have evaluated the performance of the proposed method
based on two widely used scene categorization datasets consisting of 8 scene
categories with 2688 images and 15 scene categories with 4485 images re-
spectively, using 10-fold cross-validation. The experimental result shows the
superiority of the proposed adaptive feature fusion method to the single fea-
ture method and other representative scene categorization methods. And
the experimental result also illustrates that the performance of the proposed
method is better than (or equivalent to ) the MKL based global combination
method.

The rest of this paper is organized as follows: Section 2 formulates the
problem. Section 3 gives an overview of the whole scene categorization sys-
tem. Section 4 describes the local feature extraction procedure. Section 5
reviews the category-specific visual words creation method. Section 6 intro-
duces the proposed localized maximum-margin learning method for feature
fusion. Section 7 introduces a caching strategy to reduce the computational
cost. Section 8 describes the soft multiple visual words assignment method.
Section 9 reports the experimental results. And this paper is concluded in
Section 10.



2. Problem formulation

The scene categorization problem based on the BOW model representa-
tion can be formulated in the following manner: given an image I € R™*"
and a set of scene categories ¢ = {c1,ca, - -, ¢ }, we first represent the image
I by a codebook V consisting of a set of visual words V = {vy, vy, -+, v, }.
We denote this representation by R(I), which is a vector r = R(I), r € RF
that indicates the distribution of the visual words, or the presence of the
visual words, or the probability of the presence of the visual words. The
problem then becomes the issue of finding a projection:

f:R(I) —c, (1)

which projects the visual words representation of the image to the scene
category ¢;, 1 = 1,---,m where it belongs.

The target of the local feature fusion method proposed in this paper is
to form a better BOW model, R(I). That is, given a local image region I,
and a list of visual words V = {vy, vy, -+, v, } created by a single dominant
feature, we search for a projection p from a local image region to a visual
word, p : I, — v;, which can represent the local image region more accurately
by fusing other types of features or estimate the probabilities of the visual
words used to represent the local image region. Based on the improved BOW
representation model, we expect that the classification accuracy rate can be
increased.

3. Overview

Figure 2 depicts the overall framework of the proposed scene classification
method. In the training stage, each training image is divided into regular
patches at different scales for visual word creation. Then, dominant feature
and other features are extracted from each patch. The dominant and other
features are combined with the dominant and other features respectively
from the coarser scale and neighborhood regions (contextual information)
to describe the region of interest (ROI). Based on the dominant features,
clustering is performed according to different scales and scene categories to
create representative visual words denoted by the means of the clusters, which
are subsequently entered into a codebook. Next, each image in the training
set is evaluated against the visual word codebook using the proposed localized
maximum-margin learning method to combine other features in order to
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Figure 2: The framework of the proposed method (DF denotes dominant feature, CDF is
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with contextual information).



select a list of visual words that best represents the patches of the image
(or to estimate the probabilities of the visual words that can be used to
represent the patches). This list is further compiled into a feature vector
(a 0-1 binary feature vector representing the existence of the visual words
or a feature vector recording the probabilities of the visual words which can
be used to represent the local regions), which is used for training a Support
Vector Machine (SVM) classifier. In the classification of an unknown image,
the image is partitioned into patches at different scales and their features
calculated. As in training, using the localized maximum margin learning to
combine the features, a list of visual words that best represents the local
regions of the image is selected (or the probabilities of the visual words used
to represent the local regions are calculated) to compile a feature vector.
Finally, the feature vector is classified by the SVM to obtain the scene type.

4. Image region feature extraction

In this paper, we extract three types of features from each image region,
i.e., Scale-invariant feature transform (SIFT) [25] or and local binary pattern
(LBP) [27] features. Among these three types of features, SIFT describes the
distribution of the gradients at different orientations, which has been widely
used to object recognition and scene categorization, among others. We choose
SIF'T feature as the dominant feature due to its successfulness and popularity
in the area of visual recognition [14, 25, 26]. The color feature provides the
color information and the LBP feature represents the texture information
using the histogram of uniform local binary patterns. It has been successfully
used for problems such as texture classification and face detection. The
uniform patterns of the LBP feature represent primitive microstructures,
such as edges, corners and spots, which are complementary to the features
describing gradient distribution [28].

