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1 Introduction

only cover a limited physical area and sensors usually
cooperate to achieve a certain monitoring objective. The
monitoring objective is usually transformed to a coverage

Wireless sensor networks have caught lots of attentions
in recent years, because applications that are too
dangerous for humans to operate could be performed by
WSNs (Estrin et al. (2002)). In monitoring applications,
small battery-powered sensor nodes are deployed in a
large scale. Each sensor node can sense the environment
up to a certain sensing range. Thus, each sensor can

problem. Area coverage and target coverage are are two
common monitoring objectives widely studied (Cardei
and Wu (2004)). An area is under monitoring in area
coverage that any event occurs inside the area should be
discovered. In target coverage, a number of target objects
are needed to be observed.
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In this paper, we study another coverage problem,
called perimeter coverage, in which the perimeter of a
large object has to be monitored. One typical application
scenario is to monitor the entire perimeter of the
white house so as to ensure its security. Each sensor
is associated with a cost. To reduce the total cost for
monitoring, we would like to identify a set of sensors
that can cover the whole perimeter with the minimum
cost. This problem is similar to the minimum weight
circle-cover problem in a circular-arc graph. There are
some centralized algorithms in the literatures(Andrews
and Lee (1995); Atallah et al. (1995); Bertossi (1988);
Ibarra et al. (1992)). Nevertheless, these algorithms
do not tailor for the broadcast and distributed nature
of wireless sensor networks. Previously, a distributed
algorithm has been developed (Chow et al. (2007a)) to
solve this problem. This mechanism suffers from a high
message overhead because all the nodes passing through
a reference point has to initiate the search. In this paper,
we further enhance the distributed protocol by reducing
the message overhead to be proportional to the size of
network. We also provide a formal proof of correctness
of our proposed algorithm.

Many existing networks assume that the sensing
range of a sensor is fixed. However, recent research shows
that adjustable sensing range is possible. It is generally
assumed that the cost associated with a smaller range
is smaller (Cardei and Du (2005); Cardei et al. (2005);
Cardei et al. (2006); Dhawan et al. (2006); OPS (2009);
Wang and Medidi (2007); Wu and Yang (2004); Zhou et
al. (2004)). In view of this, we enhance our algorithm
to consider also sensors with adjustable sensing range
without increasing the message overhead.

The paper is organized as follows. In Section 2, we
briefly discuss the related work in the literatures. Then,
the network model and our distributed algorithms under
the fixed sensing range scenario will be discussed in detail
in Section 3 together with a formal proof of correctness.
In Section 4, we present the modifications required to our
distributed algorithm under the adjustable sensing range
scenario. We carried out extensive simulations and the
results are presented in Section 5. Finally, we conclude
our schemes in Section 6.

2 Related Work

In this section, we briefly discuss the related work on the
coverage problems in wireless sensor networks, and the
related work on the centralized algorithms solving the
circle-cover problems in circular-arc graphs.

The two traditional coverage problems are area
coverage and target coverage. Area coverage problem
refers to the cover of the whole target area by the
sensors. There are a number of variations, including
single area coverage (Carle and Simplot-Ryl (2004); Cao
et al. (2004); Gupta et al. (2003); Gupta et al. (2006)),
multiple area coverage (e.g., k-coverage (Huang and
Tseng (2003); Huang and Tseng (2005))) and fractional

area coverage (Hung et al. (2007); Ye et al. (2006)),
etc. On the other hand, target coverage problem refers
to the cover of a certain target object or a number of
target objects within a certain area. Various algorithms
have been proposed to tackle the node placement (Kar
and Banerjee (2003)) and energy issues (Cardei and Du
(2005); Cardei et al. (2006); Thai et al. (2007)) on the
target coverage problem. While most of the existing
work assume that a target object is a point in the area,
(Olteanu et al. (2008)) consider the situation in which
a target may take up a certain space in the target area,
and the target is detected once any portion of it falls
within the sensing area of the sensor.

In this paper, we are specifically interested in the
perimeter coverage problem. Unlike that of Olteanu et
al. (2008) which aims at detecting a shaped target
object, we study how to find a set of sensors to cover
the whole perimeter of a shaped target object based
on some selection criteria. One of the fundamental
criteria is to find the set with the minimum amount of
sensors distributively (Chow et al. (2007b); Hung and
Lui (2010a)). This problem is very similar to finding
a minimum circle-cover of a circular-arc graph, which
studies how to cover the whole circle using as few
arcs as possible. Circular-arc graph problems have been
studied for quite a long time. The centralized algorithms
for finding the minimum circle-cover are described in
(Atallah and Chen (1989); Bertossi (1988); Lee and Lee
(1984); Yu et al. (1989)).

Unlike these previous works, our main focus in this
paper is to find the minimum weight circle-cover of a
weighted circular-arc graph in a distributed manner. In
(Bertossi (1988)), a parallel algorithm was proposed to
tackle minimum weight circle-cover problem. This was
known to be the first parallel algorithm proposed. Other
than that, some parallel algorithms have been developed
(Atallah et al. (1995); Ibarra et al. (1992)) but they
are centralized in nature and do not exploit the wireless
nature of sensor networks. Previously, a distributed
algorithm was developed to find the set of nodes with
minimum cost that covers the entire perimeter of the
target object in a sensor network (Chow et al. (2007a)).
This is also known to be the first distributed algorithm
developed. Unfortunately, the message overhead of this
algorithm can be very high. In this paper, we propose
another approach that can reduce the message overheads
and then provide a formal proof of correctness of our
developed approach.

On the other hand, adjustable sensing range
technique arouses more and more attentions recently.
Many studies show that the network lifetime can be
prolonged if the sensing range is reduced to lower the
sensing cost (Cardei and Du (2005); Cardei et al. (2005);
Cardei et al. (2006); Dhawan et al. (2006); Wu and Yang
(2004)). It is widely assumed that energy consumed by
a sensor is related to the sensing range of the sensor.
The longer the range or the larger the sensing area,
the more the energy is needed. The Osiris photoelectric
sensors OPS (2009) available in the market support this
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assumption. Therefore, in our paper, we also consider
the scenario where a sensor can adjust its sensing range
and the cost of sensing is related to the sensing range.

3 Distributed Minimum Cost Cover
Algorithms under fixed sensing range
scenario

3.1 Notations and Definitions

Before we describe our distributed protocol, we define
our problem in this section. Some of the notations are
borrowed from Hung and Lui (2010a).

