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During precancer development in epithelium, neoplastic cells remodel the underlying stroma, for example, the
basement membrane, capillaries, fibroblasts, and extracellular matrix. The purpose of this study is to investigate
the relationship between the nonlinear optical signals from the collagen matrix in stroma and the progression of
early epithelial carcinogenesis. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG)
signals were measured from the stroma of hamster oral cheek pouch in vivo. We found that three features, including
the intensity ratio of TPEF over SHG, the spatial frequency distribution, and the texture feature of SHG images,
provide the quantitative identification of epithelial precancer at different pathologic stages. We demonstrated that
the combination of all three features by using a support vector machine algorithm can significantly improve the

accuracy in the detection of epithelial precancer.
OCIS codes: 170.4580, 170.4730, 180.4315, 170.6930.

Collagen matrix, which forms the basic framework of
stroma in tissues, plays an important role in the develop-
ment of cancer. Accumulated evidences in cell biology
and oncology reveal that the progression of epithelial
carcinoma depends not only upon the proliferation of
neoplastic cells themselves but also upon the interaction
with surrounding stromal environment [1,2]. A variety of
biochemical and biophysical changes of collagen occur
with the epithelial precancer development. Thus, the de-
tection of the signal from collagen could provide us an
approach to detect the carcinoma progression. Collagen
is an endogenous fluorophore in biological tissues. Its
fluorescence is attributed to certain intramolecular
and intermolecular cross-links. In addition, owing to its
sole noncentrosymmetric structure, collagen can also
produce an SHG signal. Therefore, nonlinear optical mi-
croscopy, including TPEF and SHG microscopy, could
provide complementary information regarding collagen
morphology and function without contrast agents. Given
the advantages of inherent three-dimensional resolution
and superior optical penetration, the nonlinear optical
imaging of the collagen matrix has been tested to identify
normal and malignant tissues in recent studies [3-7].
However, most of these studies about the stromal mod-
ification of carcinoma were conducted in excised tissue
samples ex vivo. It is unknown whether an in vivo quan-
titative identification of precancer progression can be
achieved by the detection of the nonlinear optical signals
from the collagen matrix. Moreover, the accuracy of
the diagnosis based on the nonlinear optical signals
from collagen has not been systematically evaluated.
In this study, we assess the feasibility of a nonlinear op-
tical approach for pathological evaluation of epithelial
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carcinoma progression in a hamster oral carcinogenesis
model. The biochemical and morphological alternations
of the collagen matrix in different stages of carcinogen-
esis are quantitatively characterized using different
signal features of the collagen matrix in stroma. Further-
more, a support vector machine (SVM) algorithm is uti-
lized to evaluate the performance of the diagnoses based
on multiple quantitative features of the collagen matrix.