For SIFT feature extraction, we adopt the method introduced by Lowe
[25], i.e., the ROI is divided into 4x4 blocks; then, the histogram of the
gradient magnitude at different orientations is calculated for each block; af-
ter weighted by a Gaussian function, the histograms of the 16 blocks are
concatenated to form a SIFT feature vector. For color feature, we adopt a
similar procedure as well. After transforming the image into Lab color space,
the ROI is divided into 4x4 blocks. Then, the mean values of the L, a, b
components are calculated. Next, these mean values for each block are con-
catenated together after weighted by a Gaussian function. Similarly, for the
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Figure 3: Extraction of (a) SIFT feature; (b) color feature; (¢) LBP feature.

LBP feature extraction, the ROI is also divided into 4x4 blocks, and then
the histogram of local binary patterns (9 bins correspond to 9 uniform pat-
terns and 1 bin corresponds to the non-uniform patterns) is calculated from
each block. After that, the histograms from the blocks are concatenated and
weighted by a Gaussian function to form the LBP feature vector. Figure 3
depicts the extraction for these three types of features. In order to capture
image information from different scales, the image is regularly divided into
patches at different scales from the coarsest scale (i.e. the whole image) to
consecutive finer scales. The three image features described above are ex-
tracted from all these patches. Meanwhile, the contextual information is also
extracted and integrated to describe the ROI. Such contextual information
provides useful cue about the ROI [18], and can potentially reduce ambiguity
when using visual words to represent local regions. We combine the image
feature from the region at coarser scale (but with the same sampling point)
and the image features from the neighbor regions at the same scale with the
feature of ROI altogether to finally describe the ROI. Figure 4 depicts the
sampling points of the image patches at different scales and the regions for
context information extraction.

Let Py, €™m2*"L denotes the ROI, Po €™¢*"¢ denotes the region hav-
ing the same sampling point as the ROI but at a coarser scale level and
Py €™V denotes the neighbor regions of the ROI at the same scale level.
For local visual word, the ROI is represented by f = f(P) where f denotes
the feature extraction function. For the contextual visual word, we represent
the ROI as f = f(Pr,P¢,Py). We linearly combine these features. The
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Figure 4: Sampling points of the image patches at different scales and the regions for
context information extraction.

feature of the ROI is then represented as:

f=[f(Pr),wc- f(Pc),wy - f(PN)], (2)

where we and wy are the weighting parameters that control the signifi-
cance of features from the coarser scale and the neighborhood regions. The
weighting parameters for different contextual information are determined us-
ing cross-validation (Our experiments showed that the weighting parameters
are usually set around 0.7.).

5. Category specific visual words creation

We train the visual words in a category-specific manner, that is, the fea-
tures are extracted from a subset of training images (100 images each class)
at different scene categories, and then features of different scene categories
are clustered by K-means. After that, the visual words created from differen-
t scene categories are concatenated to form the codebook. Figure 5 depicts
how the category-specific visual words are created. It has been proven that
visual words created this way are more discriminative [29]. Since images from
different categories may have similar regions, creating the visual words in this
way may result in redundancy as well (several visual words represents the
image regions with very similar characteristic), which reduces the generaliza-
tion ability of the codebook. In Section 8, we will introduce a soft-assignment
strategy that solves the problem.

10



ivi ; Visual words fi
Training images Divide the image Extract the features 15;1;1:'(: S 1 rom
from ca%e o g 1 into patches at from patches at = clustering = gory
gory different scales different scales
Ao 5 Visual words from
Trgmiays e Q1v1de the image Extract the features . category 2
from category 2 into patches at from patches at —— clustering
different scales different scales Cfmcatenate the
> visual words at

different scales
respectively

Extract the features
from patches at
different scales

Divide the image
into patches at
different scales

Training images
from category n

——Pp» clustering =¥ Visual words from
category n

Figure 5: Category-specific visual words creation.

6. Localized maximum-margin learning for feature fusion

Figure 6 depicts the procedure of combining dominant feature with other
features using localized maximum-margin learning to select the best visual
words. From Section 4, using the dominant feature vector £ (this feature
is the combination of the local image feature with the contextual feature
and transformed by the PCA transformation matrix), we first calculate its
similarity with the visual words in the codebook based on the Euclidean dis-
tance measurement. Constrained by the ratio to the shortest distance and
maximum number, K-nearest neighbor candidate visual words are chosen.
Then, the dominant features which were clustered to form these visual word-
s and their corresponding other features are retrieved and concatenated to
form a feature vector f = [f, 9], where f© denotes other features. Next,
maximum-margin learning is employed to learn weighting values of the ele-
ments in the feature vector. The 2-class maximum-margin learning problem
is equivalent to the 2-norm minimization problem as depicted in Equation

