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On the Design and Implementation of FIR and
lIR Digital Filters With Variable Frequency
Characteristics

Carson K. S. Pun, S. C. Chan, K. S. Yeung, and K. L, Member, IEEE

~ Abstract—This paper studies the design and implementation of [2]. Methods for designing variable digital filters can broadly
finite-impulse response (FIR) and infinite-impulse response (IIR) pe classified into two categories: transformation [3], [4] and

variable digital fllte_rs (VDFs), whose frequency cha_lracterlstlcs can spectral parameter approximation [6]-[10], [13], [14] methods.
be controlled continuously by some control or tuning parameters.

A least squares (LS) approach is proposed for the design of FIR IN the former, a prototype filter with certain desirable frequency
VDFs by expressing the impulse response of the filter as a linear characteristics is first designed. Certain transformation such as
combination of basis functions. Itis shown that the optimal LS so- the allpass transformation method [3] is then applied to the pro-
lution can be obtained by solving a system of linear equations. By totype filter to obtain the final VDF. In general, transformation
choosing the basis functions as piecewise polynomials, VDFs with . . . ; .
larger tuning range than that of ordinary polynomial based ap- Method is applicable to VDFs with variable cutoff frequencies,
proach results. The proposed VDF can be efficiently implemented but not general variable characteristics say variable fractional

using the familiar Farrow structure. Making use of the FIR VDF
so obtained, an Eigensystem Realization Algorithm (ERA)-based
model reduction technique is proposed to approximate the FIR
VDF by a stable IIR VDF with lower system order. The advan-
tages of the model reduction approach are: 1) it is computational
simple which only requires the computation of the singular value
decomposition of a Hankel matrix; 2) the IR VDF obtained is

guaranteed to be stable; and 3) the frequency response such as th

phase response of the FIR prototype is well preserved. Apart from
the above advantages, the proposed IIR VDF does not suffer from
undesirable transient response during parameter tuning found in
other approaches based on direct tuning of filter parameters. For
frequency selective VDFs, about 40% of the multiplications can be
saved using the IIR VDFs. The implementation of the proposed
FIR VDF using sum-of-powers-of-two (SOPOT) coefficient and the
multiplier block (MB) technique are also studied. Results show that
about two-third of the additions in implementing the multiplication
of the SOPOT coefficients can be saved using the multiplier block,
which leads to significant savings in hardware complexity.

Index Terms—Pesign and implementation, finite-impulse
response (FIR) filters, infinite-impulse response (lIR) filters, least
squares design, model reduction, multiplier block, variable or
tunable digital filters.

I. INTRODUCTION
ARIABLE digital filters (VDFs) are digital filters with

e

delay. The spectral parameter approximation method is more
general in that it assumes that either the impulse responses
[7]-[10] or the poles and zeros [6], [14] of the filters are
polynomials of certain spectral parameters. The coefficients
of the polynomials are then determined to provide continuous
tuning of the VDF by the spectral parameters. The spectral
parameter method was proposed by Zarour and Fahmy [14],
where the poles and zeros of an infinite impulse response (lIR)
filter are assumed to be polynomials of the spectral or tuning
parameters. Most of the works on VDFs reported are focused
on the design of IR VDF (see [6], [13] and references therein),
and methods for guaranteeing their stability [6]. More recently,
the design of 1-D [5], [10], [21] and 2-D [7], [8] finite-impulse
response (FIR) VDF (by parameterizing the impulse response
as polynomials) have received considerably attention due to
their simple design procedure and good filter performance.
Also, the close link between the Farrow-based fractional delay
digital filter and such FIR VDF becomes more apparent [8].
This paper studies the design and implementation of FIR and
IIR VDF. First of all, the least squares approach in [7], [10] for
designing FIR VDFs is generalized to a linear combination of
basis functions, which can be more general functions than poly-
nomials. It is shown that the optimal LS solution can also be

controllable spectral characteristics such as variable cutgfitained by solving a system of linear equations. This differs

frequency response, adjustable passband width, controllafpy the weighted least squares approach in [10] in that 1) no
fractional delay, etc. They find applications in different areagscretization of the tuning and frequency variables are used,
of signal processing and communications, e.g., fractional delgqich helps to reduce the design complexity by means of closed
digital filters for timing adjustment in digital receivers [1],form formulas (like the method proposed in [21]); 2) the approx-
imation function is assumed to be a linear combination of basis
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order of the piecewise polynomial used. Making use of the FIR 1l. L EAST SQUARES DESIGN OFFIR VARIABLE DIGITAL
VDFs obtained by the proposed approach, an Eigensystem Re- FILTERS

alization Algorithm (ERA)—based model reduction technique is |, the spectral parameter method, the impulse response or the
proposed to approximate the FIR VDF by a stable IR VDBg|es and zeros of the variable or tunable digital filters are as-
with lower system order. Model reduction techniques have begjimed to be polynomial function of the tuning parameter. Since
proposed previously to design IIR filters with approximatelyjirect tuning of the poles and zeros will in general generate un-
linear-phase. An FIR filter is first designed using the Park-Mgtesirable transient response during tuning, only the former will
Cllelan or other algorithms to meet certain specifications. Modgk considered. The impulse response of the variable FIR filter
order reduction is then applied to this FIR filter to obtain thgnder consideratioh(n, ®) is assumed to be a linear combi-
desired IIR filter with lower system order and, hence, aritmation of some functiong,,,(®) of the spectral parameteds,

metic complexity. The reduction process is very simple whidhstead of a polynomial. That is

involves the computation of the singular value decomposition of
a Hankel matrix. Therefore, time consuming iterative optimiza-
tion method is not necessary. In addition, the model reduced
IIR system is guaranteed to be stable and it tries to preserve
the frequency characteristics of the original system. If the orighere ¢, ., is the coefficient of expansion. The functions
inal FIR filter is approximately linear-phase, then the reducet.(®) can be chosen as an orthonormal basis or other
system will also be approximately linear-phase. Apart from tffeinctions, depending on the applications. Our objective is to
above advantages, the proposed IIR VDF does not suffer frél@terminec, ., given,,(®) so that the frequency response
undesirable transient response during parameter tuning fo{d (7, ®) will approximate some desirable variable frequency
in other approaches based on direct tuning of filter parametégSPONse as a function @. First of all, let us consider the
[6], [12], [14]-[16]. This is because the states of the IIR subfii-transform of the VDF as follows:

ters in the proposed structure are not abruptly changed during N—1 N—1M-1

the parameter tuning process. Instead, their outputs are prog# (z,®) = > h(n,®)z™" = Y Y cnmtm(®)27".