3.1.1 Cover Range, Cover and Cost of a Cover

The perimeter of the big object to be monitored can
be in any irregular shape as long as it forms a loop.
Each sensor can only monitor a continuous portion of
the perimeter. The portion that a sensor can cover is the
cover range of the sensor. How a sensor determines the
range is application dependent and it is outside the scope
of this paper. Interested readers are referred to (Lee and
Aghajan (2006); McCormick et al. (2006); Tezcan and
Wang (2008)).

As the perimeter forms a close loop, we need a
reference point on the perimeter to represent the starting
point and also the end point of the perimeter so that
a cover range can be represented as [z,y] according to
the coordinate system used on the perimeter. A possible
way to represent x and y is to use the distance on the
perimeter from the reference point. In this paper, we
follow the practice in the circular-arc graph problem
that we use [0°,360°) to model the whole perimeter.
The cover range of a sensor i is represented as [s;, ;]
and [s;,t;] spans in the clockwise manner as illustrated
in Figure 1. It is worth noting that our protocols can
be applied to any perimeter coordinate system that
represents the portion a sensor can cover as a range. If
sensor ¢ does not cover 0°, s; < t;; otherwise, t; < s;.

00

Target Object

t

1
S.
Cover range of !
Sensor i

Figure 1 A sensor node ¢ with cover range [s;, t;] on the
perimeter of the target object.

Given a set of sensors S, a subset of sensors D C S
is a cover if for each angle v € [0°, 360°), there exists

a sensor j € D such that v € [s;,¢;]. In other words,
Uieplsis ti] = [0°,360°). Figure 2 illustrates a scenario of
9 sensors surrounding a target object, where each arrow
represents the cover range of a node.

Each sensor i is associated with a cost f(i). In
Figure 2, the number in circle represents the cost of each
node. The cost of a cover D, f(D), is the total cost
of the sensors in the cover, that is, f(D) =}, p f(i).
In the figure, the sets {1,3,5,7,8}, {1,2,3,5,6,9}, and
{1,3,5,7,9} are all valid covers. The costs of the covers
are 16, 22 and 17, respectively. Note that the cost of a
sensor depends on the sensor application considered, and
we do not specify any cost metric in this paper. Typical
cost examples include the number of hop counts from the
sensor to a sink for optimizing the message flow (Chow
et al. (2007a)), or the remaining battery capacity of a
sensor for extending the network lifetime (Chow et al.
(2009)), or the cover range of a sensor for minimizing the
amount of energy used for sensing (Hung (2010b)), etc.

e

Figure 2 An example to illustrate the concept of
minimum cost cover.

3.1.2 Minimum Cost Cover

Minimum Cost Cover (MCC) is a cover with minimum
cost among all covers. Formally, M is a minimum
cost cover if f(M) < f(D) for every cover D C S. For
example, in Figure 2, {1, 2, 4, 7, 8} is a Minimum
Cost Cover, and the cost of the cover is 14. We denote
MCC(i) to be a cover that contains ¢ while it is the
minimum cost one among all covers that contain i.
In other words, f(MCC(i)) < f(D) for every cover D
where ¢ € D.

3.1.83 Backward and Forward Neighbors

Two nodes are neighbors if their cover ranges overlap.
Formally, when ¢ and 7 both do not cover 0°, ¢ and j are
neighbors if s; <s; <t; or s; <t; <t;. The definition
can be extended easily to ranges that cover 0° but
we leave it out for the ease of discussion. With the
assumption that the communication range is twice of
the sensing range, each node can communicate directly
with neighbors only. It is possible that the sensing range
of a sensor is completely contained in another one, like
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sensors 9 and 8 in Figure 2. When the sensing ranges of
two sensors overlap and none of them is contained in the
other, one sensor is a backward neighbor and the other
sensor is a forward neighbor. i is a backward neighbor of
j and j is a forward neighbor of i if s; < s; < ¢;. Refer
to Figure 2, sensors 2 and 3 are forward neighbors of
sensor 1, while sensors 9 and 8 are backward neighbors
of sensor 1. As sensor 8 is completely contained in sensor
9, they are not backward and forward neighbors of each
other. It is worth noting that 8 and 9 would not appear
together in the same minimum cost cover.

3.2 Problem Statement

In this paper, we aim at developing a distributed
algorithm to find the minimum cost cover (MCC) of the
perimeter of a large object which forms a loop. (Note
that if the perimeter is not a loop, the problem is reduced
to finding the set of sensors with minimum cost to cover
a range, which can be solved in reasonable overhead
(Chow et al. (2007a)).) Each node ¢ € S with cover range
[si,t;] can only communicate with neighbor nodes who
have overlapping cover ranges. By communicating with
neighbors only, when the algorithm terminates, ¢ can
determine whether it is included in the MCC.

Theoretically, if we can find the cost of MCC(i)
for every i€ Sy, where Sy contains the nodes with
cover range passes through 0°, we know the cost of the
minimum cost cover. Therefore, we first describe how to
find MCC(3).

3.3 Finding MCC(1)

When ¢ wants to identify MCC(i), it initiates the
search by sending a search message to all its forward
neighbors. This message carries a cost value that keeps
the total cost to cover the range starting from s; to
the node that receives the message. When the message
goes through the set of nodes in the clockwise direction,
it will eventually be sent back to 7 and i will know
which backward neighbor is in M CC(i) and the cost of
MCC(i). This algorithm allows each node to determine
whether it is in MCC(i) or not but no node, even i,
knows all the nodes that are in MCC(7).

We now describe the mechanism in more detail and
provide an example. When node i wants to find M CC(i),
it sends the search message < f(i),s;,¢ > to all its
forward neighbors. When a node j receives a message
< ¢, 8;,1 > from its backward neighbor, it keeps track of
the smallest ¢ it receives so far. After j has received a
message from each of its backward neighbors that starts
on or after s;, it sends < ¢pin + f(4), si,1 > to all its
forward neighbors, where ¢, is the minimum ¢ among
all the messages it received. Note that j needs to receive
the messages from backward neighbors that start after s;
only. It is because nodes that start before s; will receive
the search message later. Subsequently, each node will
send out a search message, and 7 will receive one search

message from each of its backward neighbors. 7 can then
determine which backward neighbor is in M CC(3).