(3),
L
min P 37 n; + 3 |w,
Wi =1
st yiw! [p(f) 1" +m > 1,
where w can be taken as the weighting vector, n; is called slack variables
which allows to handle non-separable feature vectors , ¢ denotes a linear

or nonlinear transform on the feature vector, f;, L is the total number of
training samples, y; takes two values, i.e. 1 or -1, corresponding to two

(3)
m>0,i=1,...,L
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classes respectively and P is the penalty parameter. The dual form of the
optimization problem in equation (3) is:
L L

Q@)= o~ 13>

i=1 i=11

@iajyiyj¢(fi)T¢(fj>

1

N 4
i=1

(2

0<o; <P fori=12...,L

where {a;}£, are the Lagrange multipliers. The inner product, ¢(f;)"¢(f;),
of two transformed feature vectors can be effective calculated using a kernel
trick [30, 31], K(£;,£;) = &(£;)T¢(f;). When ¢ is linear, the linear kernel,

K(f,£) =£"f;, (5)
is usually used. When ¢ is non-linear, the polynomial kernel,
K(fi,f;) = (£ + )P, (6)

where the power pw is specified a priori by the user, and radial-basis function
kernel,

1
K(f;,£) = exp(— g Ix = xill), (7)

where the width ¢ is specified a priori by the user, is commonly used (We
will discuss the impact of choosing different kernels to the performance in the
experimental result part.). The 2-class problem can be easily extended to
multiple-class problem using the one against one strategy [32]. Since maxi-
mum margin learning is based on the feature vectors that form the K-nearest
neighbor candidate visual words, we call it localized maximum-margin learn-
ing. The localized learning enables us to find a weighting vector w which
maximizes the distances between the candidate visual words after introduc-
ing the other features. After that, the learned weighting value is used to
measure the similarity of the feature of the unknown region to the candidate
visual words for selecting the best representative visual words for the un-
known region. Obviously, this weighting vector w can change and adapt to
different nearest neighbor structures when finding a suitable weighting val-
ues, which can maximize the margin between the feature vectors belonging
to different visual words. For instance, if the SIF'T features of the candidate
visual words are very similar, larger weight is given to the color feature in
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order to separate the samples belonging to different candidate visual words.
In contrast, if the color features are similar, larger weight is given to the
SIFT feature. The steps for selecting the best representative visual words by
combining the other features using the localized maximum-margin learning
are as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Given a list of visual words, V = {vq, vy, ..., v,} formed by clustering
the dominant features from a subset of training set, and the domi-
nant feature of an image patch, f?, calculate the Euclidean distances

between the feature and the visual words, {d;,ds, ..., d,}.
Choose the minimum distance, d,, = min{dy,ds,...,d,}, then calcu-
late the ratios of the distance to the minimum dlstance r; = j 1=

1,2,...n

Select the candidate visual words whose distance to f? satisfy the ratio
r; <T,,j=1,2,...,K (T, = 1.15 in this paper) and its corresponding
visual words, v;, j =1,2,..., K (in order to reduce the computational
burden, the maximum number of the preliminary selected visual words
can be upper-bounded by number Ny).

Retrieve the dominant features {f), £}, ... ,ff’ ]} j=1,2,...,K and
the corresponding other features {f{, f5}, ... £ j} j=12,... K (fJ
denotes the concatenated feature vectors of other features, ie. fg =
[fg N f32, fgm], n; is the number of features of visual word j and m
is the number of types of other features.) from the training set that
are clustered to form the candidate visual words, v;, j = 1,2,..., K.
. . . fD
Then, normalize these features by their [, norms, i.e., fz? , fgl =
£ L0 £ Om £om )
T, N S || || RS il = T T, (If linear kernel is used, no

normahzatlon can give better performance when soft multiple visual
words assignment is used.). After that, concatenate them to form the

01. g0 Onm
feature vector for learning, f;; = [f7; £ £ - - £"].

Take the retrieved features {fy;, fy;,...,f,;}, j = 1,2,..., K as the
training set of K classes. Then, train a classifier based on Equation (3)

14



Step 6: Classify the given patch feature f by the trained classifier to a class c.
Then, the image patch is represented by the visual word corresponding
to class c.