erly combined according to the tuning parameter to obtain the n=0 (2-2)

desired output. Since the proposed VDF structure inVOIVeslna'}erchan ing the order of summation, (2-2) can be rewritten as
number of subfilters with fixed coefficients, it is desirable to ging ’

M-1
h(nv @) = Z Cn,m'l/}m(q)> (2-1)
m=0

n=0 m=0

reduce the implementation complexity of these subfilters. In M-1[N-1
the present work, the implementation of the FIR VDFs using H(z,®) = Z CnmZ " | Y (P)
the sum-of-powers-of-two (SOPOT) or canonical signed digits =0 Ln=0

(CSD) representation of the filter coefficients and the multiplier M-l
block technique [19] is studied. More precisely, the filter coef- = Z C(2) - Pm(®). (2-3)
ficients of the subfilters are represented in SOPOT representa- m=0
tion, which can be implemented with limited numbers of simplghis suggests the general structure for its implementation as
shift and addition operations. Since the tunable filter might rehown in Fig. 1(a). It can also be viewed as a generalization
quire slightly higher order of polynomial approximation, thefthe Farrow structure for implementing a fractional delay dig-
number of subfilters and the redundancies among their SOPEAT filter whereh(n, ¢) is approximated by a polynomial in the
coefficients can be considerable. To remove these redundantdglay paramete® = ¢, that isy,, (¢) = ¢™. If Hy(e/*, ®) is
erations, the multiplier block (MB) method [19] is applied tdhe desired frequency response, the approximation error is
the transposed form of the Farrow structure to further reduce .
the number of adders for its implementation. The design of th &) — Hi(cd® = A
SOPOT subfilters is performed by means of a random searc%(w’ )= Hie’, &)= Z Z Cnm P (B)e - (24
algorithm, which is able to determine very good candidates rep-
resenting different tradeoff between arithmetic complexity arftican be seen thdt(w, ®) is a linear function of the expansion
performance. Results show that about two-third of the additiofgefficientsc,, ... The L, norm of £(w, @) will, therefore, be a
in implementing the multiplication of the SOPOT coefficient§luadratic function ot,, ..., which has a unique minimum char-
can be saved using the multiplier block, which leads to significterized by a system of linear equations. More precisely, the
cant savings in hardware complexity. Ly norm of E(w, #) is given by

This paper is organized as follows: In Section Il, the design ,
method of the FIR VDF using the least squares method is de- £ = / W(e’, ®) - |E(w, ®)|” dwd® (2-5)
scribed. The design of the IIR VDF using the ERA model reduc- T JGs
tion method is then studied in Section Ill. The implementatiqnherew(eja ®) is a positive weighting function used to con-
of the FIR VDF using the SOPOT representation and the multol the amount of approximation error in the frequency and the
plier block techniques is described in Section IV. Several desigiming space. The séls is the frequency support over which
examples are given in Section V. Conclusions of this work afé; (¢, ) is to be approximated. For example, it can be the
drawn in Section VI. passband and stopband regions of a variable cutoff digital filter.

m=0 n=0
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x(n) i derivatives to zero, one gets the following system of linear
equation and the optima&lSsolution,ar s as

Qa;s = bandars = Q'b. (2-8)

As an illustration, let us consider the design of a low-pass FIR
filter with variable cutoff frequency. The passband cutoff fre-
quenciesy, and the stopband cutoff frequenoy are assumed
Vo(®) vi(@) L V(@) to vary linearly with® = ¢ as shown in the following

wp(¢) :¢ ’ (pr - wpl) + wp1
»)—— y(n) ws(¢) =¢ - (ws2 — ws1) + ws1,{Ps : ¢ €[0,1]}. (2-9)

@ Therefore, the frequency support of the filter and the desired
response are, respectively

Qs =0, UQ, Q) ={w:we (0,w,(p))}
Qs ={w:w € (ws(),m)} (2-10)

Co (Z) C1 (Z) e CM_l (Z)

A l

C(2) e1¢)