We use an example to illustrate the mechanism.
Suppose Node 1 in Figure 3 wants to find MCC(1).
Note that Node 0 is ignored in this example as it is
contained in Node 1. It initiates the search by sending
< f(1) =3,s1,1 > to all of its forward neighbors, i.e.,
Nodes 2 and 3. Node 2 has only one backward neighbor
that starts on or after sy, i.e., Node 1. Therefore, Node
2 records f(1) and sends < f(1)+ f(2) =7,s1,1 > to
its forward neighbors, which are Nodes 3 and 4. Now,
Node 3 has received a message from both its backward
neighbors, 1 and 2. Definitely, it finds the cost value
carried by the message sent by 1 is smaller and so it sends
< f(1)+ f(3) =6, 51,1 > to its forward neighbors 4 and
5. This time, 4 receives messages from all its backward
neighbors. Let the smaller cost among the messages
that a node received be ¢. 4 sends < c+ f(4) =6+2 =
8, 51,1 > to its forward neighbors 5 and 6. Subsequently,
5 sends out < ¢+ f(5) =6+1=7,s1,1 > and 6 sends
out <c+ f(6) =7+2=9,s1,1 >. Eventually, Node 1
would receive all messages from its backward neighbors
and it can determine the cost of MCC(1) = 7.

Figure 3 An MCC(i) Search Algorithm Example.

The pseudocode of the MCC(i) search algorithm
of different states can be found in Algorithm 1 and
Algorithm 2. When ¢ wants to start the search, it enters
the INIT state. In this state, ¢ sends a search message
to all its forward neighbors and then transits to the
WAIT state. For other nodes n, when they start up,
they enter the INIT state. After initiating the variables
in the INIT state, it transits to the W AIT state to wait
for the search message from all its backward neighbors.
Once it has received all backward neighbors’ messages,
it sends out the search message and enters FIN state.
During this stage, node n has completed its task in
searching for M CC(i) and so it waits for < SELECT >
message to see if it is selected in the MCC(i). Once
1 receives messages from all its backward neighbors, it
can determine MCC'(i) by selecting the one with the
minimum cost. Note that previous(i) is used to store the
id of the backward neighbor in which the search message
with smaller cost comes from. At this stage, ¢ can enter
FIN state and send back the < SELECT > message to
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Algorithm 1 Pseudocode of distributed MCC(4)
Search Algorithm of source node i.

Jf—— INITstate %/
1: cost(i) = f(7)
2: previous(i) = L
3: total_cost = co /*current minimum cost*/
4: Send (f(4),ss,t) to all forward neighbors. Then, ¢ turns into
WAIT state.
/¥ ———— WAIT state ——— */

: /* Receiving Search Message (c, s;, 1) from Backward neighbor
w */
if total_cost > ¢ then
/* Update the cost of MCC(i)*/
total_cost = c
previous(i) = w
end if
if all backward neighbors’ messages are received then
enter the F'IN state
end if

/¥ ———— FIN state ———— */
1: /* f(MCC(i)) = total cost */
2: send (SELECT) to previous(i)

—

Algorithm 2 Pseudocode of distributed MCC(7)
Search Algorithm of node n where n # i.
/¥ —— INIT state —— */
1: cost(i) = oo
2: previous(i) = L
3: enter the WAIT state.

/¥ ———— WAIT state ——— */
1: /* Receiving Search Message (c, s;,t) from backward neighbor
w *

2: if cost(i) > ¢+ f(n) then

3:  /* Update the minimum cost to reach n from 7 */
4: cost(i) = c+ f(n)
5. previous(i) = w
6: end if
7: if all backward neighbors’ messages are received then
8:  Send (cost(i), s;,1) to all forward neighbors.
9: Enter FIN state.
10: end if
/¥ ———  FIN state ——— */
1: if receive < SELECT > then
2:  send (SELECT) to previous(i)
3: else if overhear < SELECT > sent to a neighbor that starts
earlier than n then
4:  DONE (n is not selected)
5: end if

the node previous(i) which denotes the node included
in MCC(i). When node n overhears a < SELECT >
message and it is the recipient of the message, it realizes
that it is selected in MCC(7). Then, it further sends a
< SELECT > message to the node previous(i). This
process continues until the node previous(i) is node i.
Nodes that contain 7 or contained in 7 are not involved
in the search. When they overhear the search message
and realized that it is initiated by ¢, they do not have to
participate the search.

Since each node needs to send a single search message
and only those nodes selected to be in the cover
need to send the < SELECT > message, the message
complexity of the algorithm is O(N) where N is the
number of sensors in the network. We now formally prove
the correctness of our mechanism.

Lemma 3.1: MCC(i) Search Algorithm is correct.
Proof:

To ease the discussion, we assume s; is 0°. We label
the nodes according to their start angles. A node a starts
before b if s, < sp. We also say b starts after a. We label
1, the node that initiates the search, as ng and the nodes
start after ¢ as ny, no, and so on where n, starts before
ny if x < y. Note that apart from ng, n; may have other
backward neighbors. Nevertheless, ni does not have to
receive messages from these backward neighbors before
sending out its search message. We refer the backward
neighbors whose search messages that a node needs to
wait for as important backward neighbors. In general, the
search messages that n, must receive before it sends
out a search message must be from the nodes in the set
{no,m1,...,ny_1}. Besides, n, can never be an important
backward neighbor of n, if y > x.

We prove this lemma by induction. ng initiates
the search by sending < f(ng), $ny,no > to its forward
neighbors. As ng is the only important backward
neighbor of ni, ny identifies the minimum cost ¢ and
sends out the search message < ¢, $p,,, no > to its forward
neighbors.

Assume that ny can identify the minimum cost from
ng to itself. It should be noted that n; where j <k
should have sent out its message too. When nj sends
out the search message, ng41 should have received a
search message from each of its important backward
neighbors since every node m; where j <k has sent
a message. Thus, ni41 can identify which important
backward neighbor offers the minimum cost from ng to
itself.

By induction, we prove that the minimum cost to
reach ny41 can also be determined correctly after ny
sends out its search message. Eventually, the search
message will pass back to ng, and ng can identify which
backward neighbor should be included in the cover
and no more search message is generated. Therefore,
when the algorithm terminates, the cover MCC(i) is
identified.