In terms of probability, the best visual words selection based on feature
fusion can be formulated as vi},, = maxp(vP|f? ) while the best visual
\Z

words selection based on single dominant feature is formulated as v, =

max p(V]D [fP). From the best representative visual words from each patch, a
vj

bag of visual words model BOWp, which is denoted as a feature vector (the
compilation of BOWp will be discussed in Section 8) is produced. Based on
BOWp, of the images from the training set, a linear SVM classifier is trained
for classifying the test images.

7. Caching strategy for reducing the computational cost

In the proposed method, localized maximum-margin learning is used to
find the best representative visual word for each patch in the image. Solving
the optimization problem of Equation (3) largely increases the computational
cost comparing with using the Euclidean distance. Assume an image has
been divided into N patches and each patch has K candidate visual words
on average. The computational complexity for maximum-margin learning
is O(i(K — 1)K Pd), where i is the iteration number, P is the number of
training samples and d is the dimension of the feature vector. Thus, the
computational complexity for the localized maximum-margin learning for an
image is O(i(K — 1)K PdN).

In order to reduce the computational cost for the localized maximum
margin learning, we propose a caching strategy for training and testing.
Since, the localized maximum learning for each patch can be taken as a
multiple-class SVM model training process and 1 vs. 1 strategy is used for
the multiple-class training, the problem can be decomposed into K (K —1)/2
paired SVM model training. And since these training images are divided into
local patches, similar patches must co-exist within an image and among these
images and are represented by the same visual word. For these similar patch-
es, they must have similar candidate visual words when Euclidean distance
measurement is employed to select the candidate visual words. If we follow
the above steps to perform the training, it will result in large redundant
calculations. This redundancy inspires us to employ the caching strategy to
reduce the computational cost. The caching strategy is as follows:
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Given a cache region, M, which stores the paired SVM models that have
been trained. These models are indexed by the paired visual words indices,

(i, 7)-
Step 1: For a given local patch, K candidate visual words {vy, vy, -+, vk} are
selected by the Euclidean distance measurement.

Step 2: Before conducting the paired model training, examine whether the in-
dexes of the two visual words exist in the cache. If there is matched
index in the cache, and then the model parameters can be directly
read from the cache. Otherwise, paired maximum-margin learning is
performed and the corresponding parameters are stored in the cache.

In the extreme case, the cache stores n(n — 1)/2 models, where n is the total
number of visual words. In fact, since the candidate visual words for each
local patch share similar characteristics, paired maximum-margin learning
usually occurs among similar visual words, which means that, in most cases,
paired maximum-margin learning between the visual words with different
characteristics would not be trained and stored. This significantly reduces
the number of paired-models for training and storing.

8. Soft multiple visual words assignment

In the previous works using BOW model, a given image is encoded as
the distribution of the visual words [14, 16, 17], or 0-1 binary coding [18],
which denotes whether the visual word exists in the image. As mentioned
in Section 5, the category-specific visual words creation strategy is able to
increase the discriminative ability. But the side effect is that the redundancy
in visual words may reduce its generalization ability. Figure 7 depicts a list
of visual words that are created from the training images from scene category
1 and scene category 2. In this figure, we assume visual words V3 and V8
represents the regions with similar characteristic, e.g. the sky region that
exists in both scene category 1 and scene category 2. When these visual
words are used to encode the image from category 1, it may be encoded as
Case 1 (1010100000) or Case 2 (1000100100) (Black square denotes this visual
word is used to represent a region in this image and marked as 1), meaning
that the similarity between images from the same category is reduced.

In order to increase the generalization ability of the method, a soft-
assignment strategy is proposed. That is, the probabilities of the visual
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Figure 7: A toy example of the 0-1 binary coding.

words used to represent the image regions are calculated instead of 0-1 cod-
ing. The i element of the vector used to represent the image is set as
maxp(v;|f;),j =1,---,N;i = 1,---, M, where M is the number of visual
words and N is the number of the patches the image has been divided in-
to. By doing this, the visual vectors V3 and V8 mentioned in the above
example have similar probabilities, which result in the distance between the
representation vectors for the images from the same category in Case 1 (It
may be encoded as [1.0, 0.0, 0.51, 0.0, 1.0, 0.0, 0.0, 0.49, 0.0, 0.0].) and
Case 2 (It may be encoded as [1.0, 0.0, 0.49, 0.0, 1.0, 0.0, 0.0, 0.51, 0.0, 0.0].)
becomes shorter. Meanwhile, since the visual words are created in a category-
specific manner, the visual words used to represent the image regions, which
are unique to a specific scene category, shall have higher probability than
the visual words created from other scene categories. This can preserve the
discriminative ability of the method. The probability of the visual word
given the feature of the image region can be directly derived from localized
multi-class maximum-margin learning. In multi-class learning, the 1 versus
1 voting strategy is employed. Thus, we can get the number of votes each
candidate visual word has, and then the number of votes is used for proba-
bility estimation. Assume that we assign the probabilities to H visual words
that have the most number of votes, votey, votesy, - - -, votey. The probability
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for the visual word corresponding to vote; is calculated as:

vote;

p] = H *
> vote;
i=1

9. Experimental results

In this section, the performance of the proposed scene classification method
is evaluated on two scene datasets, which have been widely used in previous
research [14, 16, 17, 33, 34].

9.1. Datasets and Evaluation Method

SCENE-8 Dataset: consists of 2688 color images from 8 categories: coast (360 samples),
328 forest (328 samples), mountain (274 samples), open country (410
samples), highway (260 samples), inside city (308 samples), tall build-
ings (356 samples), and streets (292 samples). The average size of each
image is 256 x 256. The color version of these images has been used.
For this dataset, we fuse SIFT feature with color feature; and SIFT
feature with color and LBP feature.

SCENE-15 Dataset: consists of 4485 images from 15 categories: bedroom (216 samples),
suburb (241 samples), industrial (311 samples), kitchen (210 samples),
living room (289 samples), coast (360 samples), forest (328 samples),
highway (260 samples), inside city (308 samples), mountain (374 sam-
ples), open country (410 samples), street (292 samples), tall building
(356 samples), office (215 samples), store (315 samples). This dataset
is an extension of Dataset 1. Several indoor scene types (e.g., office,
bedroom, living room and kitchen) have been included here. Since
portion of this dataset is composed of gray images, the gray version of
the images in this dataset are used for evaluation; and the local binary
pattern feature are extracted and fused with SIFT feature. Figure 8
depicts the image samples from this dataset. We can observe the vari-
ety in the content, scale and view angle of the images. For this dataset,
as only gray version of the images is available, we only consider to fuse
SIFT feature with LBP feature.

In the experiment, we perform a 10-fold cross-validation to achieve more
accurate performance estimation. The average of the accuracy rates across
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Figure 8: Image samples from SCENE-15 dataset.

the 10-fold cross-validation is used for comparison. Apart from the exper-
iment that combines several scale levels, we also perform experiments at
each scale level separately in order to investigate how scale level affects the
performance of the proposed method.

9.2. The influence of scale level to the performance of the proposed method.

Table 1 presents the 10-fold cross-validation results from scale level 1 to
4 using the proposed method to combine SIFT and color features and using
SIFT feature only (0-1 binary coding) for SCENE-8 dataset. These results
show that the average accuracy results are improved by 5.18%, 4.91%, 2.70%
and 0.62% at scale 1, 2, 3 and 4 respectively by fusing SIF'T and color features.
The results also reveal that the proposed method is more effective at coarser
scales. At finer scales, since the image is divided into smaller regions and each
image consists of larger number of image patches, even some of these patches
are correctly represented by the suitable visual words using the proposed
method, the influence of this correction to the final recognition rate becomes
smaller. We also obtained result at scale 5, but no obvious improvement is
achieved.
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Table 1: Accuracy rates (mean (standard deviation)%) of the proposed method to combine
SIFT and color features comparing with using SIFT feature only at scale 1, 2, 3 and 4

respectively at SCENE-8 dataset (0-1 binary coding).

Scale 1 Scale 2 Scale 3 Scale 4
SIFT only | 66.63(4.54) | 74.21(3.65) | 82.68(3.00) | 88.15(3.03)
SIFT+color | 71.81(4.16) | 79.12(3.09) | 85.38(3.61) | 88.87(2.80)