and

' Jw _ e—j7w7 |w| < wp<§b)
ve@® Hi(e”,9) = { 0, w(@<lwl<n
wherer is the group delay which is assumed to be a constant.
~~~~~~~~~~~ If h(n,¢) is approximated by a polynomial, then the function
®) Pm (@) is simply gi[\éen by¢msPutting the weighting function

jw , wE . .
Fig. 1. (a) General FIR VDF. (b) The FIR VDF with the subfilters inW (e, @) = Ki we S]: into (2-7), one obtains the
transposed form. expressions fo) andb as follows: See (2-12)—(2-13) at the
bottom of the page where= k& + NI, andj = n + Nm. In
Similarly, the setb 5 is the parameter space over which the spederiving (2-12) and (2-13), the range of integration is symmet-
tral parameter vectab is to be varied. To simplify notation, let- rical about the origin. Equation (2-12) and (2-13) can readily

(2-11)

ting! = n + Nm andz = ¢/* in (2-1), one gets be calculated by the reduction formula or in general numerical
integration. The optimal weighted least square solution can be

. M1l , calculated from (2-8). The design of other variable digital filters
H(e™, @) = Z Z Cn,m Pm (®)e 7" such as variable bandpass filters and two-dimensional VDFs

;1;07’1‘:0 can be derived similarly. One problem with approximating

h(n, ¢) by a polynomial is that the order of the polynomial and,

= ) ah@.®) (2-6) hence, the number of subfilters grows rapidly with the tuning

=0 range. To overcome this problem, it is desirable to approximate

wherea; = ¢, andey(w, &) = 1y, (®)e~i". Substituting h(n, ¢) by a piecewise polynomial i® = ¢. The tuning range

(2-6) into (2-5) and simplifying gives is divided into disjoint intervals antl(n, ¢) in each interval is
approximated by a polynomial i with lower order. Fig. 2(b)
E=a"Qa—2"a+c (2-7) shows a simple example where two piecewise polynomials
with order 2 are employed. The operafr ! is only necessary
where a — [ao a1 ... axu_1]?, forthellRVDF tobe discussed in Section lll. For FIR VDFs,
b - [bo b1 ... byar—i]7, ¥ -1 is not needed anaHi(z.) are just the supfiltersﬁm(z) _
QR = Js.Jo. W (i, ®) - i(w, B)p; (w, ®)-dwd®, for the two second-order piecewise polynomials. In filtering

o P e AT applications where only the passband ripples, stopband atten-
[b], = f<I>s st W(e’, @) Re {Hf(ej »®)di(w, Q)}qu)dw’ uation and phase characteristics are of concern, the smoothing
and ¢ = Jo. Jo. W (el ®) - |Hi(el, ®)| dwd®. constraints between this piecewise polynomial, say continuity
Differentiating (2-7) with respect toa and setting the at the intersections of the intervals, can be relaxed. In other

Q) =2 / P (K sin o (n — k)wy(8)) + K. {sine((n — k)m) — sine((n — k)wy(#))}] do (2-12)

1
[b]; =2K, /0 " w,(#) sin c((n — T)w,(¢))de (2-13)
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y(n)

H4(Z)

x(m) > Hy(z) |
> _/g
o H,(2) y(n)
> H,(2) O
E »| 11
oo 12T

Y

H,(z)

p s
e P

(b)
Fig. 2. (a) Proposed IIR VDF structure. (b) Proposed piecewise polynomial-based VDF structure. For FIRVDE I and H;(z) are the subfilters.

Y

words, they can be designed separately using say the legsinse [9], [10] of the FIR VDF or the zeros and poles of the
squares method to meet the filter specifications. As we shall 468 VDF [6], [14] as certain polynomials of spectral or tuning
later in Section V that this approach can considerably extepdrameters. These parameters will then be used for continuous
the tuning range of the VDF. In addition, the number of generaning of the VDF. The spectral parameter method was first pro-
multipliers to implement the VDF is also reduced. Both thposed by Zarour and Fahmy [14], where the poles and zeros
proposed FIR VDF and IIR VDFs are readily generalized tof an infinite impulse response (IIR) filter are assumed to be
two dimensions. polynomials of the spectral or tuning parameters. Most of the
works on VDFs reported focus on the design of IIR VDFs,
and methods for guaranteeing their stability [6], [13]. Unlike
VDFs based on FIR filters, the design of IIR VDFs requires
As mentioned earlier, there are several methods for designimgnlinear optimization [6], [13], [14], which is rather time con-
IIR VDF. The spectral method approximates the impulse reuming. Another important problem of IR VDFs with direct

I1l. DESIGN OFIIR VDF USING MODEL ORDER REDUCTION
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Fig. 3. Design results of Example 1. (a) and (c) Frequency responses of FIR VDF. (b) and (d) Frequency responses of IR VDF. (e) Frequency responses of FI

VDF evenly sampled in the range = [0, 1]. (f) Frequency responses of IIR VDF evenly sampled in the ralage [0, 1]. (g) Transient responses of the IIR

VDF. (h) Group delay of the IIR VDF.



694 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2002

tuning of the poles and zeros of the digital filters is the unde- TABLE |
sirable transient response generated during parameter tuning. It PARAMETERS FOR THETUNABLE LOWPASSFILTER IN EXAMPLEL
is because the previous state of the IIR filter is different fron FIRVDE TR VDF
the one that is currently being used, which generates transi€riter length 32 1;7(§g§;“§§;<;;)r)
response with considerable magnitude. On the other hand, tIntrpolationorder 5 5
VDF structure in Fig. 1 does not suffer from this problem (ex- s meer of Iél)ﬂnphcatmns {duc 32x6-192 17x(6+D=119
cept at the very beginning), because the states of the subflltezotalé\r‘;u?be;of)Delays (due to the %6186 16 (647 =112
pped delay line

are not modified during parameter tuning. Instead, their OUtPUTotal Number of Additions (due to the 618 16%(6+1)=112
are properly combined to generate the desired output. To desi.tapeed delay lin)

. . . . Passband Ripple 0.00527(0.056 dB) 0.00717(0.062 dB)
an lIR VDF using this structure, the subfiltef§,,(z) in (2-3)  Stopband Ripple 0.00645(43.80dB) 0.01218(38.29dB)

can be determined by minimizing some performance measure
such as the least squares or minimax errors, subject to the filter
stability constraints. This is a highly nonlinear constrained op-

timization problem, which is rather time consuming to solve. T '
It might also converge to unsatisfactory local minimum, which

may require repeatedly restarting the optimization procedure
with different initial guess. The approach proposed in this paper

3

8

is based on the model reduction of the FIR subfil€s(z). %«.