O
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3.4 Distributed Minimum Cost Cover Algorithm
(DMCC)

One way to find the minimum cost cover is to find
the cost of each MCC(i) where i € Sy and identify the
minimum one. The overhead would be O(|Sy|N) where
there are N sensors in the network. Since all nodes
need to send out a search message for every individual
MCC(i) search, it is possible to reduce the overhead
by “combining” the messages of several searches into a
single message to reduce overhead. We now describe our
DMCC algorithm that can identify the minimum cost
cover with O(N) number of messages in detail.

3.4.1 Algorithm Description

We call a node that covers 0° a zero node. That is,
every node in Sy is a zero node. The main idea of our
algorithm is that every node u € S does not send out a
search message until it can identify the minimum cost
from each zero node 7 to itself. The search message sent
by u should contain information about all MCC(i). The
major challenges of this idea are: Who should initiate
the algorithm? How should u determine it has obtained
all the necessary information to construct its search
message? What should the search message look like? Can
we prune the search of some MCC(i)? When will the
algorithm terminate?

Combined Search Message Format: We first
describe the search message. In the MCC(i) search
algorithm, each message is of format < ¢, s;,7 >. The
first element represents the cost, the second and the
third values represent the start angle of the node
that initiates the search and the identity of the node,
respectively. To carry the minimum cost information
of several searches in one message, we enhance
the message to << ¢g,,5¢,,q1 >, ..., < Cqj>8q;,45 >y <
Cq1so1 515015 4|So| >> where ¢, represents the minimum
cost to reach the current node from the zero node g;.

Message Combining Mechanism: We label the
nodes in Sy according to the ascending order of their
start angles as qi, g2, ..., q|s,|- The nodes in Sy are
neighbors of each other since they all cover 0°. Therefore,
by exchanging cover range messages, they can identify
which node is ¢;, which is ¢, etc.

The algorithm is best to be initiated by ¢;. It
is because if g¢;, where j # 1, initiates the process,
the process cannot combine the search message of
MCC(qy), Vk =1,...,j — 1. In this case, the number of
messages to find MCC will increase as extra messages
are needed to carry the search of MCC(q), Vk =
1,...,7 — 1. The implication of this is that the number
of messages required is minimum if the process is
initiated by ¢;. ¢ initiates the search by sending out
< f(q1),8q,,q1 >. Based on Lemma 3.1, we know that
@2 knows the minimum cost to reach itself from ¢, after
receiving the search message of ¢;. At this moment, it
can combine MCC(q;) and MCC(g2). The combined
message becomes <<f(q1)+ f(q2), Sq1» ¢1>, <[(g2),

844, q2>>. The first tuple is used to continue the search
of MCC(q1), while the second one is for searching
MCC(gz). Similar process will be carried out by gs, ...,
Qk, - q|5,| accordingly. In other words, each node g #
q1 has two tasks. First, it records the minimum costs
from its backward neighbors in Sy to itself. Second, it
initiates the search of MCC(qx). After ¢ has received
all the search messages from its important backward
neighbors, it sends the combined search message to its
forward neighbors. For all other non-zero nodes, they
only have to carry out the first task.

Pruning Mechanism: It is obvious that if the
combined message contains the information of the search
of every zero node, we can identify the MCC finally.
However, some of this information, in fact, can be pruned
without affecting the correctness of the mechanism. After
n has received the search messages from all its backward
neighbors, n compares the costs among them. Let <
CqirSqi»qi > and < ¢, 8q;,q; > be two tuples received
by n. If g; starts earlier than g; (sq, < s4,) and ¢q, < ¢q;,
MCC(g;) would not be the only minimum cost cover
and n can prune the search of MCC(g;). n then sends
the combined message which contains only the unpruned
searches to all its forward neighbors.

Lemma 3.2: MCC will not be pruned by n.

Proof:

As ¢; starts earlier, the range covered by g¢; to n

([gj,n]) must be contained in the range from g¢; to

n ([gi,n]). Since ¢4, < g, if we replace the sensors

in MCC(q;) that cover [gj,n] by the sensors in

MCC(g;) that cover [g;,n], this new cover must

have a cost not larger than MCC(q;). Therefore, n

does not have to continue the search of MCC(g;).
O

Search Termination: Based on Lemma 3.1, we
know that when ¢ initiates the search of MCC(i), the
search can be terminated once the message comes back to
1 through a set of nodes in the clockwise direction. Recall
that zero nodes {q1, g2, ..., q|s,|} are sorted according to
their start angles. Since our algorithm is initiated by
q1, through a set of nodes in the clockwise direction,
the combined search message will eventually come back
to ¢. At this moment, the cost of MCC(q;) can be
determined. Instead of terminating the algorithm, ¢; has
to continue all the remaining unpruned searches and
inform other zero nodes the cost of MCC(q1). Again,
two tasks are performed by a zero node ¢ once it has
received all the search messages. First, ¢; terminates the
search of MCC(qx), determines the cost of MCC(qy),
and announces the cost to other zero nodes if MCC/(qy)
is unpruned. In fact, to determine whether M CC/(qy) is
pruned, g; can check if the search messages received still
contains the entry about M CC(g). Second, it continues
the search of any unpruned MCC(q;), where | > k by
sending the combined message containing the tuple <
cq + f(qx), Sq,s @t >. Therefore, the whole search process
can be terminated when g5,/ can determine the cost
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of MCC(qys,|)- Since all zero nodes can overhear each
other, when g5, announces the cost of MCC(q;s,|), all
zero nodes should be able to determine which MCC(g;)
is the smallest. ¢; can then inform its previous neighbor
by a < SELECT > message as described in Section 3.3.