9.3. Results after combining several scale levels and comparison with global
combination methods

Table 2 depicts the result of the proposed method after combining visu-
al words belonging to different scale levels (The number of scale levels for
combination is determined by cross-validation in the training set. Five scale
levels are combined in this paper), the result that uses multiple-kernel learn-
ing (MKL) to combine SIFT and color BOW models for SCENE-8 dataset
(SIFT and LBP BOW model for SCENE-15 dataset) and the results of using
SIFT feature only. We used the source code provided by Bach et al. [35] to
do the multiple-kernel learning. We also illustrate the results when the pro-
posed localized maximum-margin learning is used to select the best represen-
tative visual word and create the 0-1 coding based BOW feature vector. For
SCENE-8 dataset, there are 2688 images for testing in total during the 10-fold
cross-validation. We can observe that comparing with using SIFT feature on-
ly, the proposed method improves the average accuracy rate by 2.19%, which
means that about 59 images misclassified by the SIFT feature only method
are correctly classified by the proposed method. Comparing with MKL-based
global combination method, the proposed method improves the average ac-
curacy rate by 1.92%, which means that about 52 images misclassified by the
global combination method are correctly classified by the proposed method.
For SCENE-15 dataset, there are total 4485 images for testing. Comparing
with using SIFT feature only, the proposed method improves the average
accuracy rate by 2.23%, which means that about 100 images misclassified
by the SIFT feature only method are correctly classified by the proposed
method. Comparing with using MKL-based global combination method, the
proposed method improves the average accuracy rate by 1.55%, which means
that about 70 images misclassified by the global combination based method
are correctly classified by the proposed method. We also can observe from
Table 2 that comparing with 0-1 coding, the proposed method in which soft
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Table 2: Accuracy rates (mean (standard deviation)%) of the proposed method
(SIFT+color features for SCENE-8 dataset; SIFT+LBP features for SCENE-15 dataset)
and the global combination method based on MKL and the method using SIFT feature
only.

Proposed Proposed method | Global combination | SIFT feature only
method but with 0-1 coding | based on MKL
SCENE-8 | 92.49 (1.99) | 91.35 (2.26) 90.57(2.44) 90.30 (2.54)
(SIFT+color)
SCENE-15 |87.39 (2.48)| 86.01 (2.67) 85.84(2.90) 85.16 (1.62)
(SIFT+LBP)

multiple visual words assignment are employed improves the accuracy rate
by 1.14% and 1.38% for SCENE-8 dataset and SCENE-15 dataset respec-
tively. Finally, for SCENE-8 dataset, we further combine the LBP feature
with SIFT and color feature using the proposed method with linear kernel.
The average accuracy rate is 91.90 (2.31)%, which is not as good as the result
when SIFT and color feature are combined but still improved the accuracy
rate by 1.60% comparing with using SIFT feature only.

Figure 9 shows the samples of correctly classified images. Let us look at
some details about how the proposed method corrects the errors in local re-
gion. Figure 10 depicts an ‘Open country’ image which is wrongly classified
as ‘Coast’ using SIFT feature only but correctly classified using the proposed
method. Figure 10(b) depicts the patch samples that form the visual word
selected to represent the red regions in the given image using SIFT feature
only and using the proposed method to fuse color information respectively.
Some regions of the grass land of the given image are wrongly represented by
the visual word which represents the region of sea water or sand of ‘Coast’
due to the similarity in the SIFT feature without incorporating color. How-
ever, after using the proposed method to combine color locally, these grass
land regions are correctly coded by the visual word which represents the
grass land. Figure 11 depicts a ‘Mountain’ Image which is wrongly classi-
fied as ‘Forest’ without using the proposed method but correctly classified as
‘Mountain’ after using the proposed method to combine color information.
In the previous case, the lack of color information resulted in some parts of
the mountain being wrongly coded by the visual words that represent parts
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Figure 9: : Samples of correctly classified images.
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(a) (b)

Figure 10: : (a) An ‘Open country’ Image which is wrongly classified as ‘Coast’ without
using the proposed method to utilize color information but correctly classified as ‘Open
country’ after using the proposed method to combine color information. (b) The 1st
row shows the patch samples that form the visual word selected to represent the left red
rectangle region in (a) (using SIFT only). The 2nd row shows the patch samples that form
the visual word selected to represent the right red rectangle region in (a) (using SIFT and
color).

Table 3: Accuracy rates (mean (standard deviation)%) of employing different types of
kernels during the localized maximum-margin learning for SCENE-8 dataset.

Linear kernel | Polynomial kernel | RBF kernel
92.49 (1.99) 91.83 (2.11) 92.12 (1.82)

of the forest. This error is successfully correctly by the proposed method.