Model reduction is a useful technique for designing IIR filters, 5

especially approximately linear-phase IIR filters, from FIR fil- i°
&

ters. A FIR filter with the given specification is usually designed
using the Remez or complex Remez algorithms, which are very
efficient and produce optimal minimax solutions. Model reduc- %

8

tion is then applied to convert this FIR filter to an IIR filter oo f:l
with similar frequency characteristic but with lower order. There o o1 oz 03 04 o5 08 07
are several advantages of the model reduction approach: 1) itis
computational simple which only requires the computation of
the singular value decomposition of a Hankel matrix; 2) the IIR
VDF is guaranteed to be stable; and 3) the frequency response
such as the phase response of the FIR prototype is well pre-
served. In other words, they can be used to design approximately : : : :
linear-phase IIR filter. Direct application of model reduction to : N R e S S S e .
the subfilters’,,,(z), however, does not lead to satisfactory re- '
sults. It is because th€,,(z), though related to the frequency ' . : :
selective VDFH (z, ®), are not frequency selective. Its coeffi- AN S S A
cients are in fact the coefficients of the interpolating polynomial. : :
Most of the singular values of the Hankel matrix of the impulse
response are rather large. Model reduction, which removes the -
less significant singular values is, therefore, unable to offer great | ;

-4---
'
il
'
.
.
4
i
'
.
il
il
1

$---

......................................

~faaa

reduction in system order. In what follows, a transformation is °"“'°";‘°°“‘°“
used so that another set of subfilters, which is more amendable ()

to model reduction, is implemented insteac(b,f,,(z). First of li]lg 4. (a) Frequency responses of multiplier-less FIR VDF evenly sampled in

. Ay . . e range® = [0, 1]. (b) Worst-case stopband attenuation as a function of the
all, let us rewrite (2-3) in matrix form as follows: order of the interpolation polynomial.

H(z,®) =TTP(®) (3-1)
TABLE 1l
where T = [Co(z) ... Cyp_1(2)]T and P(®) = PARAMETERS FOR THEEFFICIENT IMPLEMENTATION OF THE TUNABLE
[Yo(®) ... r_1(®)]7. Sampling the transfer LOWPASSFILTER IN EXAMPLE 1
function H (2, @) at M values of the tuning parameter Tnterpolation order 3
P = (ﬁt/ 1= 0./ oM — 1, y|e|d5 Filter order 31
Cutoff frequency tuning range 027-04r
H(z,®;) = I‘TP(QL-) =TTp, (3-2) _Transition bandwidth 027
Worst-case stopband attenuation 46.1dB
. . . Average no. of terms of SOPOT coefficient 4.1
wherePi = P(®)|e=,. Equation (3-2) can also be written in Required adders beforc using MB 27— 63 1e 3
matrix form as follows: (including adders in the delay chain) B
Required adders after using MB _
H=97T.T (3-3) (including adders in the delay chain) 271=6x31+85
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Fig. 5. Design results of Example 2. (a) Frequency responses of FIR VDF. (b) Frequency responses of IIR VDF. (c) Frequency responses of FIR VDF evenly
sampled in the rang® = [0, 2]. (d) Frequency responses of IIR VDF evenly sampled in the rdnge [0, 2]. (¢) Group delay of the IIR VDF.

where¥ = [P,
H = [H(z, ®)

. Py 1]FisaM x M matrix and
H(z,®5-1)]". If ¥ in (3-3)is non-

o
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singular, then we can expreBsn terms ofH as follows:

r=v'!.H

another set of subfilterél (z, ®,) followed by a linear trans- model order reduction, it will yield much lower order than that
For polynomial basis functions, we havefrom model reducing’,,(z), which is no longer a low-pass

formation w1,

(3-4)

8

8

8

Stopband Attenuation (dB)
FY
o

mentioned earlier, is that model reduction will be applied to
H(z,®,), which will produce a reduced system with lower

s
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R S R S S Sy (R MR

P

T P

02

04

05

695

order than using’,,.(z), if H(z, ®) is frequency selective. For
example, if H(z, ®) is a low-pass filter with variable cutoff
frequency,H(z, ®;) will be the desired low-pass filter with
In other words, the subfilter€),,(z)'s can be replaced by cutoff frequency governed b$®;. When H(z, ®;) undergoes

UV (@) = ¢™. If the M values of® are evenly spaced, i.e. filter. It is becauseH (z,®;)’s are frequency selective and

®, = ¢, ischosen asi{M), then¥® is the Vandermonde matrix are similar in frequency characteristic. They are thus more

and it is nonsingular. The advantage of this transformation, asiendable to model reduction.
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As mentioned earlier, designing VDF with wide tuning range TABLE Il
i i i HIR - PARAMETERS FOR THETUNABLE LOWPASSFILTERS IN EXAMPLE 2 [(TWO
using the polynomial basis will in general require large numberBLOCKS EnH WITH THREE BRANGHES EACH BLOCK USESLAGRANGE

of branches. This will increase the order of the maf¥ix' and, INTERPOLATOR (ORDER-TWO)]
hence, the complexity. To remedy this problem, it is desirable tg
split the tuning range into several consecutive tuning ranges.

separate FIR VDF is designed for each segment, which helps : 21 (denominator)
reduce the order of the interpolation polynomial and, hence, th e N ot visfipeations @ o 2 -

FIR VDF IIR VDF
21 (numerator)

Filter length 40

.. . . 40x 6 =240 21x(6+1)=147
number of branches. In addition, the number of general multwgg;ﬁf:;::?])ela CT i XD
. . . ys (due to the _
plier required and the order of the matik—* will also be re-  tapped delay line) 39x6=234 20x(6+1)=140
duced. Next we consider the model order reductioH f, ®;). ~ Total Number of Additions (due to the 39x6=234 20x(6+1)=140
’ tapped delay line)

The algorithm that we employed is the Eigensystem realizatioPassband Ripple 0.00258 (0.022dB) | 0.01594 (0.1374dB)

algorithm (ERA) [17], [18]. First of all, we note that the sub- 2dRipplc 0.00541(45.34dB) | 0.00609 (44.31dB)
filters C,,(z) can be viewed as a single input-multiple output
(SIMO) system. To carry out model reduction of these subfil- TABLE IV
ik . . f PARAMETERS FOR THEEFFICIENT IMPLEMENTATION OF THE TUNABLE
ters, we first rewrite Fhem in state space model (SSM) with order L OWPASSFILTER IN EXAMPLE 2
N —1[22], whereN is the filter length off/ (z, ®;) in (3-2), as
follows: Interpolation order 2
) Number of intervals 2
Filter order 39
Cutoff frequency tuning range 027-04r