Example: To better illustrate the algorithm, we
describe an example. Refer back to Figure 3, Node
1 is ¢ and Node 2 is gs,. Node 1 initiates the
DMCC algorithm by sending < f(1),s1,1 > to its
forward neighbors, in which f(1) =3 in our example.
After Node 1 sends out the search message, Node
2 records the minimum cost to reach Node 2 from
Node 1 as min_cost(1) = f(1) + f(2) =3 +4 = 7. Since
Node 2 is also a node in Sy, it will also initiate
the search of MCC(2). Therefore, Node 2 sends out
<< min-cost(l) =7,s1,1 >, < f(2) =4, 52,2 >> to its
forward neighbors. Then, when Node 3 receives the
search message from Nodes 1 and 2, it records the
minimum cost to reach Node 3 from Node 1 as
min_cost(1l) = f(1) 4+ f(3) = 3+ 3 = 6 and that of Node
2 as min_cost(2) = f(2) + f(3) =44+3=7. At this
moment, Node 3 receives all the search messages from
its backward neighbors. In this case, Node 3 can prune
the search of MCC(2) as Node 2 starts later than Node
1 and with the minimum cost larger than that of Node
1. Hence, Node 3 sends out < min_cost(1) =6,s1,1 >
to its forward neighbors. Then, Node 4 receives two
search messages. They are < 4, 52,2 > from Node 2 and
< 6,5s1,1 > from Node 3. It records the minimum cost
to reach Node 4 from Node 1 and 2 as min_cost(1) =
6+ f(4) =642 =8 and min_cost(2) =4+ f(4) =4+
2 = 6, respectively. Therefore, Node 4 sends out <<
min_cost(1l) = 8,s1,1 >, < min_cost(2) = 6, 2,2 >> to
its forward neighbors. Afterwards, Node 5 prunes the
search of M C'C(2) and only sends out the search message
of MCC(1), ie., <min_cost(l)=17,s1,1>. Node 6
sends out the combine search messages for MCC(1)
and MCC(2), i.e., << min_cost(l)=T+2=9,5,1>
, < min_cost(2) =6+ 2 =28, 89,2 >>.

After receiving all the necessary search messages,
Node 1 can determine the cost of MCC(1) is 7 through
Node 5. However, to complete the search of MCC(2),
Node 1 sends out < min_cost(2) =8 +3 =11,$2,2 > to
Node 2 together with the cost of MCC(1). Node 2 then
determines the cost of M CC(2) = 8 through Node 6 and
it informs Node 1 the cost. At this moment, the search
process is terminated and Node 1 knows that MCC(1)
is the minimum cost cover.

In the previous discussion, we assume the zero node
that starts the earliest initiates the algorithm. However,
it is possible that a zero node does not have any zero node
backward neighbors even it does not start the earliest.
An example is Node 0 in Figure 3. In this case, this zero
node should initiate the algorithm by itself.

Theorem 1: DMCC can  find MCC

correctly.

algorithm

Proof:
Since our mechanism combines the search messages
without changing the method of finding MCC(7)
as discussed in Secton 3.3, Lemma 3.1 also implies
the correctness of our mechanism except the pruning
technique. Therefore, to prove the correctness of
DMCC, we need to prove the correctness of the
pruning technique. According to Lemma 3.2, we
know that MCC still exists in either one of
the unpruned search of MCC(i), where the search
is on going. Hence, by exchanging the cost of
all the unpruned MCC(i), the minimum one is
still MCC. Therefore, DMCC algorithm is correct.
O
DMCC algorithm requires every zero node to send
out two search messages, while all other non-zero nodes
need to send out one. This contributes to O(N + |Sy|)
number of messages. Since |Sy| < N, DMCC finds MCC
in O(N) number of messages.

4 Adjustable Sensing Range

When describing DMCC above, we assumed sensors are
using a single sensing range only. We now describe how
DMCC can be enhanced to find the minimum cost cover
when sensors can adjust their sensing ranges to several
different levels in which a longer range will result in a
higher cost.

4.1 Problem Statement

Each node can adjust its sensing range to different levels.
Different nodes can have different numbers of levels and
different sets of sensing ranges. Recall that S denotes
the set of sensors in the network. A sensor ¢ € S can
adjust its sensing range to r. This can be represented
as an instance i.r in the network. The set of all possible
instances of sensors which are able to cover the perimeter
of the target object is denoted as S’. The cover range
of an instance i.r € S" is [s;.,,t; ] and the cost of this
instance is f(i.r). Under the adjustable sensing range
environment, forward and backward neighbors concept
defined in Section 3.1.3 applies to the instances of nodes
instead of the nodes themselves. Given a cover I, if
i.r € I, 4.0 € I for all possible sensing ranges r’ # r of
node i. The cost of a cover I, f(I), is the total cost of
the instances in the cover, that is, f(I) =, ; f(i.r).
Suppose D denotes the set of all possible covers. MCC C
D, such that VI C D, f(MCC) < f(I).

In this scenario, our goal is to develop a distributed
algorithm in which a node can identify whether any of
its instance is included in the MCC.

4.2 Adjustable Distributed Minimum Cost Cover
algorithm (ADMCC)

One of the major differences between the adjustable
sensing range scenario and the fixed sensing range
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scenario is that in the fixed sensing range situation, every
subset in S is a valid selection. In contrast, some subsets
in S’ are not allowed since at most one instance of a
node can be included in the cover. Fortunately, due to
the properties among instances, our DMCC algorithm
can be applied in S’ with little modification.

4.2.1 DMCC under adjustable sensing range

Property 1: Suppose that r and r' are two different
sensing ranges of i where i € S. If r <1, then ir € 5’
is contained inside i.r" € S’.

Property 1 shows that the instance of node i with
the smaller sensing range is contained inside the instance
of the same node with the larger sensing range. This
property is illustrated in Figure 4.