A combined TPEF and SHG microscope system was
instrumented as described in our previous work [8]. The
excitation source is a femtosecond Ti:sapphire laser tun-
ing at 745 nm. A linear array of photomultiplier tube con-
necting with a spectrograph was used as the detection
system. The measuring wavelength covers 16 consecu-
tive spectral bands from 300 to 500 nm at 13 nm interval.
Therefore, the system provides the capability to detect
TPEF and SHG signals and separate them in the wave-
length domain simultaneously. An actuator was used
to control the imaging depth. Four consecutive images
with the interval depth of 3um below the basal lamina
of epithelium were collected for data analysis in each
site. The 7,12-dimethylbenz(a)anthracene (DMBA) trea-
ted hamster cheek pouch carcinogenesis model was de-
veloped following the standard procedure [9]. The right
cheek pouch was treated with either 0.5% DMBA in
mineral oil or just mineral oil three times per week for
about 20 weeks. A total of 34 (11 controlled and 23 trea-
ted) male Golden Syrian hamsters were evaluated in this
study and 1-2 sites in each animal were chosen for the
measurement. The pathologic assessment was per-
formed by a certified pathologist (S.L.). All samples were
divided into four categories: normal (n = 20), low-grade
precancer (mild dysplasia, n = 30), mid-grade precancer
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(moderate dysplasia, n = 7), and high-grade precancer
(severe dysplasia and carcinoma in situ, n = 7). All mea-
surements were carried out in anesthetized animals and
controlled to be finished in 3 hours for each hamster. The
breath and body temperature of the animals were mon-
itored during the whole process of the experiment.
Figures 1(a)-1(c) show the SHG, TPEF, and merged
SHG/TPEF images from a normal stroma, respectively.
Collagen clusters are interlaced with each other as
shown in the SHG image, and single collagen fibers can
be identified in the clusters. Albeit fluorescent, the fine
structure of collagen fibers cannot be observed in the
TPEF image. This may be due to the fact that the collagen
fluorescence originates from the inter-cross-link and
intra-cross-link between collagen fibers. In the TPEF im-
age, stromal cells could be found, whereas they do not
appear in the SHG image. The TPEF and SHG spectra
of collagen are displayed in Fig. 1(d). As can be seen, the
intensity of SHG is about 2 orders of magnitude greater
than that of the TPEF signal. The TPEF spectral peak of
collagen has about 10nm blueshift and the spectra is
broad as compared with the TPEF spectra of epithelial
cells. The SHG and TPEF signals arise from different
mechanisms and the extracellular matrix remodeling as-
sociated with the epithelial cancer development has dif-
ferent effects on TPEF and SGH, respectively. Therefore,
the intensity ratio of TPEF over SHG could reflect the
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Fig. 1. (Color online) Nonlinear optical signals from collagen
matrix. (a)-(c): Nonlinear optical images of normal collagen
matrix based on (a) SHG signal, (b) TPEF signal, and (c) merged
signal. A stromal cell (white arrowhead) is presented in TPEF
image. (d) TPEF and SHG spectra of collagen matrix. (e) Statis-
tical result of the ratio of TPEF over SHG. The line within each
notch box represents the median, and the lower and upper
boundaries of the box indicate first and third quartiles (25% and
756%), respectively. Error bars (whiskers) represent the stan-
dard deviation (SD). The square represents the mean, and the
upper and lower asterisks indicate the maximum and the mini-
mum, respectively. (f)—(h): Representative SHG images from
(f) low-grade, (g) mid-grade, and (h) high-grade precancers.
Sampling area of each image is 100 ym x 100 gm.
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biochemical property of the collagen matrix in the tissue
at different pathological stages and has the potential to
classify normal and precancerous tissues. We integrated
the TPEF signal from the pixels, which exhibited SHG
signals in the same image, and divided the integrated
TPEF by total SHG signal. The statistical result is shown
in Fig. 1(e). As can be seen, the ratio is about 0.045 £
0.009 in normal tissues, whereas the value increases to
0.078 + 0.015 in high-grade precancerous tissues. This
can be partially explained as in the stroma of precancer,
the up-regulation of several proteases, such as metallo-
proteinase, will degrade the collagen fiber into fibril [2].
The decomposition of the noncentrosymmetric structure
of collagen yields the decrease of SHG signal.

As SHG intensity was much stronger than TPEF of
collagen and the fine structure of the collagen matrix
could only be identified in SHG images, the SHG images
were utilized for morphological evaluation of carcinogen-
esis in the following studies. Representative SHG images
of the collagen matrix from different stages of cancer
growth are presented in Figs. 1(f)-1(h). Morphological
alternations in the collagen assembly are observed as
compared with the normal stroma. Specifically, during
the progression of carcinoma, the collagen clusters are
replaced by aggregated taut bundles and more areas ap-
pear to be devoid of collagen matrix. The interlaced
structure of the collagen matrix in normal tissue be-
comes more aligned in precancerous tissues. To quanti-
tatively assess these morphological alternations, we
implemented two types of methods to analyze the SHG
images. One was based on the gray-level co-occurrence
matrix (GLCM) texture analysis and the other relied on
the fast Fourier transform (FFT) analysis of SHG images.