z(k+1) =A-z(k) + Bu(k) (3-5)  Transition bandwidth 027
y(k) =C - x(k) +D- u(k) (3-6) Worst-case stopband attenuation ' 50dB
Average number of terms of SOPOT coefficient 3.8
Required adders before using MB * 952=6x39+718
Required adders after using MB * 337=6x39+103
where - - -
*. include the adders in the delay chain.
ol 0 1 .
A= N-2 , B= 0 , where the columns of matricdgandS are orthonormal andl
In_, On_, N-2 is a rectangular matrix given by
C1,0 cee CN—-1,0 €0,0
ci,M-1 --- CN—-1M-1 Co,M—1 0 0

with Z = diag[o1,09,...,0i,0i41,...,0,] (3-10)
Oy isaN x 1 zero matrix, and py isanN x N identity matrix. n
LetY,, k= 1,2,..., be the M x 1) pulse-response matrix or ) )
Markov parameters obtained by applying a single impulse to the? = 1.2...,n), are the singular values arranged in de-
inputatk = 0,i.e.,u(0) = landu(k) = 0(k = 1,2,...). From scending order of their magnitude

the state space model in (3-5) and (3-6), one gets the following

formula for the Markov parameters: 012022+ 20;20i41 220, 20. (3-11)

Let » be the order of the model-reduced system #)dand

Yo=D,Y,=CB,Y,=CAB,....Y; = CAk‘lB, .... S, be the matrices formed by the firstcolumns ofR and S,
(3-7) respectively. Similar, leE, be the matrix formed by the first

The ERA system begins by forming the generalizdd x 3 r columns and first- rows of 3. To reduce the4, B,C, D)

Hankel matrixH (k — 1) composed of the Markov parametergnatrices to the reduced systemd,(B,., C,., D,), let us form

as follows: the following reduced Hankel matrix:
Yk Yk-i—l Yk-l—ﬂ—l H’I‘(O) :RTZSZ (3'12)
(k-1)= : : . : It can be shown thall,.(0) is composed of the controllability
V. Y. v, matrix M. and the observability matri#, as follows:
k+a-1 k+a - k+a+fB-2 (3-8)
For simplicity, we choose = 8 = N — 1 (order of SSM), and H,.(0)=M.-M, (3-13)
k = 1. Next, the singular value decomposition (SVD) of the 11T
Hankel matrix withk = 1 is computed where M. = [C, C,A, - C.AY |, M, =
[B, A.B, -.- A’7!'B,]. More generally, we have

H(O0)=R-) 5" (3-9) H,(k) = M.A"M,. (3-14)
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Comparing (3-12) and (3-13) with = 0 gives

1/2 1/2

M.=R,) , andM,=> ST (3-15)

From (3-13), it is clear that the first column &, forms the
reduced input matriB,. whereas the firsd/ rows of M. form
the reduced output matr®,.. The reduced),. matrix is exactly

equal to theD matrix. To determined,., consider (3-14) and
(3-15) withk =1

1/2 1/2

Hy(1) = McArMy = Ry Z Ay Z ST, (3-16)

Rearranging, one gets the following reduced state matyix

—1/2 —1/2

A, => RI'H.(1)S, > .

T

(3-17)
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Now, all (A,,B,,C,.,D,) matrices have been determined. TABLE V

Using the reduced state space model, one can determine a PT@%METERS FOR THETUNABLE LOW-DELAY LOWPASSFILTERS IN EXAMPLE 2
’ (Two BLOCKs, EACH WITH THREE BRANCHES EACH BLOCK USES

set of transfer functions, which have a common denominator. LAGRANGE INTERPOLATOR OFORDER-TWO)

Thus, the system transfer function will consisf\dfnumerators

and a denominator, all with order. An important property FIR VDF 212&‘1’2:@

of the ERA algorithm is that the reduced system is stable Filterlength 40 21 (denominator)

. . . . * 3

the original system is stable. Moreover, since model redu T‘;‘;‘E‘jﬁ:{)‘:;’;ﬁumpucaﬁm T 2 2

tion will try to preserve the frequency characteristics of th_fiter coefficients) 40x6=240 2x@+D=147

original system, the IR filter obtained will be approximately uo* damm e " - © ™ 39x6=234 20x(6+1)=140

:!near-prr:ase, if the original FIR VDF is linear or approximatel E:t:i?:ﬁye;z;/%ddmons (due to the 39%6 =234 20%(6+1) =140

Inear-phase. Passband Ripple 0.00177 (0.0154dB) | 0.01424(0.12284B)
Let the model-reduced vector 8 be denoted aH. AS men-  _Stopband Ripple 0.00633 (43.97dB) 0.00781 (42.15dB)

tioned earlier, the new reduced transfer function will have the
same denominatoD(z) and theM numerators, denoted by

Ni(z). Therefore, we have coefficients, and_, is the number of terms used in the coeffi-

cient approximation and is usually limited to a small humber.

_ N The coefficient multiplication can then be implemented as lim-
H= D) (3-18)  jted number of shifts and additions. To design the SOPOT sub-
filters, we minimize thel ., norm of its difference in frequency
where N = [No(z) --- NM_1(Z)]T- The final SIMO response with the ideal one as shown in the following:
model-reduced transfer function is ' o
= Hi(e?*) — H(e? 4-2
e 3-19 " el 8o <‘ 1) = AE)) (@)
- : D(Z) ( - )

_ _ _ _ _ H /(i) is the ideal frequency response atide’) is the fre-
Since there is only one denominator, the implementation coguency response calculated for a given SOPOT filter coeffi-
plexity associated with the denominator of the transferfunctioeﬁ;nts_ In other words, we try to minimize the peak r|pp|e error
is greatly reduced. In addition, for certain types of tunable filtes, for the whole frequency range of interest and the whole tun-
the use of SIMO ERA can dramatically reduce the order of thhle range® ¢ [0,1]. The design procedure consists of two
system and, hence, the arithmetic complexity, as we will sggages. First, the filter coefficients, ,.,,; are optimized using
later in the design examples. The structure of the final IIR VD& random search algorithm with respect to the criteria stated in

is shown in Fig. 2(a). . ~ (4-2). Then, the technique of the multiplier block is used to fur-
The design method of the proposed IIR VDF is summarizefler reduce the number of adders required to implement all the
as follows. SOPOT coefficients.

1) Design an FIR VDF according to the design specification To be more specific, the real-valued coefficients,, are
using the polynomial basis or piecewise polynomial basifitst determined by the least square method described in Sec-
This gives the subfilter¥'. tion Il. Let b be the vector containing these coefficients. Then
2) UsingT', compute the transfer functidifi(z, ®) atevenly the random search algorithm will repetitively calculate a can-
sampled values ob, H(z, ®;) = I P(®;). This gives didate SOPOT vectdy. by adding tob a random perturbation
H=9".T. vectorAb, and then rounding it to the nearest SOPOT represen-
3) Apply the ERA model reduction method to the SIMQation. That is
systemH. This givesH = N/D(z).

Finally, it is noted that the implementation & ! can be be = [b+ Aby|sopor - (4-3)