oo

Target Object

Sensor Node i

~~~~~~~~

Figure 4 Adjustable Sensing Range Example

Since MCC would not contain two sensors where one
is contained in the other, we have the following property.

Property 2: An MCC of S’ does not contain both i.r
and i.r" for any i € S and two different sensing ranges r
and r'.

Due to Property 2, DMCC can still be directly applied
to §” with a minor modification that a node i € S has
to send and receive messages on behalf of its instances
irels.

4.2.2  Description of ADMCC

Unfortunately, applying DMCC to S’ directly will incur
O(]S’]) messages. Therefore, the overhead is increased
by a factor of the number of sensing levels. To reduce
overhead, a node sends out a combined message for all
its instances instead of sending one message for each
instance.

Initiator Node: Recall that, in DMCC, the zero
node that starts earliest or a zero node that does not
have a zero backward neighbor should initiate the search.

However, the node with the zero instance (an instance
that covers 0°) in S’ that starts earliest may not be the
appropriate node to initiate the search if we would like
to combine the message for all its instances. Consider the
configuration in Figure 5. j.ry is the zero instance that
starts the earliest. If j initiates the computation process,
it also sends out a search message for MCC(j.r2). It is
not correct since j.ro is a forward neighbor of 7.r; and
violates the condition in DMCC that a node should not
send out a search message until it has received the search
messages from all its zero backward neighbor instances.
Before we describe which node should start the search,
we first define several definitions.

A mep()
|

> iy

| > jir,

ir e !

I -1
ir, —l1

mep(i)

Figure 5 An example of mep(i) < mep(j).

In the fixed range situation, we call a node zero node if
it covers 0°. In the adjustable sensing range case, a node
1 is a zero node if there exists an instance of ¢ that covers
0°. It is possible that not all instances of a zero node
cover 0°. On the other hand, it is possible for a node i to
have all its instances share a common mid-point as shown
in Figure 4. Note that this assumption may not be true
if the target object is in irregular shape. In this case, we
only combine those instances that share a common mid-
point. The mid-cover-point of node i, denoted as mep(i),
is the center of its cover ranges in different instances. For
any 7,7 € S, we define mep(i) < mep(j) if mep(i) is on
the left of mep(j) along the circle as shown in Figure 5.
We have the following property:

Property 3: For any i,j €S, if mep(i) < mep(j),
then i.x would not be a forward neighbor of j.y for any
sensing level x and y.

In the example shown in Figure 5 where 7 and j are
both zero nodes, we say mep(i) < mep(j) since mep(i) is
to the left of mep(j). To show this property, suppose that
there is an instance i.x which is a forward neighbor of
an instance j.y. That is, s;, < s;.,. Since mep(j) is the
mid-point of the cover range, t;, = mep(j) + mep(j) —
Sj.y. Similarly, ¢;, = 2% mep(i) — s;.5. Since mep(i) <
mep(j) and s, < s;.5, we have t; , < t;,, which means
i.x is contained in j.y. It leads to contradiction since
j.y is not a forward neighbor of i.z according to our
definition in Section 3.1.3.

Property 3 suggests that we should select a zero
node with the smallest mid-cover-point to initiate the
algorithm since the zero instances of this node would not
be forward neighbors of other zero instances. We thus
select node 7 to start the algorithm where node 7 satisfies:
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1. 7 is a zero node

[\

. mep(i) < mep(j) for any zero node j (Note that
2 < y means z is to the left of y along the circle.)

»li
> ir,

x

.
1€ + P r,

K—'—H jry

mep()

Figure 6 An initiator with both zero and non-zero
instances.

We mentioned earlier that not all instances of a zero
node are zero instances as well. Therefore, it is possible
that the initiator node ¢ contains an instance that does
not cover 0° as shown in Figure 6. In this case, ¢ should
only carry the search information of those zero instances.
In fact, if the non-zero instance of i is to the right of
0°, it can be pruned (i.ro in Figure 6). It is because a
backward neighbor of this non-zero instance must cover
0°, which implies that there exist another zero node with
mid-cover-point smaller than mep(i). However, this is
not possible since mep(i) is the smallest. Hence, 4 is
selected to start the algorithm.

Message Combining Mechanism: After node i
sends out the search message that carries the information
of MCC(i.r) for every zero instance i.r, other nodes
send out a combined search message after collecting a
search message for each backward neighbor of each of its
instances. We now explain there will be no deadlock in
the whole procedure. That is, once the search has been
started by i, every node will eventually receive enough
messages from its backward neighbors and create its own
search message.

0°

2 e I d

kr, —t—>1 s

k.rgn-'—ﬂ ) T
oo mep(k) :c-‘!(-:;k.rz eoe
J- 1 T 1

i, |<—|—>|

mep(j)

Figure 7 Order of nodes in ADMCC

Lemma 4.1: Fvery node will eventually send out a
search message in the ADMCC' algorithm.

Proof:
We label the nodes as ng,ni,...,n|g. Let the initiator
node be ng. There are two cases:

1. mep(ng) is to the right of 0°
In this case, all the non-zero nodes k& with 0 <

mep(k) < mep(ng) can be pruned. We arrange the
nodes according to the mid-cover-points. That is,
mep(ng) < mep(ny) if @ < y.

2. mep(ng) is to the left of 0°

In this situation, nodes are divided into two
sets. Set A contains the non-zero nodes k with
mep(ng) < mep(k) < 0° while B= S\ A. Note
that ng € B. We first arrange the nodes in B
according to the mid-cover-point and then the
nodes in A. For example, the nodes are arranged
in Figure 7 according to the following order of
mid-cover-points, i.e., mep(i), mep(k’), mep(j), ...,
mep(k).

By defining the order in this way, Property 3 ensures
that the important backward neighbors of the instances
of node mn, must be instances of nodes in the set
{Tlo, M,y ... nx—l}-

We prove this lemma by induction. ng initiates the
search by sending one combined search message for all
its zero instances to its forward neighbors. If all the
instances of ny are zero instances as shown in Figure
5, n1 has received a search message from each of the
important backward neighbors of its instances. If NOT
all ng’s instances cover 0°, the non-zero instances are
either all to the left of 0° or all to the right of 0°.
If they are on the right, they have been pruned as in
Figure 6 and should not be considered by n;. If they are
on the left, they are not important backward neighbors
as defined in the proof of Lemma 3.1 and need not
be considered as well. Therefore, we can conclude that
n1 has received all the search messages from all of its
important backward neighbors and it can send out its
search message.

Assume that n; has received all the search messages
on behalf of all its instances. It should be noted that n;
where 7 < k should have sent out its combined search
message too. When nj; sends out the combined search
message, ni41 should have received a combined search
message from each of its important backward neighbors