9.4. The impact of different types of kernels during the localized mazimum-
margin learning

Table 3 depicts the results after employing different types of kernels dur-
ing the localized maximum-margin learning for SCENE-8 dataset. The linear
kernel is defined as equation (5), the polynomial kernel is defined as equation
(6) (we set the power pw = 2.) and the RBF kernel is defined as equation
(7) (the parameter § is estimated using the average distance between the
samples for learning). From Table 3, we can see that the linear kernel has
the best performance among three types of kernels.
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Figure 11: : (a) A ‘Mountain’ Image which is wrongly classified as 'Forest’ without using
the proposed method to utilize color information but correctly classified as ‘Mountain’
after using the proposed method to combine color information. (b) The 1st row shows
the patch samples that form the visual word selected to represent the left red rectangle
region in (a). The 2nd row shows the patch samples that form the visual word selected
to represent the right red rectangle region in (a). The third row shows the patch samples
that form the visual word selected to represent the left red rectangle region in (a) (using
the proposed method to fuse color feature). The forth row shows the patch samples that
form the visual word selected to represent the right red rectangle region in (a) (using the
proposed method to fuse color feature).
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9.5. Error analysis

Figure 12 depicts images misclassified by the proposed method. The first
row of Figure 12 shows the errors caused by incorrect labeling in the original
dataset; the second row of Figure 12 shows the errors caused by the ambiguity
of image content; and the third row of Figure 12 shows the errors caused
by the weakness of the proposed method. Figure 12(a) depicts an image
which was labeled as ‘Highway’ in the dataset but classified as ‘Street’ by
the proposed method. In our opinion, this image is more likely to be ‘Street’
instead of ‘Highway’. Because, these is only one lane on the road and there
is a pedestrian on the road which is very unusual for a ‘Highway’ scene. In
Figure 12(b), an image which may belong to ‘Forest’ is mislabeled as ‘Coast’
in the dataset. The proposed method correctly classified it as ‘Forest’. In
Figure 12(c), an image from ‘Street’ is mislabeled as ‘Highway’. Because,
the region for the pedestrians to walk across the road should not exist in
a highway scene but this region is very common in a street scene. Using
the proposed method, this image is classified as a ‘Street’ which we think is
more appropriate. Figure 12(d) pictures an image which is labeled as ‘Open
country’ in the dataset while is classified as ‘Coast’ by the proposed method.
This is not exactly wrong as the image does include part of the coast on the
left hand side. Thus, it may be difficult to determine whether it is an ‘Open
country’ or ‘Coast’. Figure 12(e) is an image labeled as ‘Forest’ in the dataset
but it is classified as ‘Mountain’ by the proposed method. However, the upper
part of this image clearly shows the mountain in the distance. Figure 12(f)
is an image labeled as ‘Open country’ in the dataset but it is classified as
‘Mountain’ by the proposed method. Upon close inspection, it is found that
the image does have a mountain in the background. Figure 12(g) depicts
a ‘Coast’ image being misclassified as ‘Open country’. The fogging weather
condition makes the surface of the sea looks like the surface of the plain in
‘Open country’. Without the bridge in the background, it would be difficult
to determine the category of this image. Figure 12(h) depicts a ‘Mountain’
image being misclassified as ‘Open country’. Looking at the surface of the
mountain in this image, it contains grassland and shrubs which are also quite
common in ‘Open country’ scenes. In order to differentiate this ‘Mountain’
image from ‘Open country’ image, the depth and shape information that
describe the rising trend of the land may have to be utilized. Figure 12(i)
depicts a ‘Forest” image being misclassified as ‘Mountain’. The back lighting
of the sun caused the trees to appear much darker than their natural color,
making them resemble closer to the shrubs common in ‘Mountain’ scenes
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{d) Label 'Open country' {£) Label Forest' () Label 'Open country'

Classified as 'Coast' using Classified as Tountain' Classified as Tountain'
propesed method. usmg proposed method, using proposed method.
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Ilisclassified as: 'Open country’ Misclassified as: 'Open country’ Misclassified as: Mountain'
using the propesed method. using the proposed method. using the proposed method.

Figure 12: Samples of misclassified images.
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than ‘Forest’.

9.6. Experimental result of the Caching strategy

In our experiment, after 300 images have been trained, more than 80%
paired models can be directly read from the cache in which no further op-
timization is needed. For testing images in our experiment, more than 95%
paired model can be directly read from the cache, i.e., the computational
cost is reduced by more than 95% comparing with no caching strategy.