avoided by formingV = ¥ 1. N7 offline. The efficientimple- , , i
mentation of the FIR VDF will be considered in the following The vectorb, is a random veqtor Wlth_elements chosen in

e ranget1, and) is a user-defined variable used to control

section. Due to space limitation, the hardware implementatig?l i i .
of the IIR VDF is not discussed in this paper. the size of the neighborhood to be searcr[ej;ISOPO_T is the_
rounding operator that converts every element inside the input

vector to its closest SOPOT value with a given valué ofhe

performance measuig of the new coefficients is then calcu-
To reduce the implementation complexity, the subfilters afgted. The set that yields the minimum peak epunder the

implemented as multiplier-less FIR filters using the SOPOT cgjiven constraints of total number of terms drid recorded as

IV. EFFICIENT IMPLEMENTATION OF FIR VDF

efficients in the form the final solution. Since this is a random search algorithm, the
L. longer the searching time, the higher the chance of finding the
o — Z brm.j - 2% (4-1) optimal solution. There are several advantages of this algorithm.

' = ’ First of all, with the computational power of personal computer

(PC) nowadays, the time for obtaining high quality solutions is
whereb,, ., ; € {—1,1} anda; € {-I,...,-1,0,1,...,l}.1 manageable. Infact, for the problem considered here, the overall
is a positive integer and its value determines the range of tliesign time takes less than 10 minutes to complete on a typical
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Fig. 7. Design results in Example 4. (a) Frequency response of the FIR Bandpass ¥QF a®zr = 0,0.5, 1. (b) 3-D perspective plot of the frequency
response of the FIR Bandpass VDF. (c) Frequency response of the IIR Bandpass ¥pF,aPyr = 0,0.5, 1.7. (d) 3-D perspective plot of the frequency
response of the IIR Bandpass VDF@t= ®,, = &, € [0.1]. () Structure of the variable bandpass filter.

Pentium-400 PC using MATLABS5.3, including both the de- Detailed implementation of the FIR VDF will how be
sign of SOPOT coefficients and the multiplier block. Secondlgescribed. Referring to the general structure of the VDF in
it is applicable to problems with general objective functionBig. 1(a). To implement the subfilters,,(z) using the multi-
probably with very complicated inequality constraints (such gdier block, we can redraw them in transposed form as shown
round-off error [20] and power constraints). Moreover, a set af Fig. 1(b). Now, we need to implement the multiplication of
possible solutions representing different tradeoffs between cotine input sample with a large number of constant coefficients in
putational complexity and performance will be generated duri@0POT form. These products can be efficiently implemented
the search. The random search algorithm is similar in conceysing a technique called the multiplier block. The basic idea of
to the stimulated annealing algorithm. However, we have ustte multiplier block is to reduce the redundancies in multiplying
the real-valued optimal solution as a starting point to reduce thegiven input with a set of integer coefficients by removing
searching time required. any possible common subexpressions in their representations.
Using the MB, itis possible to reduce significantly the additions
IMATLAB is a registered trademark of The MathWorks, Natick, MA. in implementing the multiplier-less subfilters leading to great
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hardware savings. The generation of the multiplier block in TABLE VI

; ETAILED COMPARISONBETWEEN THEMETHOD IN [13] AND THE PROPOSED
our case follows closely the work of [19]. From the deS|grP EAST SQUARES (LS) APPROACH.c. () AND w () REPRESENT THE

examples to be presented in the following section, itis observed L OWER STOPBAND AND PASSBAND EDGES OF THEBANDPASS VDF,
that 2/3 of the additions in implementing the SOPOT coeffiCieRESPECTIVELYw 2 (®) AND w,>(®) REPRESENT THEHIGHER STOPBAND AND

multiplications can be reduced by using the multiplier block. PASSBAND EDGES OF THEBANDPASSVDF, RESPECTIVELY

RESULTS [13] Proposed (LS)
V. DESIGN EXAMPLES subfilter length (N) Sl 31
number of subfilters (L) 6 6
A. Example 1 — Tunable Linear-Phase FIR and Approximatespectral parameter (@) =019 0.1 0<o<l
Linear-Phase IIR Low-Pass Filters stopband edge 1 (@, (#)) 026+ &z (03670 0
passband edge 1 (@,,(®)) 032+ D)7 (0.42-0.29)7
In this example, tunable linear-phase FIR and IIR low-paspassband edge 2 (@,,()) (0.64 - )1 (0.54+0.20)r
filters are designed using the proposed method. The transiti stop band edge 2 (w,, () ) 0.70-®)z 0.60+0.20)r
bandwidth is fixed at 0.2 and the passband edge is varied fron 835;3 ior Z = —g-(lm ggﬁz ior : =:) —
. . or = -0. . or =V.
0.2r to 0.2r. The FIR VDF has a subfilter length of 32 and 00356 Tor 8005 | 00882 for $=0.75
an interpolation order of 5 using the polynomial basis functior 0.0263for #=-0.025_ | 0.0211 _for ®=0.625
The frequency response of the FIR VDF so obtained is shown maximum deviation gg‘z‘gi ?’f Z: g - 88§§§ £°’ §= 8-225
. . A or =V . or =V.
Fig. 3(a), (c), and (e). After model redgcnon, the lengths of th 00479 for =003 00446 Tor =025
numerator and denominator polynomial are 17. The frequen 0.0594 for @ =0.075 0.0459 for @=0.125
response, group delay and transient response of the lIR VDF i 00438 for #-0.1 00571 for ®=0
shown in Fig. 3(b), (d), (f), (g), and (h). It can be seen that th deviation NA 0.0587
magnitude and phase responses of the IIR VDF are similar yorstease stopband NA 0.0594
that of FIR VDF. The parameters of the FIR and IR VDFs ar sopoT wordiengih NA 12 bits
summarized in Table I. It can be observed that a modest amoi adders before using MB * N/A 503
adders after using MB * N/A 142

of performance loss is given up in exchange for an approximes<
40% reduction in multiplications. To examine the transient ef- * : using SOPOT coefficients.

fect during parameter tuning, a sinusoid with a digital frequency

of 0.4r is applied to this IIR VDF. In the first 50 sample®,is  only slight or negligible degradation in performance. We have
set to zero, and the cutoff frequency of the IIR VDF is arounalso designed a number of VDF using different orders of