and it can send out its own search message. Therefore,
there is no deadlock in the algorithm.

O

By Lemma 4.1, we know that a node 7 can send out
one combined search message for all its instances after it
has received messages from all their backward neighbors.
By combining the search messages of all its instances, the
number of messages can effectively be reduced to O(N).

Search Termination: In ADMCC, when a zero
node ¢; receives all the search messages for all its
instances, it can determine the cost of all unpruned
MCC(a), where a represents a zero instance of g¢;.
Instead of terminating the algorithm, it still has to
continue the search of the remaining unpruned M CC(b),
where b is another zero instance of the zero node g5 and
mep(q;) < mep(gr). At the same time, ¢; announces the
costs of all the unpruned MCC(a). The whole search
process can be terminated when the zero node with
the largest mid-cover-point receives search messages for
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all its zero instances and then announces the costs. At
this moment, the costs of all unpruned searches can be
determined. By overhearing others’ announcements, each
zero node knows which instance is selected to form the
minimum cost cover.

Search Message Format: In the combined
message, we need to identify the searches of different
instances of different nodes. In ADMCC, the search
message format is << ey, <combined search message
of instance e1>>, < ey, <combined search message of
mstance ex>>, ... > where ej is an instance of the
node which sends out the combined search message. The
format of the combined search message of instance ey, is
similar to the combined search message of the node in
DMCC defined in Section 3.4.1.

Example: As shown in Figure 8, Node 1 has two
zero Instances 1.1 and 1.2. Since Node 1 is the only zero
node, it initiates the process of computing the minimum
cost cover. Hence, Node 1 sends << 1.1,< f(1.1) =
5,811, 1.1 >> < 1.2/ < f(1.2) =2,815,1.2 >>> to
all the forward neighbors. After receiving the search
message from Node 1, Node 2 updates the minimum cost
to reach Instance 2.1 from Instance 1.2 as coming 221 =
f(1.2) 4+ f(2.1) =54+ 2.5 =7.5. It also determines the
minimum cost to reach Instance 2.2 from Instance 1.1
as coming 122 = f(1.1)+ f(2.2) =2+ 6 =8 and that
from Instance 1.2 as c.minioq0 = f(1.2) 4+ f(2.2) =
5+6=11. Since Node 2 has received the search
messages of all of its instances (i.e., all the backward
neighbors of its instances), Node 2 sends the combined
message << 21, <cminiogg = 7.5,512,1.2 >,<
2.2 < C,min1_172_2 =8,s51.1,1.1 >, < c,min1_272_2 =
11, 51.2,1.2 >>> to the forward neighbors.

Upon receiving the search message from Node 2,
Node 3 determines the minimum cost to reach Instance
3.1 from zero Instances 1.1 and 1.2 as c-minii3.1
= cminii22+ f(3.1) =84+3=11 and c.miniagz1
=  cmini222+ f(3.1) =11 +3 =14, respectively.
Moreover, it determines the minimum cost to reach
Instance 3.2 from Instances 1.1 and 1.2 as c-ming. ;3.2
= C,min1,172.2 + f(32) =8+8 =16 and c,min1,273,2 =
coming 222+ f(3.2) = 11 4+ 8 = 19, respectively. At this
moment, Node 3 has received all the search messages
to make its own. It sends << 3.1, < coming 131 = 11,
s1.1, L1 >, <cominigozi =14, s12, 1.2>>, <3.2,<
C,m’inl,l’g.g =16, s11, 1.1 >, < C,min1,2’3.2 =19, s1.0,
1.2 >>> to the forward neighbors of its instances.
Once Node 1 receives the combined search message
from Node 3. It determines the cost of MCC(1.2)
is c.ming 231 = 14, while the cost of MCC(1.1) is
c-ming 1,32 = 16. Since Node 1 is the only zero node,
the cost of MCC can be determined once the costs
of MCC(1.1) and MCC(1.2) are determined. The one
with the minimum cost is MCC which is MCC(1.2).

We refer readers to (Hung and Lui (2008)) for
a complete descriptions of pseudocodes and state
diagrams.

0 degree

Sensor 3

Figure 8 Adjustable Distributed Minimum Cost Cover
Algorithm Example

5 Simulation

For comparison, we have implemented the algorithm
described in (Chow et al. (2007a)) and our proposed
algorithms (DMCC and ADMCC) in this paper. In
the algorithm described in (Chow et al. (2007a)), each
zero node ¢ finds M CC(i) individually and there is no
combining of messages. We denote this algorithm as
Exhaustive Distributed Minimum Cost Cover Algorithm
(Ex-DMCC) in this literature.

5.1 Simulation Settings

Our simulation environment is similar to the one adopted
in (Chow et al. (2007b)). We considered an area of 100
grids x 100 grids, in which each grid takes up an area of
1 unit? and every grid has a probability of 0.8 to contain
a sensor. The average number of sensors is around 6500.
The target object, which is a circle with radius of 25
units, is located at the center (50, 50). A sensor can cover
the portion of the perimeter of the target if that portion
is within the sensing range of the sensor. We measure
the performance of our mechanisms for different sensing
range values. The cost value associated with each node
is randomly generated from 1 — 2. Under the adjustable
sensing range scenario, we have f(i.r) o< r? (Cardei and
Du (2005); Cardei et al. (2005); Cardei et al. (2006)). We
randomly generated 30 topologies for each set of results.
Four performance metrics are measured and they are
the total number of messages generated, the expected
energy expenditure due to the transmission of messages,
the minimum cost of the covers found by the algorithm,
and the total time needed to find MCC.

5.2 Simulation Results

5.2.1 Fized Sensing Range Scenario

We compare the message overheads and energy needed
to find the minimum cost cover using Ex-DMCC and
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DMCC to show the effect of combining messages.
Figure 9 illustrates the log number of messages to
find the covers with different fixed sensing ranges. The
figure shows that Ex-DMCC requires a large amount of
messages to find the MCC. This is because it requires
each zero node ¢; to look for MCC(g;) individually
and |Sp| can be large in some situations. On the other
hand, DMCC greatly reduces the message overhead by
combining the messages, so that most of the nodes only
need to send out the combined search message once.
Note the message overheads of DMCC with or without
pruning are similar. Therefore, we show only the results
with both combined messages and pruning in Figure 9.
On the other hand, both algorithms show an increase in
the number of messages with an increase in the sensing
range. It is because when the sensing range is short, some
sensors may not be able to cover the target perimeter and
these sensors are not involved in the protocol. It can be
observed that the overhead in Ex-DMCC increases faster
than that of DMCC when the sensing range increases.
This is because when nodes have a larger sensing range,
more nodes would cover 0° and so |S| is larger.

T
—e—Ex-DMCC
—4—DMCC

Log Number of Messages

85 R 9 95 10 105 11
Sensing Range

Figure 9 Log Number of Messages Vs. Sensing Range.

Other than message overheads, energy needed to find
the minimum cost cover is also our concern. In fact, each
Ex-DMCC message contains three tuples < c¢,s;,7 >,
while each DMCC message contains several combined
Ex-DMCC messages. Therefore, the size of a DMCC
message can be multiple times of that of an Ex-DMCC