9.7. Comparison with other representative scene classification methods

Finally, the proposed method is compared with other representative scene
classification methods, i.e., the ’gist’ feature based method [4, 8], the pLSA
model [16] based method, the method based on spatial pyramid matching
(SPM) [17] and the method based on the mid-level feature method [36]. Since
the experiments for the comparison of different scene methods in [14, 33] are
solely based on a single training set and testing set split, we believe the
performance estimation is not as reliable as the estimation based on 10-
fold cross validation. Thus, the same 10-fold cross-validation is employed to
estimate the performance of the ‘gist’, pLSA and SPM based methods. For
the mid-level feature based method [36] which has reported the result of the
average accuracy rate based on 10 times random training and test set split,
we just report their result. The implementation of the ‘gist’ feature method,
pLSA method and the SPM method for comparison is as follows:

‘Gist’: We implemented the 'gist’ feature based on the code provided by Oliva
and Torralba (http://people.csail.mit.edu/torralba/code/spa-
tialenvelope/). Using the parameters in [8], we used four scale levels
(i.e., 1:256, 1:128, 1:64, 1:32) and four orientations (i.e., 0, 45, 90, 135°)
for the 'gist’” feature. The SVM classifier with linear kernel was used
for classification.

pLSA: The implementation of the pLSA model based method is based on the
pLSA code included in the International Conference on Computer Vi-
sion) ICCV 2005 short course Recognizing and Learning Object Cate-
gories (http://people.csail.mit.edu/torralba/shortCourseRLOC
/index.html) by Fei-Fei Li, Rob Fergus and Antonio Torralba. We
extract dense SIFT feature from patches with scales 8, 16, 24 and 32
pixels (corresponding to support regions with radius 4, 8, 12 and 16
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Table 4: Comparison with other representative algorithms (in average accuracy rate (stan-
dard deviation)%). (1) proposed method (SIFT+color for SCENE-8 dataset, SIFT+LBP
for SCENE-15 dataset); (2) spatial pyramid matching with SIFT feature only; (3) proba-
bility latent semantic analysis (pLSA, color-SIFT); (4) gist feature including color infor-
mation; (5) middle-level feature (SIFT only)

(1) (2) (3) (4)

SCENE-S | 92.49 (1.99) | 88.19 (3.46) | 84.78 (1.93)(color) | 80.48 (3.94)
78.80 (3.29) (gray)

SCENE-15 | 87.39 (2.48) [83.30 (1.62) 53.81 (1.36) 67.85 (2.89) | 85.6(0.2)

pixels in [16]) at the sampling points with 10 pixels interval. As in
[16], we set the size of vocabulary V' = 1500 (30 images from each
category (totally 240 images on SCENE-8 dataset, and 450 images on
SCENE-15 dataset) were randomly selected from training set to create
the vocabulary), the number of topics Z = 25 (100 images from each
category (totally 800 images on SCENE-8 dataset and 1500 images on
SCENE-15 dataset) were randomly selected from training set to create
the topics) and the number of neighbors K = 10 for nearest neighbor
classifier.

SPM: The implementation of the spatial pyramid matching based method is
based on the LIBPMK toolkit [37]. The parameters setting is the same
as the settings in [17]. The SIFT features are extracted from 16 x 16
patches with spacing of 8 pixels. The size of vocabulary is M = 200
and the levels of spatial pyramid take L = 0,1, 2, 3.

The comparison results are given in Table 4, from which we can observe
the superiority of the proposed method to the methods using single features
and the methods which combine multiple features in both datasets.

10. Conclusion

In this paper, we have proposed a localized maximum-margin learning
method to fuse multiple features locally in the bag-of-visual-word model
forming procedure. After selecting K-nearest neighbor visual words based
on dominant feature using Euclidean distance measurement, the other fea-
tures of the samples which form the K-nearest neighbor visual words are
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retrieved to train a classifier using maximum-margin learning. Then, the
classification result of the feature of a given image region is used to select the
best representative visual words (or to estimate the probabilities of the visual
words used to represent the local image region). Comparing with the global
feature combination method, the virtue of the proposed method is that it
is capable of determining different fusion strategy according to different lo-
cal feature property. The experimental results show the effectiveness of the
proposed method. Meanwhile, in order to reduce the computation cost of
the proposed method, we have also introduced a caching strategy that stores
parameters between visual words after maximum-margin learning, so that, if
the calculation between these visual words is needed again, these parameters
can be retrieved directly without having to solve the quadratic programming
problem again. In future, we will consider introducing depth and shape in-
formation to the method in order to further enhance its performance.
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