GLCM texture analysis is based on second-order
statistics (i.e., statistics given by pairs of pixels) of gray-
level pixel distribution [10]. The joint probability distribu-
tion of pairs of pixels is defined as the GLCM and the
different texture features are deduced from the GLCM.
One of these texture features is the GLCM correlation.
It evaluates the linear dependence between each pixel
pair in the image. The higher value indicates that there
are more similar structures in the image. Therefore, it can
provide an estimate of the organization and structure of
the collagen matrix. In this study, we utilize the GLCM
texture analyzer module (v0.4) in ImageJ software (NIH)
to analyze the SHG images. The statistical result is shown
in Fig. 2(a). The correlation value of normal tissue is
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Fig. 2. (Color online) Quantitative assessment of collagen
morphological alternations during carcinoma progression.
(a) Statistical result of GLCM correlation measured from differ-
ent groups of epithelial tissues. The GLCM texture analyzer
module (v0.4) in ImageJ software (NIH) was used and the pixel
distance was set as 1. (b) Statistical result of the content of low-
er spatial frequency (<10 um™!, excluding the DC component)
in image. The legend is the same as Fig. 1(e).
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higher than that of precancerous tissues and this value
decreases with the progression of carcinoma. The differ-
ence between each group is significantly different
(p < 0.05, t-test). This result is consistent with the quali-
tative changes that the “diffusive” collagen matrix in
normal tissue was replaced by the aggregated fiber bun-
dles in precancer.

Unlike the GLCM analysis, which is based on the
statistics of pixel intensity distribution, FFT analysis fo-
cuses on the spatial frequency of an image. We per-
formed FFT analysis on the SHG images and observed
that the lower spatial frequency increases, whereas the
higher spatial frequency decreases with the progression
of carcinoma. Figure 2(b) shows the statistical result of
the content ratio of the lower spatial frequency compo-
nents (<10 um™!, excluding the DC component). As can
be seen, the content of the lower spatial frequency
from precancerous tissues is greater than that from
the normal tissue. The difference between the normal
and each pathologic stage is again significantly different
(p < 0.05, t-test). The high spatial frequency is attributed
to the fine structure in the image, such as the single col-
lagen fiber. The content of higher spatial frequency
decreases with the progression of carcinoma because
collagen fibers degrade in precancerous tissues.

Although the above quantitative assessments can iden-
tify the normal from the precancerous tissues, it is ex-
pected that the combination of all these assessments
may improve the accuracy of the diagnosis because dif-
ferent features of the collagen matrix provide comple-
mentary information. In this study, we chose the SVM
method to combine the three assessments because the
SVM can classify data measured from multiple signal
sources (multivariate data) with relatively small sample
sizes [11]. In the process of SVM, the multivariate data are
represented as sample points in the input space. The SVM
maps these points into a feature space with higher dimen-
sions, usually in an infinite-dimensional space, by linear
or nonlinear transformation. This mapping makes the dis-
tribution of sample points form a wide gap between each
group. Then an optimal hyperplane, which has the largest
distances to the sample points of different groups, is re-
vealed to describe the criterion of classification. We used
a nonlinear SVM algorithm (LIBSVM V3.1 [12], radial ba-
sis function kernel) to classify tissues based on the cor-
relation between above three quantitative features and
the pathologic states of the tissue. A receiver operating
characteristics (ROC) curve is used to visualize the accu-
racy of each classification and to select different classi-
fiers based on their performance. An exhaustive search
based on a fivefold cross-validation was performed to
maximize the accuracy for screening purpose, which
identifies the abnormal from normal tissues, and for di-
agnosing propose, which differentiates the high-grade
and mid-grade precancer from low-grade and normal
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Fig. 3. (Color online) ROC curves of SVM algorithm for

(a) screening purpose and (b) diagnostic purpose.

tissues, respectively. Although it was reported that the
optimal number of folds for cross-validation is 10, we
compromised to choose the number of folds as five be-
cause the fivefold cross-validation is commonly used in
the studies with relatively small sample volumes and
should be more precise [13]. The cross-validation results
are shown in Fig. 3. Clearly, the combination of three
assessments significantly improved the performance of
diagnosis. Specifically, the highest accuracy of fivefold
cross-validation is 77.2% and 85.4% for screening purpose
and diagnostic purposes, respectively.

In summary, we found that the nonlinear optical sig-
nals from stroma can provide the quantitative identifica-
tion of epithelial precancer at different pathologic stages.
The combination of the intensity ratio of TPEF over SHG,
the spatial frequency distribution, and the texture feature
of SHG images can significantly improve the accuracy in
the detection of epithelial precancer. The capability of
quantifying collagen alternation with epithelial carcino-
ma progression renders nonlinear optical microscopy a
promising tool for future noninvasive clinic application.
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