message. Practically, ¢ and s; can be rounded to 1 byte
integers with a certain loss of precision. ¢ depends on
the size of the network and it can be represented by
an integer smaller than 2 bytes in general. Therefore,
the size of an Ex-DMCC message is around 4 bytes,
while that of DMCC message is around |Sy| X 4 bytes
if none of the search is pruned. In (Shnayder et al.
(2004); Shnayder et al. (2009)), the authors suggested
that CSMA should be performed before sending a
message so as to avoid collision. The average CSMA
time is around 41.0ms. On the other hand, we know
that transmitting with the maximum range incurs a
current of 21.5mA, while listening to the channel incurs
a current of 7mA. In other words, the transmitting and
the listening operations incur a power of 64.5mW and

21mW under a 3V power supply. The transmission rate
is around 16kbps. The energy consumed for sending a
message can be estimated by P, x T, + P; x I, where
P, and P; are the power required for transmitting and
listening, respectively. T, is the time durations required
for transmitting the whole message and can be estimated

message size while I, is the average CSMA

transmission rate’
time. From the simulation, we know that |Sy| is generally
less than 50 after pruning. Therefore, a combined
message contains approximately 200 bytes only. Based
on the information above, the energy consumed for
transmitting a 4-byte message and a 200-byte message
are ImJ and 7.3mJ, respectively. Figure 10 illustrates
the estimated transmission energy expenditure of Ex-
DMCC, DMCC with the combining technique but
without the pruning technique, and DMCC with both
the combining technique and the pruning technique. The
figure shows that DMCC with both the combining and
the pruning techniques uses up the least amount of
energy. This is mainly due to the reason that DMCC
requires much fewer messages and smaller message size
to find the minimum cost cover.

—e—Ex-DMCC
[ | —=—DMCC (Combining)
—4—DMCC (Combining + Pruning)

Energy/J

Sensln; Range > * e "
Figure 10 Estimated Transmission Energy Expenditure
Vs. Sensing Range.

The total time needed to find MCC can be
estimated by finding the total CSMA time and the total
transmission time. These two parameters can be found
by using the transmission rate, the mean CSMA time
information, and the average size of a message. Note that
we assume all ¢; € Sy initiate the search of MCC(q;)
simultaneously in the Ez-DMCC algorithm. Figure 11
illustrates the estimated total time needed of Ex-DMCC,
DMCC with the combining technique but without the
pruning technique, and DMCC with both the combining
technique and the pruning technique. The figure shows
that DMCC with both the combining and the pruning
techniques is the fastest in finding MCC. This is mainly
due to the reason that DMCC requires fewer messages
(which affects the CSMA time) and smaller message
size to find the minimum cost cover (which affects the
transmission time).
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Figure 11 Estimated Total Time needed to find MCC Vs.
Sensing Range.

5.2.2 Adjustable Sensing Range Scenario

In our simulations, we measure the performance of four
situations which have different numbers of sensing levels.
Particularly, 1SR, 2SR, 4SR, and 6SR represent one
level, two levels, four levels, and six levels, respectively.
We assume that there exists a maximum sensing range
rm. For SR, the sensing range r; = ”% is associated
with the cost f(i) = f(rm) x (:;)2, for i =1 to x. This
arrangement is based on the settings in (Cardei et al.
(2006); Chow et al. (2007a)).

Figure 12 shows that the message overhead produced
by DMCC increases as the number of the sensing levels
increases. In contrast, the message overhead of ADMCC,
in which a node sends out a combined message for all
its instances, changes only a little. Figure 13 shows

—e—DMCC-SR1

—— DMCC-SR2 //
16907 | —— pMCC-SR4 ]
—— DMCC-SR6

= ADMCC-SR2
ADMCC-SR4

% ADMCC-SR6
1200 4

1000

1400

Number of Messages

a00L ~ * %

7 7‘5 é 85 9 9‘5 1‘0 10‘5 11

Maximum Sensing Range

Figure 12 Number of Messages Vs. Maximum Sensing
Range.

that the estimated transmission energy expenditure of
both DMCC and ADMCC increases as the number
of the sensing levels increases. ADMCC requires fewer
messages than that of DMCC and this leads to smaller
amount of transmission energy expenditure. Due to
this reason, the energy expenditure differences between
ADMCC and DMCC increases with the numbers of
sensing levels as a lot of messages are required to find
the minimum cost cover in DMCC, but nearly the same

amount of messages are required to find the minimum
cost cover in ADMCC.

—e—DMCC-1SR
——DMCC-2SR
—+—DMCC-4SR
~——DMCC-6SR
= ADMCC-2SR
ADMCC-4SR
% ADMCC-6SR

Energy/J

10 105 11

7 7s 0 o5 5 s

Maximum Sensing Range

Figure 13 Estimated Transmission Energy Expenditure
Vs. Sensing Range.

Figure 14 shows that the estimated total time needed
of both DMCC and ADMCC increases as the number
of the sensing levels increases. ADMCC requires fewer
messages than that of DMCC and this leads to shorter
total CSMA time. Due to this reason, the total time
difference between ADMCC and DMCC increases with
the numbers of sensing levels as a lot of messages are
required to find the minimum cost cover in DMCC, but
nearly the same amount of messages are required to find
the minimum cost cover in ADMCC.
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Figure 14 Estimated Total Time needed to find MCC Vs.
Sensing Range.

Figure 15 illustrates the costs of the minimum cost
cover of various maximum sensing range settings. As
expected, the more the sensing levels, the smaller the
cost of covers due to the reason that finer adjustment on
sensing range can be applied to each node so as to cover
the target object. However, the advantage in the cover
costs becomes smaller when the number of sensing levels
further increases. This is because the advantage brought
by the finer adjustment of the sensing range becomes
smaller and smaller.
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Figure 15 Cover Costs Vs. Maximum Sensing Range.

6 Conclusion

In this paper, we focus on the angle/perimeter coverage
problem in which multiple sensors are expected to
collaborate to monitor the whole perimeter of a large
target object with the minimum cost. The algorithm
is distributed in nature that when it terminates, every
sensor can finally determine whether it is in the cover by
communicating only with its neighbors. This coverage
problem is very different from some existing coverage
problems in which a certain area or point are to be
monitored instead. To the best of our knowledge, we
are the first to propose a distributed algorithm for
finding the minimum cost cover with the communication
complexity of O(size of the network). We also give the
formal proof of correctness of our algorithm. Moreover,
we are the first to study this problem under the
adjustable sensing range scenario. Through extensive
simulations, our proposed DMCC algorithm outperforms
Ex-DMCC in terms of the communication overhead,
and ADMCC can find a cover with smaller cost than
the existing algorithms in the adjustable sensing range
scenario.
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