0.2r . It can be seen that there is a transient response at the filtgerpolation with the same filter specifications. Fig. 4(b) plots
output when the data is first applied, which is an inherent chahe worst-case stopband attenuation as a function of the order
acteristic of digital filters. This transient soon died down and thsf the interpolation polynomial.

amplitude of the output is nearly zero. After that, the tuning pa-

rameter® is increased by 0.25 every 50 samples, i.e., the pags- Example 2 — Tunable Linear-Phase FIR and Approximate
band is increased by Gr2successively. It can be seen that theinear-Phase IR Low-Pass Filters Using Piecewise

amplitude of the VDF output increases at each block of 50 safPslynomial

ples. This is because the input sinusoid starts to fall into the passp, ixis example, a tunable linear-phase FIR VDF and an

band of Fhe IIR VDF. However, except for t.he initial tranSiemapproximately linear-phase IIR VDF are designed. The target
no transients due to abrupt change in tuning parametare tuning range of the passband is from .® 0.4r and the
observed. This is because the states of the IIR subfilters are f9hsition bandwidth is fixed at 0z2 Instead of using six

abruptly changed by the tuning parameters, unlike other VO, ches of subfilters as in the previous example, we divide

approaches based on direct tuning of the filter parameters. i, tuning range into two intervals with three subfilters per

summary, the IIR VDF approximates the FIR VDF well in termgyse a1 Each subfilter has 40 taps. The frequency response
of frequency response without any transients during tuning. ¢ \he FIR VDF designed using the least squares method is

. L shown in Fig. 5(a) and (c). The structure of the VDF is shown
B. Efficient Realization in Fig. 2(b). It can be seen that the transfer functidhsz),

We now consider the efficient realization of the above FIR=0,...,5, are separated into two groups, and each group
VDF. The random search algorithm mentioned in Section I\ associated with one tuning range. The outputs from one of
was used to determine the SOPOT coefficients of the subfiltetise groups are connected to the matlix ' at any one time,
The average number of terms in each SOPOT coefficients wagough the multiplexer, and it is determined by the tuning
found to be 4.1, and the worst-case stopband attenuation is 46atameter®. ® is limited between 0 and 2. Fé@ < [0,1],
dB. Fig. 4(a) shows the frequency responses of the VDF Hi(z), 7 = 0,2,4, are used and it supports the passband tuning
different control parameters. It can be seen that the frequemayge from 0.2 to 0.3r. Whereas, fo@ € [1,2], H;(z), i =
response is approximately equal-ripple in the stopband over thg,5, are selected and its tuning range is fromrQ@ 0.4r.
entire tuning range. Table || summarizes the design resultsTe correspondingg ' (m = 3) is
these VDF low-pass filters. Another point worth mentioning is
that the multiplier block (MB) is able to reduce the required 1 0 0
number of adders to about one-third of its original value. vl=1-3 4 -1]. (5-1)
Hence, the system complexity is dramatically reduced with 2 -4 2
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Fig. 8. Design results in Example 5: (a) Frequency responses of the digital bandpass VDF designed by using the LS approach. (b) Frequency responses of t
digital bandpass VDF designed by using the piecewise polynomial approach. (c) Frequency responses of the digital bandpass VDF designed b$ using the L
approach® = 0,0.25,0.5,0.75,1). (d) Frequency responses of the digital bandpass VDF designed by using with piecewise polynomial dppteach (

P®.pper = 0,0.5,1).

The overall six-branch-FIR VDF is model reduced to obtain tHe. Example 3 — Tunable Low-Delay FIR/IIR Low-Pass Filters
required IR VDF using the proposed method described in Sddsing Piecewise Polynomials

tion IV. The frequency response and group delay are plotted in
Fig. 5(b), (d), and (e). Details comparison of the FIR and Illg

xg:; are Zumrr&arizr?dlfin Tglb:]e I”'. Sincle the c()jrder O.f . ”f ecifications are the same as the one in Example 2, except that
Is reduced to half and there Is only one denominator fhy 44,5 delay of the FIR VDFs is now reduced. The group

all the subfilters, the total number of multiplications is reduce&ielay is reduced from 19.5 to 16.5 samples. The low-delay FIR
approximately by 40% as compared with the FIR VDF. The fr% ' ' '

fthe IIR VDE | b bl DF was first designed using the least squares design method.
quencyresponse o the Is seen to be comparable to figq low-delay FIR VDF was then model reduced to an [IR VDF
original FIR VDF.

using the ERA algorithm proposed in Section IV. The frequency
responses and group delay are plotted in Fig. 6. Details compar-
ison of the FIR and IIR VDF are summarized in Table V. From
the figures, it can be seen that the frequency response of the IIR

. . VDF closely resembles that of the FIR VDF and the number of
The random search algorithm was used to determine I#

- X . . eultiplications is reduced by approximately 40%. Due to space
SOPOT coefficients of the sublfilters in the FIR VDF obtaine rpitation, results for the multiplier-less realization is omitted.
above. The average number of terms in each SOPOT coefl-
ficients was found to be 3.8, and the worst-case stopband i ,
attenuation is 50 dB. Table IV summarizes the design resugs Example 4 — Bandpass Filter With Tunable Cutoff
of this VDF low-pass filter. Again, it can be seen that th requencies
multiplier block (MB) is able to reduce the required number In this example, we are going to design a bandpass filter with
of adders by around 65%. Hence, the system complexitytisable cutoff frequency using the previous result on tunable
dramatically reduced with only slight or negligible degradatiolow-pass filter. The basic idea is to cascade a tunable low-pass

in performance. and a tunable high-pass filters together so that we can control its

In this example, tunable low-delay FIR/IIR low-pass filters
sing piecewise polynomials are designed. All the FIR VDF

D. Efficient Realization
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TABLE VI well its FIR counterpart. Due to page limitation, results for their
DESIGN RESULTSUSING THE PIECEWISE POLYNOMIAL AND LS APPROACHES efficient realizations are omitted.
ws1(P) AND w1 (P) REPRESENT THELOWER STOPBAND AND PASSBAND
EDGES OF THEBANDPASS VDF, RESPECTIVELY. w2 (®) AND wpo (®)
REPRESENT THEHIGHER STOPBAND AND PASSBAND EDGES OF THE G. Example 5
BANDPASS VDF, RESPECTIVELY

The final example considered is the bandpass digital FIR

RESULTS VDF for the first section VDF for the second section . . . .
subfilter length (V) 51 51 VDF obtained using the outer product expansion in [13]. The
number of subfilters (L) 3 3 H ila i
spoctal pesameter (2) oo < T center frequency _of r:h'e VDF |sII kept cohnstant am?.@hlle its
Sopband edge 1 (@, (@) 026-0.18, )7 0360197 bandpass_ bandW|d_t_ |s_contro ed by t e_spectra parandeter
passband edge 1 (w,,(8)) ©032-0.18,,)7 (©042-0.19,_)7 The detailed spe<_:|f|cat|0ns are shown in Table VI. Although
passband edge 2 (@, (®)) (0.64+0.19, )7 0.54+0.18,,, )7 we have used a different range for Fhe_param@te&between 0
stop band edge 2 (@, (B) ) 0.70+0.18,, )7 0.60+0.18,, )7 and 1) from that of [13], the specifications for both VDFs are
4pp:
0.0505 for @,,,, =1 0.0351 _for &, =1 the same. The proposed least squares design and random search
0.0478 for &, =075 | 0.0483 for &, =075 algorithms were used to obtain a VDF with SOPOT coefficient
maximurm deviation 00158 for By =05 | 00158 for @y, =05 up to 12-bits wordlength. Its frequency response is plotted in
0.0475 §°r :W'zz‘” 00538 ;"’ "'W:z'” Fig. 8(a) and (c). Table VI compares the result obtained in
0.0495 tor®, = 0.0444 foro, = .
oret-oase passhand deviation 0303 T [13] with the proposed method. It can be seen that fchey are
worst-case stopband deviation 0.0495 0.0548 comparable to each other. On the other hand, the design of the
addons before o M ava = proposed method is very simple because it requires the solution
adders after using MB * 55 57 of a system of linear equation, instead of using nonlinear opti-
adders before using MB * 219 . N . L .
adders afier using MB * % mization in [13]. The number of adders saved in this bandpass

FIR VDF with the use of MB is very significant. In fact, it saves
nearly two-third of the adders in the SOPOT realization. Next,
we compare the proposed piecewise polynomial approach with
cutoff frequencies individually. The proposed structure is illughe conventional polynomial approach. The tuning range is
trated in Fig. 7(e). It can be seen that the bandwidth of the filtgvided into two nonoverlapping regions, and a bandpass FIR
can be controlled by two variable®p and®yp, which con- VDF is separately designed for each region. The details of these
trol the cutoff frequencies of the low-pass filteir (n) and the  two VDFs are shown in Table VII and the frequency responses
high-pass filtefiur (n), respectively. Itis possible to reduce theyre plotted in Fig. 8(b) and (d). From these figures, it can be
overall system delay by interpolating the impulse response gden that the piecewise polynomial approach gives a better
the filter by two-dimensional polynomial, but the overall comstopband attenuation than the conventional approach. The
plexity will increase dramatically with the square of the ordgmprovement will increase with wider tuning range. Through
used instead of linearly with the proposed cascade structurethe use of MB, again, we can save approximately over one-half
For simplicity, the tunable high-pass filter is obtained froraf the original adders.
the tunable low-pass filtef;,p(e’*, ®1p) using the following
frequency transformation

* : using SOPOT coefficients.

VI. CONCLUSION

Hyp(e™, ®) = Hip(¢/77), ). (5-2) A systematic method for the design and implementation of
FIR and IR VDFs is presented. A least squares (LS) approach
Hence, the overall VDF bandpass filtBizp e/, ®#1p, ®gp) for designing FIR VDFs by expressing the impulse response

is given by of the VDF as a linear combination of basis functions is first
presented. The optimal LS solution can be obtained by solving
Hpp (67, ®1p, ®p) = Hup (¢, ®up) Hrp(e', ®1p). a system of linear equations. By choosing the basis functions

(5-3) s piecewise polynomials, VDFs with larger tuning range than

An interesting feature of this special structure is that tHydinary polynomial based approach can be obtained. The re-
coefficients of Hyp(e’, ®) and Hyp(ei, ®) are iden- sulting VDFs can be efficiently implemented using the familiar
tical except for appropriate sign changes. More preciseE/arrOW structure. Making use of the FIR VDF so obtained, an
if the low-pass VDF is given byHip(e ®p) = RA-based model reduction technique is proposed to approxi-
ZM_1 N-1 e_jnw} Fm then the7 high-pass mate the FIR VDF by a stable IIR VDF with lower system order.
m=0 n=0 Tm-m Lp gn-p The model reduction approach is computational simple, which

VDF so obtained is given byHup(e™”,®up) = only requires the computation of the singular value decomposi-
SMos [ N cn.m(—l)”ej”’“’} ®ip. So, the filter co- tion of a Hankel matrix. The IIR VDF obtained is guaranteed to
efficients of the low-pass VDF might be reused in the high-pabs stable. In addition, the proposed IIR VDF does not suffer
VDF, if the hardware is able to work at higher speed. from undesirable transient response during parameter tuning

For simplicity, the low-pass VDR{1p(e/*, ®1p), is taken found in other approaches based on direct tuning of filter param-
from Example 2. The frequency responses of the resulting bamders. For frequency selective VDFs, about 40% of the multipli-
pass FIR and IIR VDFs are shown in Fig. 7. From these figuresgtions can be saved using the IIR VDF. The implementation of
it can be seen that the IIR bandpass VDF approximates véhg proposed FIR VDF using sum-of-powers-of-two (SOPQOT)
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coefficient and the multiplier block (MB) technique is also pre-[21] T. B. Deng, “Weighted least-squares method for designing arbitrarily
variable 1-D FIR digital filters, Signal Processingrol. 80, pp. 597-613,

sented. Results show that about two-third of the additions in im-

000

plementing the multiplication of the SOPOT coefficients can bQZZ] S. K..Mitra, Digital Signal Processing: A Computer-Based Appraach
Singapore: McGraw-Hill, 1998.

saved using the multiplier block, which leads to significant sav-
ings in hardware complexity.
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